风电机组塔筒振动的分析与测量_高俊云

风电机组塔筒振动的分析与测量_高俊云
风电机组塔筒振动的分析与测量_高俊云

技术 | Technology

54 风能 Wind Energy

1 引言

塔筒是风电机组中的主要支承装置,它将机舱和风轮托举到所需的高度。在机组的整个寿命周期内,塔筒受到风轮、机舱以及自身重力作用的同时,还受到各种风况(正常风况、极端风况)引起的动载荷作用,承受大小和方向随时变化的疲劳载荷和极限载荷。因此设计时必须保证塔筒具有足够的强度、刚度和稳定性。

塔筒的振动分析与控制是风电机组设计过程中必须进行的工作之一。由于风轮在一定范围内转动,且风轮的转速时刻都在发生变化,因此设计时必须考虑风电机组运行时变载荷、变转速的特性,通过对各个部件动态特性及其耦合特性的设计,保证整个机组在工作过程中的平稳及安全可靠运行。通过对塔筒振动的测量和分析,可以了解实际工作过程中塔筒的振动水平及频率成分,对引起塔筒振动的原因进行具体分析,并对设计进行验证。

2 塔筒的载荷分析

目前,风电机组塔筒大都为锥形结构,其顶端安装有较大质量的机舱和在风载荷作用下旋转的风轮, 如图1所示。概括起来,作用在塔筒上的载荷主要有以下几类:

(1) 气动力:作用在塔筒顶部的风轮上的气动力是塔筒载荷的主要来源。此外, 风载荷直接作用在塔筒上也会对塔筒产生动载荷。

(2) 重力:机舱和风轮重力直接作用于塔筒顶部,是塔筒设计和机组安装时必须考虑的一个重要参数。机舱和风轮的重心位置也是设计时必须考虑的一个重要参数。

(3) 惯性载荷:由于风载荷的随机性,会引起塔筒的振

风电机组塔筒振动的分析与测量

太原重工股份有限公司技术中心 高俊云 连晋华

动,而这种振动会产生惯性力,不但引起塔筒的附加应力, 而且还会影响塔筒顶端叶轮的变形和振动。

(4) 控制系统的运行载荷:风电机组在运行过程中,控制系统和保护系统使机组启动、停车(包括紧急停车)、偏航、变桨、脱网时,都会引起机组结构和塔筒部件的载荷变化。

图2为仿真得到的停车过程中塔筒顶部的倾覆力矩和振动

图1 风力发电机组 图2 塔筒载荷和振动仿真结果

3 设计过程中对塔筒振动的控制

通过上面的分析可知,塔筒受到多种载荷的共同作用,特别是由于风载荷的随机性,必然引起塔筒的变形和振动,而这种振动不但会引起塔筒的附加应力,而且有可能与叶片产生共振,从而影响整个风电机组组的稳定性。因此,在风电机组组塔架设计中,必须对塔筒进行动力学分析,合理设计塔筒的强度和刚度。通过对塔筒进行模态分析,动力响应计算等,使塔架频率(主要为一阶频率)与叶片的通过频率之间错开一定的数值,而且把机组和塔筒的振

Technology | 技术

2011年第02期 554 塔筒振动的测量

4.1 振动传感器的选择

虽然塔筒自身的振动主要为低频振动,但主传动链中其它部件的振动,如增速器、发电机、主机架等的振动频

率一般较高,且这些振动会传递到塔筒上。因此振动的测量可根据分析的频率范围选用合适的振动传感器,如测量塔筒的自振频率,则可选用低频加速度传感器或电容式振动传感器。

4.2 振动测试参数及测点布置

风电机组塔筒振动测试的目的,是了解塔筒振动的实际水平,得到塔筒的实际自振频率,从而对机组运行的稳定性进行评价。当塔筒振动过大时,可通过对塔筒振动的测量,对引起振动的原因进行分析。由于风速和风向的随机性,需要对多种风况下塔筒多个截面处的振动进行测量,这样才能全面了解塔筒的振动特性。测试系统框图见图6。

图6 塔筒振动测试框图

此外,由于应变信号具有良好的低频性能 ,结合塔筒应力的测试,对机组启动、停止过程中的应变信号进行分析,也可得到塔筒的自振频率。

4.3 测试结果

图7为对1.5MW 风力发电机组塔筒顶部相互垂直的四个方向振动的测试结果。图8为利用塔筒根部应变信号对塔筒自振频率的测试结果。

动都控制在一定的范围内。

对于钢制锥形塔筒,把机舱、风轮等近似作为集中质量作用于塔筒顶部,其1阶固有频率可用下式进行估算:

式中:E—塔筒材料弹性模量

I—塔筒截面惯性矩 H—塔筒高度 m 1—塔架质量 m 2—机舱及风轮质量

目前,风电机组塔筒的动力学分析主要通过有限元方法(FEM)进行。表1、图3、图4为采用大型通用有限元软件ANSYS 对一台1.5MW 风电机组进行模态计算得到的结果。

表1 有限元计算得到的塔筒模态频率和模态振型

阶数频率(Hz)振型10.4466X 向前后摆动20.4472Y 向前后摆动3 3.9138X 向弯曲振动4

3.9194

Y 向弯曲振动

根据这些结果,结合叶片的通过频率,就可得到用于描述风电机组塔筒固有频率和叶片二者关系的CAMPBELL 图。如图5所示。

由图可见,机组的1阶固有频率没有与风轮转频的一倍频与3倍频相重合,在风轮转频为最低工作转速9.93r/mim时,风轮三倍频0.495Hz 与塔架固有频率相差15.2%;在风轮转频为17.87r/mim 时,风轮一倍频0.298Hz 与塔架固有频率相差30.8%,符合GB/T19072-2003《风力发电机组 塔架》的规定。因此,在机组运行过程中塔架不会发生谐振,保证了机组运行的可靠性。

图3 塔筒1阶振型及振型图4 塔筒3阶振型及振型图5 机组CAMPBELL图

电荷放大器

INV 智能信号自动

采集分析系统

加速度传感器

技术 | Technology

56 风能 Wind Energy

5 结论

(1) 通过以上分析表明,利用有限元软件对风电机组塔筒进行振动计算分析是可行的, 实测塔筒的1阶自振频率为0.438Hz,与有限元计算得到的0.4466Hz 相比,误差小于2%。产生误差的原因主要是由于计算时未考虑地基刚度对塔筒振动特性的影响;

