数学研究课题---空间几何体 的外接球与内切球问题

合集下载

高考数学复习微难点11 空间几何体的外接球和内切球问题

高考数学复习微难点11 空间几何体的外接球和内切球问题

Thank you for watching
若直三棱柱 ABC-A1B1C1 的所有棱长均为 2 3,则此三棱柱的外接球的表 面积为( C )
A. 12π
B. 16π
C. 28π
D. 36π
【解析】 由直三棱柱的底面边长为 2 3,得底面外接圆的半径 r=12·2 π3=2,又由 sin3
直三棱柱的侧棱长为 2 3,得 h=2 3,所以外接球的半径 R= 接球的表面积为 S=4πR2=28π.
EC=BE, 所以四边形 ADCE,四边形 ABED 均为平行四边形,所以 AE=DC,AB=DE.
又 DC=1BC,所以 AE=1BC=AB,所以 AE=DE=BE=EC,所以 E 为四边形 AB球心,由球的性质可知 OE⊥平面 ABCD,作 OF⊥PA,
垂足为 F,所以四边形 AEOF 为矩形,OF=AE=2.设 AF=x,OP=OA=R,则 4+
16π 3
4π C. 3
32 3π D. 27
【解析】 因为 AB=AC=1,BC= 3,由余弦定理可求得∠BAC=23π,由正弦定理
可求得△ABC 的外接圆的半径 r=2sBinC23π=1.因为 PA=PB=PC=2,所以 P 在底面上的
射影为△ABC 的外心 D,且 PD= 3.设三棱锥外接球的半径为 R,则 R2=12+( 3-R)2,
(例 2(1))
(2) (2021·福州二模)已知 P,A,B,C,D 是球 O 的球面上的五个点,四边形 ABCD
为梯形,AD∥BC,AB=DC=AD=2,BC=PA=4,PA⊥平面 ABCD,那么球 O 的体积
为( A )
64 2π A. 3
16 2π B. 3
C. 16 2π

专题培优课7 空间几何体内切球与外接球问题

专题培优课7 空间几何体内切球与外接球问题

所以三棱锥 P-ABC
外接球的表面积为 4π·
26 2
2
=26π.
练4 (2023·江苏南京师大附中模拟)在三棱锥 P-ABC 中,PA=BC=5,PB =AC= 17 ,PC=AB= 10 ,则该三棱锥外接球的表面积为________;外接球 体积为________.
答案:26π
13 26π 3
°,VA=VB=VC,
∴ 三棱锥 V-ABC 是正四面体,∴E 是△ABC 的中心,
∴VE⊥平面 ABC,
∵ 三棱锥 V-ABC 的内切球 O 的表面积为 6π,
∴4πr2=6π,解得球 O
的半径 r=OE=
6 2

设 AB=a,则 AE=23 AD=23
a2-a22

3a 3

VE=
a2-
3a2 3
已知点 O 到直三棱柱 ABC-A1B1C1 各面的距离都相等,球 O 是直三棱
柱 ABC-A1B1C1 的内切球,若球 O 的表面积为 16π,△ABC 的周长为 4,则三棱
锥 A1-ABC 的体积为( )
A.43
B.136
C.8 3 3
D.163 3
B 解析:设直三棱柱 ABC-A1B1C1 的高为 h,AB=c, BC=a,AC=b,内切球 O 的半径为 r,则 h=2r,
答案:203π
解析:依题意作图,取 BD 的中点 P,连接 AP,CP,
取△ABD 的中心 E,△BCD 的中心 G,分别作平面 ABD 和平面 BCD 的垂线,
得交点 H,则 H 点就是四面体 ABCD 外接球的球心,CH 就是球的半径 r,
AP=CP=
3
,HG=PE=

空间球体的外接球和内切球问题

空间球体的外接球和内切球问题

空间球体的外接球和内切球问题在几何学中,空间球体是一个三维的球形体,有许多有趣的性质和问题。

其中,外接球和内切球问题是一种经典的几何学问题。

外接球问题给定一个空间球体,外接球问题是要找到能够刚好包围该球体的最小球体,即外接球。

这个问题可以通过寻找球心和半径来解决。

外接球必须满足以下三个条件:1. 外接球的球心与原球体的球心在同一直线上;2. 外接球的球心到原球体表面的任意一点的距离等于外接球的半径;3. 外接球的半径最小。

解决外接球问题的关键是找到外接球的球心和半径的数学表达式。

该问题的解决方案可以通过推导和几何推理来得到。

内切球问题内切球问题是要找到能够刚好被该空间球体包围的最大球体,即内切球。

与外接球问题类似,解决内切球问题也需要找到内切球的球心和半径的数学表达式。

内切球必须满足以下三个条件:1. 内切球的球心与原球体的球心在同一直线上;2. 内切球的球心到原球体表面的任意一点的距离等于内切球的半径;3. 内切球的半径最大。

