用最大公因数和最小公倍数解决问题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18、24、30的最大公因数是:6
18米长的段数:18÷6=3(段) 24米长的段数:24÷6=4(段) 30米长的段数:30÷6=5(段)
3+4+5=12(段) 答:每段最长有6米,一共可以截成12段。
(3)一张长方形纸,长60厘米,宽36厘 米,要把它截成同样大小的正方形,并使 它们的面积尽可能大,截完后又正好没有 剩余,正方形的边长可以是多少厘米?能 截多少个正方形?
西瓜堆数:24÷12=2(堆) 木瓜堆数:36÷12=3(堆)
答:每小堆最多12个。这时候西瓜分成2小堆。 木瓜分成3小堆。
(5)甲、乙两队学生,甲队有121人,乙队有143 人,各分成若干组,各组人数要相等,则每 组最多有几人?这时候甲队可分成多少组? 乙队可分成多少组?
121和143的最大公因数是:11
3、一筐鸡蛋,3个3个数,最后多1个;5 个5个数,最后多1个;6个6个数,最后 也多1个。这些鸡蛋至少有多少个?
3、5和6的最小公倍数是:30
30+1=31(个)
答:这些鸡蛋至少有31个。
用最大公因数、最小公倍数 解决问题
通过求最大公因数解题 的应用题: 分组问题、分东西,裁最大的正方 形,铁丝分段
一般题目中会出现:
最大、最多、最长等字眼
题目常常给几个较大的数,求较小的数,就 是要你求最大公因数
(1)有25个桃子,75个橘子,分给若干名小 朋友,要求每人分得的桃子,橘子数相等,那么 最多可分给多少个小朋友?每个小朋友分得桃子 多少个?橘子多少个?
6和4的公倍数有:12、24 、36… …
答:拼成的正方形的边长可能是12、24 、36… … 。
2、王伯伯有三个小孩,老大3天回家一 次,老二4天回家一次,老三6天回家一 次,这次10月1日一起回家,则下一次 是几月几日一起回家?
3、4和6的最小公倍数是:12
10月1日经过12天是10月13日
答:下一次是10月13日一起回家。
36、60的最大公因数是:12
60÷12=5(个)
36÷12=3(个)
3<5
答:正方形的边长是12厘米,能截3个。
(4)、有一堆西瓜与一堆木瓜,分别为24个与36 个,将其各分成若干小堆,各小堆的个数要相 等,则每小堆最多几个?这时候西瓜分成多少小 堆?木瓜分成多少小堆?
24和36的最大公因数是:12
梨:320÷40=8(个) 糖果:240÷40=6 (个) 饼干:200÷40=5(个)
答:每包有8个梨。有6个糖果。有5个饼干。
●通过用最小公倍数解题的应用题:
当题目问「至少...」、「最少在几.. 〈单位〉后,会再...一次〈也可换成碰 到〉」或是「下次同时碰到的时候,是 什么时候」之类.
1、利用每一小块长6公分,宽4公分的长 方形彩色瓷砖在墙壁上贴成正方形的图 案。问:拼成的正方形的边长可能是多 少?
25、75的最大公因数是:25
最多可以分给25个小朋友
分得的桃子:25÷25=1(个) 分得百度文库桃子:75÷25=3(个)
答:最多可以分给25个小朋友,每个小 朋友分得桃子1个、橘子5个。
(2)有三根铁丝,一根长18米,一根长 24米,一根长30米。现在要把它们截成 同样长的小段。每段最长可以有几米?一 共可以截成多少段?
甲队学生:121÷11=11(组) 乙队学生:143÷11=13(组)
答:每组最多有11人。这时候甲队可分 成11组。乙队可分成13组。
(6)今有梨320个、糖果240个、饼干200个,将这些 东西分成相同的礼品包送给儿童,但包数要最多, 则每包有多少个梨?有多少个糖果?有多少个饼 干?