(2) 从测试数值及波形分析可看出,塔筒的振动为随机、非平稳振动,塔筒不同部位、不同测点振动信号变化差异较大,除含有塔筒自振频率的低频成分外,主要为由主传动系统振动传递到塔筒上产生的高频成分;

(3) 分析与实测结果都表明,该1.5MW 风力发电机组工作过程中未发生塔筒自振频率与叶片通过频率的共振现象,说明机组的运行是稳定的。 图7 塔筒顶部振动测试波形及频谱分析 图8 塔筒根部应变信号及频谱分析

参考文献

[1] [美].Tony Burton,等.武鑫,等译. 风能计算[M]. 北京:科学出版社,

2008.6

[2] 刘万琨,张志英,等.风能与风力发电技术[M]. 北京:化学工业出版社,

2008.3

[3] 单光坤,姚兴佳. 兆瓦级风力发电机组的模态分析[ J ] . 沈阳工业大学学

报,2008 ,30 (3) :276 - 279.

[4] 王建录,郭慧文,吴雪霞,等.风电机组械技术标准精编[M]. 北京:化学

工业出版社,2010.3

风电专业考试题库(带答案)

风电专业考试题库 以下试题的难易程度用“★”的来表示,其中“★”数量越多表示试题难度越大,共526题。 一、填空题 ★1、风力发电机开始发电时,轮毂高度处的最低风速叫。 (切入风速) ★2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是。(定期维护) ★3、禁止一人爬梯或在塔内工作,为安全起见应至少有人工作。(两) ★4、是设在水平轴风力发电机组顶部内装有传动和其他装置的机壳。(机舱) ★5、风能的大小与风速的成正比。(立方)E=1/2(ρtsυ3)式中:ρ!———空气密度(千克/米2);υ———风速(米/ 秒);t———时间(秒);S———截面面积(米2)。 ★6、风力发电机达到额定功率输出时规定的风速叫。(额定风速)★7、叶轮旋转时叶尖运动所生成圆的投影面积称为。 (扫掠面积) ★8、风力发电机的接地电阻应每年测试次。(一) ★9、风力发电机年度维护计划应维护一次。(每年) ★10、SL1500齿轮箱油滤芯的更换周期为个月。(6) ★11、G52机组的额定功率KW。(850) ★★12、凡采用保护接零的供电系统,其中性点接地电阻不得超

过。(4欧) ★★13、在风力发电机电源线上,并联电容器的目的是为了。(提高功率因素) ★★14、风轮的叶尖速比是风轮的和设计风速之比。(叶尖速度)★★15、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于。(迎风状态) ★★16、风电场生产必须坚持的原则。 (安全第一,预防为主) ★★17、是风电场选址必须考虑的重要因素之一。(风况) ★★18、风力发电机的是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。(功率曲线) ★★19、风力发电机组投运后,一般在后进行首次维护。 (三个月) ★★20、瞬时风速的最大值称为。(极大风速) ★★21、正常工作条件下,风力发电机组输出的最高净电功率称为。 (最大功率) ★★22、在国家标准中规定,使用“downwind”来表示。 (主风方向) ★★23、在国家标准中规定,使用“pitch angle”来表示。 (桨距角) ★★24、在国家标准中规定,使用“wind turbine”来表示。 (风力机) ★★25、风力发电机组在调试时首先应检查回路。(相序)

风力发电振动加速度传感器安装选项

风力发电机组的加速度振动传感器
再生能源 风力发电是一种成长中的干净的可再生能 源。无论是单个机组还是组合机组的风力发 电场,它们都是目前世界上发展很快的新能 源。 风力发电机组原理是将风力机械能转化成电 能。风力发电的规模可以从 500 千瓦到 6 兆 瓦。 最常用的风力发电机组是水平轴布置。 有些是三桨叶,上风向并且带有偏航控制, 有的则是二桨叶,下风向,自然随风旋转。 偶尔你也会看到垂直布置的风力发电机组, 它们也被称为 Darrieus (打蛋形)风力发电 机组,根据法国发明家而命名。但是这种打 蛋形的设计不是很流行,逐渐被性能较好得 水平布置的风力发电机组所代替。 风力发电机组和低速电机驱动的风扇,例如 冷却塔,有很多相同之处。风力发电机组基 本上是一个大型低速风扇,但是它不是电能 驱动,没有将机械能通过减速箱驱动大型低 速风扇,相反的,它提供机械能,通过加速 箱驱动发电机产生电能。这个反向的过程带 有很多会产生振动的旋转部件,长时间的损 耗可能会导致最终失效。 ? ? ? 维修费用非常高 不可能的工作高度 电能的损失很昂贵
轴向振动传感器 径向振动传感器
发电机
齿轮箱
主要轴承
带有加速度振动传感器的水平布置的 风力发电机组
低频加速度振动传感器 主要轴承和转轴的速度大约是 30-60 rpm。这 也是齿轮箱输入轴的旋转速度。旋转频率范 围是 30 – 60 cpm (0.5 – 1.0 赫兹)的情况应采 用低频加速度振动传感器。 测量的范围包括 主轴旋转频率,叶片通过频率,主轴承频 率,齿轮箱输入轴轴承频率和齿轮啮合频率 等等。这些低频加速度振动传感器通常可以 提供 500mV/g 以及 12-180000 cpm (0.2 – 3000 赫兹) 的频率范围。
1

风电功率预测系统功能规范

风电功率预测系统功能规范(试行) 前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。本规范由国家电网公司国家电力调度通信中心提出并负责解释;本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1风电场Wind Farm由一批风电机组或风电机组群组成的发电站。 2.2数值天气预报Numerical Weather Prediction根据大气实际情况,

在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3风电功率预测Wind Power Forecasting以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4短期风电功率预测Short term Wind Power Forecasting未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5超短期风电功率预测ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。 3数据准备 风电功率预测系统建模使用的数据应包括风电场历史功率数据、历史测风塔数据、历史数值天气预报、风电机组信息、风电机组及风电场运行状态、地形地貌等数据。 3.1风电场历史功率数据风电场的历史功率数据应不少于1a,时间分辨率应不小于5min。 3.2历史测风塔数据a)测风塔位置应在风电场5km范围内;b)应至少包括10m、70m及以上高程的风速和风向以及气温、气压等信息;c)数据的时间分辨率应不小于10min。 3.3历史数值天气预报历史数值天气预报数据应与历史功率数据相