解决内切球问题的方法和外接球问题类似,需要进行几何推导和推理。

应用和意义外接球和内切球问题在许多领域有着广泛的应用。

在工程学和建筑学中,解决外接球和内切球问题可以帮助设计具有最佳空间利用和结构稳定性的建筑物和零件。

在计算机图形学和计算几何学中,外接球和内切球问题是渲染和碰撞检测等算法的基础。

此外,外接球和内切球问题还与球体的包络问题和球体堆积问题等相关。

总结外接球和内切球问题是空间球体的经典几何学问题。

通过寻找最小外接球和最大内切球的球心和半径,可以解决这两个问题。

外接球和内切球问题在工程学、建筑学和计算机图形学等领域有着广泛的应用。

数学研究课题空间几何体的外接球与内切球问题

数学研究课题空间几何体的外接球与内切球问题

高中数学课题研究几何体与球切、接的问题纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见.?首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.1球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1 球与正方体如图所示,正方体1111ABCD A B C D ,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则2GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则1A O R '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.(1)正方体的内切球,如图1.?位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;?数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r a =.?(2)正方体的外接球,如图2.?位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合;?数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r =.(3)正方体的棱切球,如图3.?位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合;?数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r =.例1棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .B .1C .1+D .思路分析:由题意推出,球为正方体的外接球.平面11AA DD 截面所得圆面的半径122AD R ==得知直线EF 被球O 截得的线段就是球的截面圆的直径. 【解析】由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径122AD R ==11EF AA DD ⊂Q 面,∴直线EF 被球O 截得的线段为球的截面圆的直径2R =点评:本题考查球与正方体“接”的问题,利用球的截面性质,转化成为求球的截面圆直径.1.2 球与长方体例2自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.思路分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.【解析】以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.点评:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算..例3已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A.16πB.20πC.24πD.32π思路分析:正四棱柱也是长方体.由长方体的体积16及高4可以求出长方体的底面边长为2,可得长方体的长、宽、高分别为2,2,4,长方体内接于球,它的体对角线正好为球的直径.【解析】正四棱柱也是长方体。

几何体的外接球与内切球的有关问题(含例题)

几何体的外接球与内切球的有关问题(含例题)

