高考物理牛顿运动定律试题经典及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理牛顿运动定律试题经典及解析
一、高中物理精讲专题测试牛顿运动定律
1.一长木板置于粗糙水平地面上,木板右端放置一小物块,如图所示。
木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4。
t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1s 时,木板以速度v 1=4m/s 与墙壁碰撞(碰撞时间极短)。
碰撞前后木板速度大小不变,方向相反。
运动过程中小物块第一次减速为零时恰好从木板上掉下。
已知木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2。
求: (1)t=0时刻木板的速度; (2)木板的长度。
【答案】(1)05/v m s =(2)163
l m = 【解析】 【详解】
(1)对木板和物块:()()11M m g M m a μ+=+ 令初始时刻木板速度为0v 由运动学公式:101v v a t =+ 代入数据求得:0=5m/s v
(2)碰撞后,对物块:22mg ma μ=
对物块,当速度为0时,经历时间t ,发生位移x 1,则有21112v x a =,112
v
x t =
对木板,由牛顿第二定律:()213mg M m g Ma μμ++= 对木板,经历时间t ,发生位移x 2
22131
2
x v t a t =-
木板长度12l x x =+代入数据,16=
m 3
l
2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的
图象如图所示取
m/s 2,求:
(1)物体与水平面间的动摩擦因数; (2)水平推力F 的大小;
(3)s 内物体运动位移的大小.
【答案】(1)0.2;(2)5.6N ;(3)56m 。
【解析】 【分析】 【详解】
(1)由题意可知,由v-t 图像可知,物体在4~6s 内加速度:
物体在4~6s 内受力如图所示
根据牛顿第二定律有:
联立解得:μ=0.2
(2)由v-t 图像可知:物体在0~4s 内加速度:
又由题意可知:物体在0~4s 内受力如图所示
根据牛顿第二定律有:
代入数据得:F =5.6N
(3)物体在0~14s 内的位移大小在数值上为图像和时间轴包围的面积,则有:
【点睛】
在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活
处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.
3.如图,水平桌面上静止放置一质量1kg M =、长为1m L =的木板板上最右端放一质量2kg m =的滑块可看做质点,以20N F =的水平力拉木板,将其从滑块下面抽出来.若所有
接触面间的动摩擦因数均为0.3μ=,210m/s g =.
(1)求滑块与木板间的摩擦力1f 多大,木板与桌面间的摩擦力2f 多大; (2)求滑块从木板上掉下的时间t 为多少? 【答案】(1)6N ;9N (2)1s 【解析】 【详解】
解:(1)滑块与木板之间的摩擦力10.3210N 6N f mg μ==⨯⨯= 木板与桌面间的摩擦力2()0.3(12)10N 9N f M m g μ=+=⨯+⨯= (2)当滑块与木板间的摩擦力达到最大静摩擦力,木板将从物体下面抽出, 对滑块,根据牛顿第二定律得:11f ma =
解得:2
13m/s a =
对木板:122F f f Ma --=
解得:2
25m/s a =
滑块位移:21112
x a t =
,木板的位移:2221
2x a t =
滑落时:21x x L -= 代入数据解得:1s t =
4.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求:
(1)刚放上传送带时物块的加速度;
(2)传送带将该物体传送到传送带的右端所需时间.
【答案】(1)2
4/a g m s μ==(2)1t s =
【解析】 【分析】
先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间. 【详解】
(1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得:
mg ma μ=
代入数据得:2
4/a g m s μ==
(2)设物体加速到与传送带共速时运动的位移为0s
根据运动学公式可得:2
02as v =
运动的位移: 2
0842v s m a
==>
则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有
212
l at =
解得 1t s = 【点睛】
物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力.
5.如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB 相切于A 点,B 为圆弧轨道的最高点,圆弧轨道半径R =1m ,细杆与水平面之间的夹角θ=37°.一个m =2kg 的小球穿在细杆上,小球与细杆间动摩擦因数μ=0.3.小球从静止开始沿杆向上运动,2s 后小球刚好到达A 点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N .已知g =10m/s 2,sin37°=0.6,cos37°=0.8.求:
(1)小球在A 点时的速度大小;
(2)小球运动到B 点时对轨道作用力的大小及方向. 【答案】(1)8m/s (2)12N 【解析】 【详解】
(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:
cos sin (sin cos )F mg F mg ma θθμθθ--+=
代入数据得:24m/s a =
小球在A 点时的速度8m/s A v at ==
(2)小球沿竖直圆轨道从A 到B 的过程,应用动能定理得:
2211sin37(1cos37)22
B A FR mgR mv mv -︒-+︒=
- 解得:2m/s B v =
小球在B 点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:
2
N B
v mg F m R
-=
解得:F N =12N ,轨道对球的力竖直向上
由牛顿第三定律得:小球在最高点B 对轨道的作用力大小为12N ,方向竖直向下.