风电塔筒通用制造工艺

风电塔筒通用制造工艺

————————————————————————————————作者:————————————————————————————————日期:

风电塔筒通用制造工艺湖北创联重工有限公司

目录 1.塔筒制造工艺流程图 2.制造工艺 3.塔架防腐 4.吊装 5.运输

一、塔架制造工艺流程图 (一)基础段工艺流程图 1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。 2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。 3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。 4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。 (二)塔架制造工艺流程图 1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。 2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。 3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。 4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。 二、塔架制造工艺 (一)工艺要求: 1.焊接要求 (1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。 (2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作

风力发电机输出功率曲线图

1000w 1000w 风力发电机输出功率曲线图 风速 m/s3456789101112输出功率 P(w)2065130240390580825110013001380风速 m/s13141516171819202122输出功率 P(w)138013501310125511851095990875735570 1000w 技术参数 风轮直径 (m) 2.8工作电压 (V)DC48V/DC120V Rotor Diameter Working Voltage AC240V

叶片材料增强玻璃钢蓄电池组电压 (V)/容量 (Ah) 12×2=48/200 Materialand number Reinfotced fibber glass×3 Battery voltage/ of the blade capacity (Ah) 额定功率/最大功率 (w) 1000/1400调速方式偏航+电磁 Rated power /maximum power Speed regulation method Tail turning and electric magnet 额定风速 (m/s) 10停车方式手动 Rated rotate speed Step method Brake by hand drag 额定转速 (r/min) 450发电机型式三相交流永磁 Ratde rotate speed Generator style Three phase,permanent magnet 启动风速 (m/s) 3AA支架高度m/质 量 kg 6/85 Startup wind speed AA Tower height/weight (m/kg) 工作风速 (m/s) 2008-03-25质量(不含塔杆) (kg) 85 Working wind speed Sruvived wind speed 安全风速 (m/s) 40AAA支架高度 (m)/质量 (kg) 6/280 Sruvived wind speed AAA Tower eight/weight (m/kg) 1500w

探讨风电塔筒制造技术及质量控制要求

探讨风电塔筒制造技术及质量控制要求 摘要:在风力发电机组运行过程中,风电塔筒就是风力发电的塔杆,主要功能就是支撑风力发电机组,吸收风电机组的振动。在风电机组运行中,塔筒的制作质量关系着生产安全,笔 者结合多年工作经验,阐述风电塔筒制造技术,并深入分析质量控制要求,以期为相关人员 提供借鉴与参考。 关键词:风电塔筒;制造技术;质量控制 1 塔筒制造流程 一般而言,风电塔筒的制作流程主要有钢板下料、卷板校圆、纵缝焊接、法兰拼装及焊接、 环缝焊接、大节拼装及焊接、附件拼装及焊接、塔筒防腐、内饰件安装、包装以及装车运输等。在制作流程中,必须对焊接操作进行质量控制,针对焊接处的焊缝进行探伤检测。 2 塔筒制造方案 2.1 材料准备及检验 对于钢板、法兰等原材料,在入库前要对其尺寸、厚度、外形等进行检验,检验其是否达标。在初次检验合格后,还要抽取10%的钢板对其外形、尺寸进行超声波复检,质量达到所要求 的标准方可入库。而环锻法兰在初次检验合格后也要抽取10%进行超声波以及磁粉检测,确 保两种检测方法下均符合要求,便可入库。 2.2 钢板下料 一般情况下,钢板的下料过程要采用数控切割机进行操作。操作前,要严格按照工艺的具体 难度进行数控编程,并调试无误后才可进行下料工作。在完成下料操作后,还要对钢板瓦片 的方向、顺序等进行标记,同时还要对钢板号、瓦片编号等进行标记。对于钢板的切割尺寸,其长度偏差要求在上下2mm以内,钢板宽度的误差要不超过2mm,对角线的误差不超过 3mm。对零件的环缝、纵缝的坡口等进行处理时,务必要严格按照工艺要求,且要将坡口及 以其为中心的30mm范围打磨光滑。 2.3 卷板及校园 在进行卷板操作时,要用长度为 1.2m的样板进行辅助控制,将样板与同体间的缝隙严格控 制在2mm以内。在完成卷板后,还要用气保焊对卷板与筒体坡口进行进一步的加固。纵缝 要求筒体间对接的间隙范围不超过2mm,错边量不超过3mm。 2.4 纵缝焊接 在进行焊接时,要先焊接内缝,完成后再将背缝及其周围做彻底的清理,使其露出焊缝坡口 的金属,然后再将其焊接起来。在焊接过程中,需要注意的是:焊接前,首先要检测纵缝对 接处间隙的距离,若间隙大小超过1mm,则应先使用对应规格的气保焊对其进行打底,且焊接的温度要控制在100-250℃之间,焊接线的能量要低于39千焦每厘米,以达到焊缝冲击功 的标准。焊接完成后,按照《承压设备无损检测》中的要求对所焊接的纵缝进行超声波探伤 检验,检测结果达到一级,即为合格。与此同时,焊接部位的外观也要进行一定的检测,若 未达到标准,则重新进行处理。此外,检验合格后,按要求使用切割片或是火焰割枪将引熄 弧板切除,并将其遗留的坡口打磨光滑。 2.5 拼装(法兰拼装、大节拼装) 对于法兰节的拼装工作,务必在特定的拼装地点进行拼装。在进行拼装前,首先要对瓦片与 法兰接口处的管口的周长进行测量,并对错边量的大小进行估计。拼装时演讲法兰有坡口的

风力发电机组功率曲线考核初探

风力发电机组功率曲线考核初探 汕头华能南澳风力发电有限公司张秋生 摘要:当前全国风电事业蓬勃发展,众多实力雄厚 的大公司正在投资或正准备投资大型风电场。面对 国际风电市场纷乱复杂的风机产品,在引进的过程 中应特别注意机组性能考核办法的谈判。本文就风 力发电机组安装现场进行性能考核的一些问题作了 粗略探讨,以期抛砖引玉,在国内风电界尽快形成 系统的、切实可行的考核办法。 象大多数电厂一样,发电机组效率曲线的考核是整个电厂考核验收的重点。在考核过程中,火力发电机组较容易控制一个特定功率点所对应的工况条件,对那些有如大气压力、温度、湿度、燃料热值之类的参数也可以简便地从非标准状态折算成标准状态。总的来说,火力发电机组的效率曲线考核较为简单明了。 同样,对风力发电机组的功率曲线的考核也应引起足够的重视,它是衡量整台机组经济技术水平的最佳尺度。所谓功率曲线,就是一条风力发电机组输出功率随风速变化的关系曲线。然而,要在风机安装现场较准确地考核机组的功率曲线却不是那么容易。而对任何一个投资商来说,