320、240和200的最大公因数是:40
18米长的段数:18÷6=3(段) 24米长的段数:24÷6=4(段) 30米长的段数:30÷6=5(段)
3+4+5=12(段) 答:每段最长有6米,一共可以截成12段。
(3)一张长方形纸,长60厘米,宽36厘 米,要把它截成同样大小的正方形,并使 它们的面积尽可能大,截完后又正好没有 剩余,正方形的边长可以是多少厘米?能 截多少个正方形?
西瓜堆数:24÷12=2(堆) 木瓜堆数:36÷12=3(堆)
答:每小堆最多12个。这时候西瓜分成2小堆。 木瓜分成3小堆。
(5)甲、乙两队学生,甲队有121人,乙队有143 人,各分成若干组,各组人数要相等,则每 组最多有几人?这时候甲队可分成多少组? 乙队可分成多少组?
121和143的最大公因数是:11
3、一筐鸡蛋,3个3个数,最后多1个;5 个5个数,最后多1个;6个6个数,最后 也多1个。这些鸡蛋至少有多少个?
3、5和6的最小公倍数是:30
30+1=31(个)
答:这些鸡蛋至少有31个。
用最大公因数、最小公倍数 解决问题
通过求最大公因数解题 的应用题: 分组问题、分东西,裁最大的正方 形,铁丝分段
一般题目中会出现:
最大、最多、最长等字眼
题目常常给几个较大的数,求较小的数,就 是要你求最大公因数
(1)有25个桃子,75个橘子,分给若干名小 朋友,要求每人分得的桃子,橘子数相等,那么 最多可分给多少个小朋友?每个小朋友分得桃子 多少个?橘子多少个?
6和4的公倍数有:12、24 、36… …
答:拼成的正方形的边长可能是12、24 、36… … 。
2、王伯伯有三个小孩,老大3天回家一 次,老二4天回家一次,老三6天回家一 次,这次10月1日一起回家,则下一次 是几月几日一起回家?
3、4和6的最小公倍数是:12
10月1日经过12天是10月13日
答:下一次是10月13日一起回家。
36、60的最大公因数是:12
60÷12=5(个)
36÷12=3(个)
3<5
答:正方形的边长是12厘米,能截3个。
(4)、有一堆西瓜与一堆木瓜,分别为24个与36 个,将其各分成若干小堆,各小堆的个数要相 等,则每小堆最多几个?这时候西瓜分成多少小 堆?木瓜分成多少小堆?
24和36的最大公因数是:12
梨:320÷40=8(个) 糖果:240÷40=6 (个) 饼干:200÷40=5(个)
答:每包有8个梨。有6个糖果。有5个饼干。
●通过用最小公倍数解题的应用题:
当题目问「至少...」、「最少在几.. 〈单位〉后,会再...一次〈也可换成碰 到〉」或是「下次同时碰到的时候,是 什么时候」之类.
1、利用每一小块长6公分,宽4公分的长 方形彩色瓷砖在墙壁上贴成正方形的图 案。问:拼成的正方形的边长可能是多 少?
25、75的最大公因数是:25
最多可以分给25个小朋友
分得的桃子:25÷25=1(个) 分得百度文库桃子:75÷25=3(个)
答:最多可以分给25个小朋友,每个小 朋友分得桃子1个、橘子5个。
(2)有三根铁丝,一根长18米,一根长 24米,一根长30米。现在要把它们截成 同样长的小段。每段最长可以有几米?一 共可以截成多少段?
甲队学生:121÷11=11(组) 乙队学生:143÷11=13(组)
答:每组最多有11人。这时候甲队可分 成11组。乙队可分成13组。
(6)今有梨320个、糖果240个、饼干200个,将这些 东西分成相同的礼品包送给儿童,但包数要最多, 则每包有多少个梨?有多少个糖果?有多少个饼 干?
320、240和200的最大公因数是:40