6.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块
(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;
(3)甲、乙在整个运动过程发生的位移大小之比.
【答案】(1) g(sin α-()
2sin sin cos h
g θθμθ- 【解析】 【详解】
(1) 由牛顿第二定律可得F 合=Ma 甲 Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)
(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h
=212
mv cos 21sin gh θμ
θ⎛⎫
- ⎪⎝
⎭
a 乙=g (sin θ-μcos θ)
t =
()
2sin sin cos h
g θθμθ-
(3) 如图,由动能定理得Mgh -μ·Mg cos α·
sin h
α-μ·Mg (OP -
cos sin h αα
)=0
mgh -μmg cos θ·θsin h
-μmg (OQ -
cos sin h θθ
)=0 OP=OQ
根据几何关系得222211x h OP x h OQ ++甲乙
7.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,它们行驶的速度均为10m/s .当两车快要到一十字路口时,甲车司机看到绿灯已转换成了黄灯,于是紧急刹车(反应时间忽略不计),乙车司机为了避免与甲车相撞也紧急刹车,但乙车司机反应较慢(反应时间为0.5s ).已知甲车紧急刹车时制动力为车重的0.4倍,乙车紧急刹车时制动力为车重的0.5倍,g 取10m/s 2.
(1)若甲车司机看到黄灯时车头距警戒线15m ,他采取上述措施能否避免闯警戒线? (2)为保证两车在紧急刹车过程中不相撞,甲、乙两车行驶过程中至少应保持多大距离?
【答案】(1)见解析(2)2.5m 【解析】 【分析】
(1)根据甲车刹车时的制动力求出加速度,再根据位移时间关系求出刹车时的位移,从而比较判定能否避免闯红灯;
(2)根据追及相遇条件,由位移关系分析安全距离的大小. 【详解】
(1)甲车紧急刹车的加速度为2
10.44/a g m s ==
甲车停下来所需时间0
11
2.5v t s a =
= 甲滑行距离 20
1
12.52v x m a == 由于12.5 m <15 m ,所以甲车能避免闯红灯;
(2)乙车紧急刹车的加速度大小为:2
20.55/a g m s ==
设甲、乙两车行驶过程中至少应保持距离0x ,在乙车刹车2t 时刻两车速度相等,
0120022()v a t t v a t -+=-
解得2 2.0t s =
此过程中乙的位移: 220002121
152
x v t v t a t m =+-= 甲的位移:210021021
()()12.52
x v t t a t t m =+-
+= 所以两车安全距离至少为:012 2.5x x x m =-= 【点睛】
解决本题的关键利用牛顿第二定律求出加速度,再根据运动学公式进行求解.注意速度大者减速追速度小者,判断能否撞上,应判断速度相等时能否撞上,不能根据两者停下来后比较两者的位移去判断.
8.如图所示,某货场而将质量为m 1="100" kg 的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物中轨道顶端无初速滑下,轨道半径R="1.8" m .地面上紧靠轨道次排放两声完全相同的木板A 、B ,长度均为l=2m ,质量均为m 2="100" kg ,木板上表面与轨道末端相切.货物与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数μ=0.2.(最大静摩擦力与滑动摩擦力大小相等,取g="10" m/s 2)
(1)求货物到达圆轨道末端时对轨道的压力.
(2)若货物滑上木板4时,木板不动,而滑上木板B 时,木板B 开始滑动,求μ1应满足的条件.