这恰恰是他们最为关心的一件事,也就是说,他们投资购买的设备的性能指标是否达到他们的期望值。下面就影响风力发电机功率曲线测绘的一些因素谈几点粗浅看法: 1、风力发电机自身测绘的功率曲线的偏差 一般上风向的水平轴风力发电机的机舱尾部都装有风速计,风机在运行过程中,其计算机根据这个风速计测得的十分钟平均风速和相对应的十分钟平均有功功率自动绘制生成该机组的功率曲线。 众所周知,功率曲线的确切含义是表征风机风轮前远方的来风风速V1与发电机输出的有功功率的关系。而风力机上安装的风速计测得的风速却是来风V1在风轮上做功后气流流速降低的风速。风通过风轮后风速减弱的机理实质是来风损失了动能而风轮获得了机械能,根据能量守恒定律,来风V1通过风轮后的气流流速肯定降低。所以用尾流绘制的功率曲线一定存在较大偏差。 要知道这个偏差值有多大,首先要弄清楚风轮前远方风速V1同风轮后远方风速V2以及气流通过风轮时的风速V′之间的关系。值得注意的是,由于风能同风速的三次方成正比,所以风速的微小偏差会造成功率的很大偏差。在此如果不加修正就用风机上风速计测得的风速进行功率分析,那么得到的功率曲线一定比实际上好得多。下面举一个例子进行说明:

浅谈金风风力发电机组的振动

浅谈金风风力发电机组的振动 姓名:张玉博 入职时间:2013年5月 部门:哈密总装厂

目录 摘要: (2) 一、引言 (3) 二、状态监测与故障诊断 (4) (一)、振动监测方式 (4) (二)、国内外发展现状 (4) (三)、振动故障诊断 (4) 三、金风风力发电机组振动故障案例 (6) (一)、石碑山A0701机组 (6) (二)、石碑山B1004机组 (7) 四、金风风力发电机组减振措施与保护 (8) (一)、对中概念 (8) (二)、造成不对中的原因 (8) (三)、不对中对风机的影响 (9) (四)、金风风力发电机组的减振措施 (9) (五)、独立于系统的硬件保护 (11) 五、小结 (11) 参考文献 (12)

浅谈金风风力发电机组的振动 摘要: 振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。 风力发电机组中减少振动很重要的一个举措就是对中。金风风力发电机组为了减少振动带来的消极影响,做了许多积极措施。从S43/600Kw机组的机械对中到S48/750Kw的激光对中等都有了质的飞跃。 关键词: 振动;振动分析;对中

风电机组检测与控制课程设计报告

风电机组检测与控制课程设计指导书 河北工业大学 风能与动力工程系

一、设计目的 风电机组齿轮箱是双馈型风力发电机组的重要组成部分,是机组中的能量传递机构。齿轮箱的可靠性直接影响了风力发电机组的正常运行。随着国内政策对清洁能源大力支持,特别是对风能发电应用技术的开发,风电机组的单机容量越来越大,因此齿轮箱的稳定性、故障分析和可靠性研究成为了风力发电领域的一个重要环节。而在风电机组运行过程中,对齿轮箱进行在线监测和定期维护至关重要。 根据所学知识,通过文献检索,针对齿轮箱进行在线状态监测和维护相关内容进行设计。 二、设计内容 1、齿轮箱常见故障及原因分析; 2、齿轮箱在线状态监测; 3、齿轮箱维护。 三、时间安排 2015年1月19日交纸质版 四、要求 1、字数要求:5000字左右; 2、报告格式参考“课程设计格式要求”; 3、2-3名同学一组。

风电机组检测与控制 课程设计报告 设计题目:关于风电机组齿轮箱的研究姓名: 时间:2015年1月10日

目录 1系统概论 (1) 2 齿轮箱常见故障及原因分析 (4) 2.1 断齿 (4) 2.2 点蚀 (4) 2.3 齿面胶合 (4) 2.4.齿根疲劳裂纹 (5) 2.5 齿面接触疲劳 (5) 2.6 轴承损坏 (5) 2.7 断轴 (6) 3、齿轮箱在线状态监测 (7) 4 风力发电机组齿轮箱的维护 (9) 4 结束语 (11)

1 系统概述 1.1 齿轮箱的发展概况 面对当前不可再生能源短缺的境况,许多国家都致力于发展清洁能源,主要有风能、太阳能等,但规模最大的是风力发电。随着风力发电技术的日趋成熟,市场的逐步扩大,风力发电已成为增长最快的可再生能源之一,并具备了与常规能源竞争的能力。而风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组中最重要的部件,倍受国内外风电相关行业和研究机构的关注。风机增速齿轮箱作为风力发电机组的配套产品,是风力发电机组中一个重要的机械传动部件,它的功能是将风轮在风力作用下所产生的动力传递给发电机,使其得到相应的转速进行发电,它的研究和开发是风电技术的核心,并正向高效、高可靠性及大功率方向发展。在风力发电机组出现的故障中齿轮箱的损坏率在机组部件中最高的由于风力发电机的组装在风电场,齿轮箱受变载荷、强阵风的冲击,环境温度变化较大,齿轮箱故障所占比重较大。随着风力机组的不断升级,风力发电机容量的增大,齿轮箱故障所带来的损失越来越大发生故障是不可避免的若出现故障,对发电机组带来的影响很大,维修也非常困难。所以齿轮箱故障诊断的研究是非常必要的。目前,主要有三种风力发电机,一种依靠齿轮箱增速的双馈异步风力发电机,一种是永磁直驱风力发电机组,第三种是半直驱风力发电机,第一种的生产技术较为成熟,而 1且在风电场中是主流机型,使用较多的机型。双馈感应发电机所加装的电力电子变流器的功率占风力机组的 30,虽然没有了齿轮箱,风力机的故障发生率以及维护成本都大幅下降,但为了将直驱风力发电机组联接电网,要给它加装一个全功率的电力电子变流器,而变流器的价格非常高,增加了发电成本。鉴于以上两个原因风电机组齿轮箱故障研究有重要现实意义。 1.2风力发电机组齿轮箱的介绍 1.2.1风力发电机组齿轮箱的结构及作用 齿轮箱风力发电机组中的齿轮箱是一个重要的机械部件,其主要功用是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速。通常风轮的转速很低,远达不到发电机发电所要求的转速,必须通过齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。根据机组的总体布置要求,有时将与风轮轮毂直接相连的传动轴(俗称大轴)与齿轮箱合为一体,也有将大轴与齿轮箱分别布置,其间利用涨紧套装置或联轴节连接的结构。为了增加机组的制动能力,常常在齿轮箱的输入端或输出端设置刹车装置,配合叶尖制动(定浆距风轮)或变浆距制动装置共同对机组传动系统进行联合制动如图 2-1 为齿轮箱剖面结构,图 2-2 为风机齿轮箱的内部结构. 图2-3为齿轮箱外部结构。

1.5兆瓦风力发电机组塔筒及基础设计解析

1.5兆瓦风力发电机组塔筒及基础设计 摘要:风能资源是清洁的可再生资源,风力发电是新能源中技术最成熟、开发条件最具规模和商业化发展前景最好的发电方式之一。塔筒和基础构成风力发电机组的支撑结构,将风力发电机支撑在60—100m的高空,从而使其获得充足、稳定的风力来发电。塔筒是风力发电机组的主要承载结构,大型水平轴风力机塔筒多为细长的圆锥状结构。一个优良的塔筒设计,可以保证整机的动力稳定性,故塔筒的设计不仅要满足其空气动力学上得要求,还要在结构、工艺、成本、使用等方面进行综合分析。基础设计与基础所处的地质条件密不可分,良好的地质条件可以为基础提供可靠的安全保证,从风机塔筒基础特点的分析可以看出,风机塔筒基础的重要性及复杂性是不言而喻的。在复杂地质条件下如何确定安全合理的基础方案更是重中之重。 关键词:1.5兆瓦;风力发电机组;塔筒;基础;设计 1、我国风机基础设计的发展历程 我国风机基础设计总体上可划分为三个阶段,即2003年以前小机组基础的自主设计阶段,2003— 2007年MW机组基础设计的引进和消化阶段,2007年以后MW机组基础的自主设计阶段, 在2003年以前,由于当时的鼓励政策力度不大,风电发展缓慢,2002年末累计装机容量仅为46.8万kw,当年新增装机容量仅为6.8万kw,项目规模小、单机容量小,国外风机厂商涉足也较少,风机基础主要由国内业主或厂商委托勘测设计单位完成,设计主要依据建筑类的地基规范。 从2003年开始,由于电力体制改革形成的电力投资主体多元化以及我国开始实施风电特许权项目,尤其是2006年《可再生能源法》生效以后,国外风机开始大规模进入中国,且有单机容量600kw、750kw很快发展到850kw、1.0MW、1.2MW、1.5MW 和2.0MW,国外厂商对风机基础设计也非常重视,鉴于国内在MW风机基础设计方面的经验又不够丰富,不少情况下基础设计都是按照厂商提供的标准图、国内设计院

风电塔筒制造工艺

风电塔筒制造工艺 一,编制依据: 《钢结构工程施工貭量验收规范》GB50205-2001 《钢制压力容器制作标准》GB150-91 《建筑钢结构焊接规程》JGJ81-2002 《形状和位置公差及末注公差》GB/T1184-1996 《钢制压力容器无损检测》JB4730-94 DIN/EN和AWS标准 本工艺适用于风电场风力发电塔架制造。 二,风电塔筒制造工艺流程 塔筒制造中关键技术有三点: 1)塔筒总长度一般在55M-76M,直径在4.2M-2.3M,制造中同轴度不得大于15 mm,整体塔筒共分四段23节,组对过程中必须保证单节筒体端面平行度≤3 mm。 2)由于同轴度要求严格,各段塔筒连接是采用内法兰连接,法兰的焊接变形不得大于3 mm。 3)焊接貭量的控制,要滿足产品貭量要求。

注:法兰外购。 三,塔筒下料工艺: 1,技术交底 1)审图人员必须从设计总配置图开始,逐亇图号、逐亇部位核对, 找清相应安装或装配关糸,再核对外形几何尺寸、各部件之间尺寸能否相亙衔接。之后,再逐亇核对各接点、孔距、孔位、孔径等相关尺寸。 2)认真核对施工图零件数量、单重和总重, 3)审图时应将主要构件计萛出用科幅面,按每节塔筒展开料直接与 供应商订货。

4)审图时发现的问题要及时向设计部门请示,经设计部门修改,不 得擅自修改。 5)施工图低必须经专业人員认真审核后,下达生产车间,专业技术 人員汇同车间技术员对生产者进行技术交底。 2,放样设施及条 1)放样前,放样人員必须熟悉施工图和工艺要求,核对构件与构件相应连接的几何尺寸及连接有否不当之处。 2)放样使用的钢下、弯展、盘尺,必须经计量单位检验合格,丈量尺寸时应分段叠加,不得分段测量后加累计全长。 3)放样应在平整的放样台上进行。凡放大样的构仲,应以1:1的比例放出实样:当构件较大时可绘制下料图。 3,大样检查与施工图未尽尺寸的获取 1)施工图没有注明和无法注明的尺寸与角度,应在放样时取得。 2)大样完成后应由有矣技术人员和貭检人员认真检查。 4,号料 1)下料规格的合理排列,也就是说,在需要切割的每一张钢板上如何合理安排所用规格,使之不剩料边、料头,尽量提高材料的利用率。下料工将同材貭、同厚度的用料,按宽度、长度、数量汇总,作出排板图,套裁切割后再用油漆写明图号。 5.切割 1)割口量与组对间隙的计萛 塔筒实际下料尺寸=名义尺寸﹢割口量﹢公差尺寸﹢焊接收