(3)若μ1=0.5,求货物滑到木板A 末端时的速度和在木板A 上运动的时间. 【答案】(1)3000N F N = (2)0.4<μ1<0.6 (3)t =0.4s 【解析】 【分析】 【详解】
(1)设货物滑到圆轨道末端是的速度为V 0,对货物的下滑过程中根据机械能守恒定律得,
21012
mgR m v =
① 设货物在轨道末端所受支持力的大小为F N ,
根据牛顿第二定律得20
11N v F m g m R
-= ② 联立以上两式代入数据得3000N F N = ③
根据牛顿第三定律,货物到达圆轨道末端时对轨道的压力大小为3000N ,方向竖直向下. (2)若滑上木板A 时,木板不动,由受力分析得μ1m 1g ⩽μ2(m 1+2m 2)g ④ 若滑上木板B 时,木板B 开始滑动,由受力分析得μ1m 1g >μ2(m 1+m 2)g ⑤ 联立④⑤式代入数据得0.4<μ1⩽
0.6 ⑥. (3)当μ1=0.5时,由⑥式可知,货物在木板A 上滑动时,木板不动. 设货物在木板A 上做减速运动时的加速度大小为a 1, 由牛顿第二定律得μ1m 1g ⩽
m 1a 1 ⑦ 设货物滑到木板A 末端是的速度为V 1,由运动学公式得V 12−V 02=−2a 1L ⑧ 联立①⑦⑧式代入数据得V 1=4m /s ⑨
设在木板A 上运动的时间为t ,由运动学公式得V 1=V 0−a 1t ⑩ 联立①⑦⑨⑩式代入数据得t =0.4s
9.如图甲所示,长为4m 的水平轨道AB 与半径为R=0.6m 的竖直半圆弧轨道BC 在B 处相连接,有一质量为1kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 的大小随位移变化关系如图乙所示,滑块与AB 间动摩擦因数为0.25,与BC 间的动摩擦因数未知,取g =l0m/s 2.求:
(1)滑块到达B 处时的速度大小;
(2)滑块在水平轨道AB 上运动前2m 过程中所需的时间;
(3)若滑块到达B 点时撤去力F ,滑块沿半圆弧轨道内侧上滑,并恰好能达到最高点C ,则滑块在半圆轨道上克服摩擦力所做的功是多少. 【答案】(1)210/m s (28
35
s (3)5J 【解析】
试题分析: (1)对滑块从A 到B 的过程,由动能定理得
F 1x 1-F 3x 3-μmgx =
1
2
mv B 2得v B =10m/s . (2)在前2 m 内,由牛顿第二定律得
F1-μmg=ma 且x1=1
2
at1
2
解得t1=
8
35
s.
(3)当滑块恰好能到达最高点C时,有mg=m
2
C
v
R
对滑块从B到C的过程,由动能定理得
W-mg×2R=
1
2
mv C2-
1
2
mv B2
代入数值得W=-5 J
即克服摩擦力做的功为5 J.
考点:动能定理;牛顿第二定律
10.车站、码头、机场等使用的货物安检装置的示意图如图所示,绷紧的传送带始终保持v=1m/s的恒定速率运行,AB为水平传送带部分且足够长,现有一质量为m=5kg的行李包(可视为质点)无初速度的放在水平传送带的A端,传送到B端时没有被及时取下,行李包从B端沿倾角为37°的斜面滑入储物槽,已知行李包与传送带的动摩擦因数为0.5,行李包与斜面间的动摩擦因数为0.8,g=10m/s2,不计空气阻力(sin37°=0.6,cos37°=0.8).(1)行李包相对于传送带滑动的距离.
(2)若行李包滑到储物槽时的速度刚好为零,求斜面的长度.
【答案】(1)0.1m(2)1.25m
【解析】(1)行李包在传送带上运动过程,由牛顿第二定律得:
μ1mg=ma1,
解得:a1=5m/s2,
行李包加速运动时间:t1=
1
1
5
v
a
==0.2s,
行李包前进的距离:x1=
22
1
1
225
v
a
=
⨯
=0.1m,
传送带前进的距离:x2=vt1=1×0.2=0.2m,
行李包相对于传送带的距离:△x=x2-x1=0.2-0.1=0.1 m;
(2)行李包沿斜面下滑过程,由牛顿第二定律得:μ2mgcos37°-mgsin37°=ma2
由匀变速直线运动的速度位移公式得:0-v2=-2a2x,
代入数据解得:x=1.25m
点睛:该题考查牛顿运动定律的综合应用,属于单物体多过程的情况,这一类的问题要理清运动的过程以及各过程中的受力,然后再应用牛顿运动定律解答。