风力发电机齿轮箱振动测试方法

风力发电机组齿轮箱振动测试与分析 唐新安谢志明王哲吴金强 摘要对齿轮箱做振动测试和分析,通过模式识别找到齿轮箱损坏时呈现的特性,为齿轮箱故障诊断提供依据。 关键词风力发电机组齿轮箱振动分析故障诊断 中图分类号 TH113. 21 文献标识码 A 我国风电场中安装的风力发电机组多为进口机组。因为在恶劣环境下工作,其损坏率高达40%~50%。随着清洁能源的普及,齿轮箱的故障诊断和预知维修已迫在眉睫。本文就齿轮箱的故障诊断作一些探索性研究。 一、齿轮箱振动测试 采用北京东方所开发的DASP(Data Acquisition and SignalProcessing)测振系统,对某风电场4#、5#机组齿轮箱的不同测点(图1)做振动测试和分析,4#机组刚进行过检修运行正常作为对照机组,5#机组噪声异常为待检机组,对两机组齿轮箱的振动信号对比分析,判断存在故障。齿轮箱特征频率见表1。 表1 齿轮箱特征频率表 Hz

二、信号分析 1.统计分析 由统计表2、表3可看出,5#机组振动值明显偏大,尤其是5~10测点振动值基本上是4#机组相应测点的2倍以上。 表2 4#机组幅域统计表 m/s2 表2 5#机组幅域统计表 m/s2 5#机组概率分布及概率密度函数反映其时间序列分布范围较宽(图2),峭度系数(即四阶中心距)与4#机组的(图3)明显,同(若以4#机组为标准g=0,那么5#机组g=0),预示5#机组存在古障。

2.时域分析 通过时域分析(图4、图5),发现5#机组齿轮箱振动信号有明显异常.幅值转大,且 有明显的周期性,其频率约大20Hz 。

3.频坷分析 由图6可见,5#机组齿轮箱的频谱图既有调幅成分又有调频成分(调制频率对中心频率 的幅值不对称)。

风电机组整机系统振动检测与故障诊断 _ yw 20180607

风电机组整机系统振动检测与故障诊断

目录 1 风电机组加阻减振控制策略 (1) 1.1塔筒前后振动控制 (1) 1.2塔筒侧向振动控制 (1) 1.3传动链扭转振动控制 (1) 2 塔筒 (2) 2.1塔筒前后弯曲振动(1) (2) 2.2塔筒前后弯曲振动(2) (5) 2.3塔筒前后弯曲振动(3) (9) 3 机舱 (14) 3.1机舱相对塔筒扭转振动(1) (14) 3.2机舱相对塔筒扭转振动(2) (19) 4 传动链 (25) 4.1传动链扭转振动(1) (25) 4.2传动链扭转振动(2) (31)

1 风电机组加阻减振控制策略 1.1 塔筒前后振动控制 对于大型风力发电机组,叶片桨距角的变化直接影响塔筒的振动幅度和载荷,且塔筒前后一阶模态为主要模态。塔筒前后振动的动态特性可以近似为简单的二阶谐波阻尼系统,如果变桨距动作引起的附加力与塔筒的前后振动速度成正比,可明显地增加有效阻尼,削减外力。由于测量加速度比测量速度更容易,机舱的加速度传感器可很容易得到塔筒的前后振动加速度,积分后即得到塔筒前后振动的速度,将振动速度通过一个带增益的二阶滤波器即可得到该阻尼信号,在原有桨距角需求的基础上加入该阻尼信号,从而有效抑制塔筒的振动。 1.2 塔筒侧向振动控制 塔筒侧向振动的动态特性与塔筒前后振动类似。塔筒顶部的侧向振动一般由传动链扭矩反作用引起,塔筒侧向结构阻尼本身很小,可通过在原有发电机给定转矩上添加附加转矩实现增大阻尼的效果。同样可借助机舱振动加速度传感器,将测量到的塔筒侧向加速度积分后再作用增益即可得到附加转矩,并将附加转矩范围限定在发电机允许最大转矩的10%以内。 1.3 传动链扭转振动控制 在变桨距阶段,变速风电机组只有很小的阻尼,因为转矩不再随着转速的变化而变化,在非常低的阻尼下会导致齿轮箱有较大的转矩振动。增加传动链的阻尼可以通过在原有转矩给定值的基础上增加一个很小的附加转矩波动。这个转矩波动要与传动链的扭转速度相反,才能增加等效阻尼。附加转矩可将发电机转速通过一个带通滤波器近似获得。值得注意的是,风轮平面内一阶模态、塔筒侧向二阶模态和风轮转速的多倍频,特别是3P、6P,都可以激发传动链的扭振。 摘自:《变速变桨风力发电机组的桨距控制及载荷优化》,重庆大学,何玉林

风电塔筒常识

风电塔筒 一、塔筒概述 风电塔筒就是风力发电的塔杆,在风力发电机组中主要起支撑作用,同时吸收机组震动。 海风风电塔筒 风电塔筒的生产工艺流程一般如下:数控切割机下料,厚板需要开坡口,卷板机卷板成型后,点焊,定位,确认后进行内外纵缝的焊接,圆度检查后,如有问题进行二次较圆,单节筒体焊接完成后,采用液压组对滚轮架进行组对点焊后,焊接内外环缝,直线度等公差检查后,焊接法兰后,进行焊缝无损探伤和平面度检查,喷砂,喷漆处理后,完成内件安装和成品检验后,运输至安装现场。 二、风电塔筒产生锈蚀的原因: 1、因涂层使用寿命超限产生的旧涂层粉化、脱落、起泡、松动等造成的; 2、原始施工时表面处理不彻底或没有进行表面处理的情况下进行了油漆施工而造成的涂层脱落、松动、污物潮湿空气浸透至底材所造成的; 3、涂装施工过程中施工时没得到很好的控制使漆膜厚度不均匀出现大面积底漆膜现象没有起到很好的防腐效果所造成的; 4、设计防腐配套系统失败所造成的涂层过早失效; 5、由于自然灾害(特大风沙等)使得涂层损伤; 6、运输、吊装过程中没有得到很好的保护造成涂层损伤 三、塔筒维修方案及施工工艺的意义: 海风风电科技有限公司进行专业的塔筒外表面维修步骤: 1、局部锈蚀部位表面处理,采用喷射的方法完全去除锈蚀部位被氧化的锈蚀层和旧涂层露出金属母材达到S2.5级,被处理部位边缘采用动力砂轮打磨形成有梯度的过渡层以便进行油漆施工后有一个平滑光顺的表面。(喷射的方法较传统的手工打磨相比,它可以完全彻底地去除被氧化甚至

产生坑蚀钢板深层的锈蚀和旧涂层并可以形成良好的锚链型的粗糙纹,有利于与底漆形成良好的结合力) 2、喷射处理后应按原始配套方案手刷(滚涂)底漆达到规定的漆膜厚度。(手刷、滚涂可以控制底漆施工时的部位控制,不污染边缘的原始涂层,也可以有效地控制底漆的消耗) 3、中涂漆施工可采用刷涂或喷涂达到原始配套的施工漆膜厚度,采用喷涂需对边缘区域进行保护遮挡,遮挡的形状应为“口”字形,形成有规则的外观效果(中涂漆施工进行边缘保护即可以有效的控制消耗又可以保证外观效果) 4、面漆施工:如果采取局部修补的方案,在中间漆施工达到厚度标准且满足第3点要求后可直接喷涂或刷涂面漆达到原始的设计厚度要求。如果采取全部施工面漆的方案在中间漆施工达到厚度标准后应对整个塔筒外边面进行彻底的清洁。清洁方法采用80-100目的砂布进行被涂表面磨砂,去除旧涂层外表的粉化层、灰垢、污物,存在油垢的部位采用化学清洗的方法去除油污,使得被涂表面彻底清洁后整体进行面漆的喷涂。 四、配套油漆的作用: 1、底漆:环氧富锌底漆或低表面处理环氧树脂漆:环氧富锌适用于大面积整体进行涂装施工所采用,它具有良好的防腐效果可提供阴极保护作用,低表面处理环氧树脂漆对局部修补具有优良的特性,也可应用在大面积施工,它对偏低的底材表面处理有相当的容忍性同时也有优越的屏蔽作用,可以起到对钢板良好的保护。 2、中间漆:中间漆一般采用含云母氧化铁成分的环氧厚浆型涂料,它的功能主要是起到屏蔽作用,有效地对底漆进行封闭,保护底漆不受外界的侵蚀。 3、面漆: 一是起美观作用,品质好的面漆可以使得塔筒外观颜色长久靓丽光泽;二也可以起到一定的封闭作用。

风电塔筒制造工艺

目录 1.塔筒制造工艺流程图 2.制造工艺 3.塔架防腐 4.吊装 5.运输

一、塔架制造工艺流程图 (一)基础段工艺流程图 1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。 2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。 3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。 4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。 (二)塔架制造工艺流程图 1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。 2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。 3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。 4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。 二、塔架制造工艺 (一)工艺要求: 1.焊接要求 (1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进

解读《风力发电机组振动状态监测导则》

解读《风力发电机组振动状态监测导则》 本网记者霍丽文 近日,记者获悉,《风力发电机组振动状态监测导则》对风电机组振动状态监测系统的选择作出了规定,“海上风电机组应选择采用固定安装系统,陆上2兆瓦(及以上)风电机组选择采用固定安装系统,陆上2兆瓦以下风电机组可选择半固定安装系统或便携式系统。”《导则》对风电机组震动状态监测系统作出了极其详细的规定,业内人士认为,该《导则》对风电振动状态监测环节进行统一,可以更精细化的掌握机组的运行状态,合理安排检修时间,减少风电事故。 振动状态监测走向精细化管理 据介绍,风力发电机组振动状态监测是根据所监测风电机组类型,选择不同的监测部位,监测风电机组振动状态的改变,评估风电机组的状态,早期发现并跟踪设备故障的一种方法。 某业内人士告诉记者,目前,风机振动状态监测系统还没有被广泛采用,但是各个发电运营商和制造商都已经开始试用该系统,大家对这个技术已经比较了解。 记者从《导则》条文中看到,标准对风电机组振动状态监测系统作了极其详细的规定,包括系统类型、传感器安装原则、测量类型和测量值、振动状态检测技术条件、振动值评定及信号处理和分析方法。可以为风电机组振动状态监测设备生产单位、使用单位、认证机构及相关技术人员提供相应的规范和指导。 “标准是管理、监测、治理等工作的技术依据,在科学合理的前提下应尽可能作出详细规定,提高可操作性,以减少人为因素影响和因理解不同而产生的标准执行不同的差异。”这也是标准制定的主要出发点之一。 “这些详细的标准对振动状态监测设备的生产企业作出了限制,某些不符合该标准的产品和生产线要遭到淘汰。”该业内人士说。 标准是否强制执行? 《导则》指出,海上风电机组应选择采用固定安装系统,陆上2兆瓦以上(含2兆瓦)风电机组选择采用固定安装系统。固定安装系统是振动状态监测系统类型之一,系统传感器、数据采集装置采用固定安装方式,数据采集可连续性或周期性采集,通常用于具有复杂监测任务的风电机组。陆上2兆瓦以下风电机组可选择半固定安装系统或便携式系统。《导则》适用于单机容量大于1.5兆瓦的水平轴风力发电机,其他的风电机组可根据自身特点参照使用。 这一标准是否强制执行?“《导则》本身不是强制性的,而是建议性的。”参与起草该《导则》的专家告诉记者。

风电专业考试题库带答案

风电专业考试题库以下试题的难易程度用“★”的来表示,其中“★”数量越多表示试题难度越大,共526题。 一、填空题 ★1、风力发电机开始发电时,轮毂高度处的最低风速叫。 (切入风速) ★2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是。(定期维护) ★3、禁止一人爬梯或在塔内工作,为安全起见应至少有人工作。(两) ★4、是设在水平轴风力发电机组顶部内装有传动和其他装置的机壳。(机舱) ★5、风能的大小与风速的成正比。(立方) ★6、风力发电机达到额定功率输出时规定的风速叫。(额定风速) ★7、叶轮旋转时叶尖运动所生成圆的投影面积称为。 (扫掠面积) ★8、风力发电机的接地电阻应每年测试次。(一) ★9、风力发电机年度维护计划应维护一次。(每年) ★10、SL1500齿轮箱油滤芯的更换周期为个月。(6) ★11、G52机组的额定功率 KW。(850) ★★12、凡采用保护接零的供电系统,其中性点接地电阻不得超过。(4欧)

★★13、在风力发电机电源线上,并联电容器的目的是为了。 (提高功率因素) ★★14、风轮的叶尖速比是风轮的和设计风速之比。(叶尖速度) ★★15、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于。(迎风状态) ★★16、风电场生产必须坚持的原则。 (安全第一,预防为主) ★★17、是风电场选址必须考虑的重要因素之一。(风况) ★★18、风力发电机的是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。(功率曲线) ★★19、风力发电机组投运后,一般在后进行首次维护。 (三个月) ★★20、瞬时风速的最大值称为。(极大风速) ★★21、正常工作条件下,风力发电机组输出的最高净电功率称为。(最大功率) ★★22、在国家标准中规定,使用“downwind”来表示。 (主风方向) ★★23、在国家标准中规定,使用“pitch angle”来表示。 (桨距角) ★★24、在国家标准中规定,使用“wind turbine”来表示。 (风力机) ★★25、风力发电机组在调试时首先应检查回路。(相序) ★★26、在风力发电机组中通常在高速轴端选用连轴器。(弹性)

风电塔筒装备制造项目可行性研究报告

风电塔筒装备制造项目可行性研究报告 中咨国联出品

目录 第一章总论 (9) 1.1项目概要 (9) 1.1.1项目名称 (9) 1.1.2项目建设单位 (9) 1.1.3项目建设性质 (9) 1.1.4项目建设地点 (9) 1.1.5项目负责人 (9) 1.1.6项目投资规模 (10) 1.1.7项目建设规模 (10) 1.1.8项目资金来源 (12) 1.1.9项目建设期限 (12) 1.2项目建设单位介绍 (12) 1.3编制依据 (12) 1.4编制原则 (13) 1.5研究范围 (14) 1.6主要经济技术指标 (14) 1.7综合评价 (16) 第二章项目背景及必要性可行性分析 (17) 2.1项目提出背景 (17) 2.2本次建设项目发起缘由 (19) 2.3项目建设必要性分析 (19) 2.3.1促进我国风电塔筒装备制造产业快速发展的需要 (20) 2.3.2加快当地高新技术产业发展的重要举措 (20) 2.3.3满足我国的工业发展需求的需要 (21) 2.3.4符合现行产业政策及清洁生产要求 (21) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (21) 2.3.6增加就业带动相关产业链发展的需要 (22) 2.3.7促进项目建设地经济发展进程的的需要 (22) 2.4项目可行性分析 (23) 2.4.1政策可行性 (23) 2.4.2市场可行性 (23) 2.4.3技术可行性 (23) 2.4.4管理可行性 (24) 2.4.5财务可行性 (24) 2.5风电塔筒装备制造项目发展概况 (24) 2.5.1已进行的调查研究项目及其成果 (25) 2.5.2试验试制工作情况 (25) 2.5.3厂址初勘和初步测量工作情况 (25)

风电塔筒制作工艺

塔筒制作工艺 1、塔筒制作需注意问题: 1)、塔筒制作整个工序必须按照工艺传递卡严格执行,并实行“三检”制度,每个工序又准人负责。 2)、下料后必须对钢板实行钢字码标识,具体内容包括材质零件号,字高7~10mm,要求清晰、无误,并进行材料跟踪。 3)、坡口必须按照下料图纸要求进行备置,小于16mm,不予开坡口,大于16mm。按照下料图开坡口,要求内部表面光滑平整呈金属光泽。 4)、卷板前必须清理钢板上杂物,铁屑,氧化咋,卷板过程中必须用严格控制弧度与样板间隙和椭圆度,样板长度不小于1200mm, 5)、单节组对,焊接矫正,卷板的同时进行单节筒体的纵缝组对,当管节卷制弧度大刀要求时,检查管节扭曲,周长等,然后进行管节的纵焊缝的点焊加固,组对筒体时,控制筒体对接间隙0-1mm,错口量为1/4t,且不大于1.5mm。焊完后管节再次吊进卷板机进行回圆,筒体回圆后菱角度检查时用内弧样板检查,圆度检查样板弦长为1200mm,样板与筒体之间间隙不超过3mm,管节成型后要求其内表面无压痕,拉伤现象,尺寸精度φ±6mm。椭圆度小于0.3%。 6)、法兰与管节组对:首先确定法兰的配对性,并仔细检查筒节与法兰的椭圆度,筒节的椭圆度不大于3mm,否则必须进行校圆并达到要求后才能组装。 A、筒节与法兰组对前仔细检查椭圆度,要求椭圆度不大于3mm,否则必须进行调整大刀要求后组装。 B\、同一台套上的连接法兰必须是出厂时的成对法兰。 C\、反向平衡法兰的纵缝与筒体的纵缝相错180度。 D、组对前塔体及法兰坡口内极其两侧各50mm用磨光机打磨除锈,油等杂质。 E、组装后要求坡口间隙小于2mm,错边小于2mm。 7)、筒节组装:筒节组装前必须仔细检查筒节的椭圆度不大于6mm。 A、筒节之间组装前仔细检查筒节椭圆度,不大于6MM。否则必须进行校圆并达到要求后组装,组装后坡口间隙要求小于2MM,错边小于3MM. B、相邻筒节纵焊缝相错180度。 C\、管节对接错边及翘边小于2MM。 D、法兰的组装要求符合法兰与单节管节组装的要求 E、同轴度要求小于3MM。 F、上下管口平行度小于4MM。 G、单段塔筒直线度10MM。 组拼方法:将校圆合格的单节分别放置在组对机及焊接滚轮架上,采用组对机与焊接滚轮架配合进行组对。组对时先将管节中心线调平,使管节中心线在同一水平线上,然后用线坠调整两端法兰0度,90度,180度,270度。方位线,使两头法兰方位线对齐,调整合格后房可对大口,相邻筒节纵向焊缝要求错开180度,然后进行定位汗。 8)、门框组装“塔筒门框与相邻筒节纵缝环峰应相互错开,筒节环峰应尽量位于门框中部,纵缝与门框中心线相错度不小于90度。 9)、附件组装:严格按照图纸执行,与筒体配合处的间隙小于1MM后才能施焊。 10)、所有焊工必须出具焊工合格证并在有效期内。 11)、在塔筒、法兰及门框边缘50MM处,打上焊工钢印,防腐后也能看见。 12)、所有纵缝必须带引熄护板,长度不小于120MM,并且去引弧板才用气泡后打磨。

相关文档
最新文档