几何体的外接球与内切球的有关问题一、外接球的问题简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是计算球的半径或确定球心O 的位置问题,其中球心的确定是关键. (一) 由球的定义确定球心在空间中,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.结论1:正方体或长方体的外接球的球心其体对角线的中点.例1 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为3,2,3,则此球的表面积为 .结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.例2 若一个底面边长为32,棱长为6的正六棱柱的所有顶点都在一个平面上,则此球的体积为 .结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径.(在1BOO Rt ∆中,21212OO BO BO +=,即222)2(hr R +=.) 例3 在直三棱柱111ABC A B C -中,22AB =,3BC =,14AA =,π4ABC ∠=,则它的外接球体积为 . 结论4:正棱锥的外接球的球心在其高上,具体位置可通过构造直角三角形利用勾股定理求得.BC 222a b c R ++=(以正三棱锥为例:设正三棱锥的底面△ABC 的边长为a ,高为h ,外接球球心为O ,半径为R . 在1AOO Rt ∆中,21212OO AO AO +=,即222)(33R h a R -+⎪⎪⎭⎫ ⎝⎛=.) 例4 已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1===AB BC AC OO ,则球O 的表面积为 .结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心,则公共斜边的一半就是其外接球的半径.例5 已知三棱锥的四个顶点都在球O 的球面上,AB ⊥BC 且P A =7,PB =5,PCAC =10,则球O 的体积为 .(二)构造正方体或长方体确定球心长方体或正方体的外接球的球心是在其体对角线的中点处. 1. 可构造正方体的类型:① ② ③ ①正四面体:棱长对应正方体的面对角线.例6 一个正四面体P-ABC 的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 .②三条侧棱两两垂直的正三棱锥:底面棱长对应正方体的面对角线,侧棱对应正方体的棱长.例7 设是球O 面上的四点,且,,PA PB PC 两两互相垂直,若PA PB PC a ===,则球心O 到截面ABC 的距离是 .③四个面都是是直角三角形的三棱锥:最长的棱长对应正方体的体对角线.例8 在四面体S ABC -中,SA ⊥平面ABC ,90ABC ︒∠=,1SA AC AB ==,则该四面体的外接球的表面积为( )A .23π B .43πC .4πD .5πA BC DA BCPABCP2.可构造长方体和正方体的类型①与②与③ ④①同一个顶点上的三条棱两两垂直的四面体;②三个侧面两两垂直的三棱锥;例9 如果三棱锥的三个侧面两两垂直,面积分别为6cm 2、4cm 2和3cm 2,那么它的外接球的体积是 .③有三个面是直角三角形的三棱锥;例10 已知球上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3,则球O 的体积等于 .④相对的棱相等的三棱锥:设对应长方体的长、宽、高分别为a 、b 、c ,则BC 2=a 2+b 2,AC 2=a 2+c 2,AB 2=b 2+c 2. 所以对应长方体的体对角线为2222222AB AC BC c b a ++=++.例11 在三棱锥S ABC -中,5,17,10SA BC SB AC SC AB ======,则该三棱锥外接球的表面积为 .⑤含有其它线面垂直关系的棱锥. (三) 由性质确定球心利用球心O 与截面圆圆心O’的连线垂直于截面圆,确定球心. 记球的半径为R ,截面圆的半径为r ,球心O 与截面圆圆心O’ 的距离为d ,则有R 2=r 2+d 2.例12 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边 三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .543(四) 圆柱外接球模型计算球的半径一个底面半径为r ,高为h 的圆柱,求它的外接球半径. 222)2(hr R +=(1) (2) (3)变形一:如果我们对圆柱上下底面对应位置处,取相同数量的点,比如都取三个点,如图(1)所示.我们可以得到(直)三棱柱,它的外接球其实就是这个圆柱的外接球,所以说直棱柱的外接球求半径符合这个模型. 在这里棱柱的高就是公式中的h ,而棱柱底面△ABC 外接圆的半径则是公式中的r .例13 在三棱柱ABC-A 1B 1C 1中,AC BC ⊥,若12AA AB ==,当四棱锥11B A ACC -体积最大时,三棱柱外接球的体积为 .变形二:如果把三棱柱上面的C 1去掉,如图(2)所示,我们得到有一个侧面⊥矩形底面的四棱锥,其中r 为垂直底面的侧面△ABC 的外接圆半径,h 为垂直于那个侧面的底面边长AA 1.例14 在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAB ⊥平面ABCD ,22PA PB AB ==,若PBC ∆和PCD ∆的面积分别为1和3,则四棱锥P ABCD -的外接球的表面积为 .变形三:如果把上面的那个三棱柱上面的B 1,C 1两点去掉,如图(3)所示,我们得到一根侧棱⊥底面的三棱锥,其中r 为底面△ABC 外接圆半径,h 为垂直于底面的那条侧棱AA 1.例15 已知A ,B ,C ,D 为同一球面上的四个点.在△ABC 中,23BAC π∠=,23AB AC ==,AD=6,AD ⊥平面ABC ,则该球的体积为 .二、内切球问题若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.结论1:内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等. 结论2:正多面体的内切球和外接球的球心重合.结论3:正棱锥的内切球和外接球球心都在高线上,但不重合.例16正三棱锥的高为1,底面边长为26.求它的内切球的表面积.例17正四棱锥S ABCD -,底面边长为2,侧棱长为3,则其外接球和内切球的半径是多少?结论4:基本方法:构造三角形利用相似比和勾股定理.Rr2h A BC1A 1B 1C A BC1A 1B A BC1A结论5:体积分割是求内切球半径的通用做法. (一)正方体的的内切球设正方体的棱长为a ,求(1)内切球半径;(2)与棱相切的球半径.(1)内切球:截面图为正方形的内切圆,得2a R =. (2)棱切球:切点为正方体各棱的中点,截面图为为正方形的外接圆,得22a R =. 例18 一个正方体的棱长是4 cm ,它的内切球的体积为__cm 3,棱切球的体积为__cm 3.例19 甲球内切于正方体的各面,乙球内切于正方体的各条棱,丙球外接于正方体,则三球表面积之比为 .(二)棱锥的内切球(分割法)将内切球的球心与棱锥的各个顶点连线,将棱锥分割成以原棱锥的面为底面,内切球的半径为高的小棱锥,根据分割前后的体积相等,列出关于半径的方程.设三棱锥的棱长为a ,内切球半径为r.V V V V VPAB O PBC O PAC O ABC O ABCP -----+++=r S r S r S r S PAB PBC PAC ABC 31313131+++= r S S S S PAB PBC PAC ABC )(31+++= 内切球r S ABC P -=31ABCP ABC P S Vr --=⇔3内切球 一般地,记棱锥的体积为V ,表面积为S ,则内切球的半径为SVr 3=.例20正三棱锥的高为3,底面边长为83,正三棱锥内有一个球与其四个面相切,则球的表面积与体积分别为.(说明:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R.这样求球的半径可转化为求球心到三棱锥面的距离,而点面距离常可以用等体积法解决.)例21 如图,在棱锥P ABCD-中,底面ABCD是正方形,2PD AB==,PD⊥平面ABCD.在这个四棱锥中放入一个球,则球的最大半径为()A.2B.21+C.2 D.21-(三)圆柱、圆锥的内切球(截面法)(1)圆柱的内切球:圆柱的轴截面为正方形,记圆柱的底面圆的半径r,内切球的半径R,则R=r.(2)圆锥的内切球:圆锥的轴截面为三角形的内切圆,记截面△ABC的面积为S,周长为C,内切球的半径R,则CSR2=.例22 圆柱的底面直径和高都是6,求该圆柱内切球的半径____.例23 圆锥的高为4,底面半径为2,求该圆锥内切球与外接球的半径比.三、有关内切球和外接球的综合问题1.正四面体的内切球与外接球的半径之比(正四面体的内切球与外接球的两个球心“二心合一”)设正四面体A-BCD的棱长为a,内切球半径为r,外接球半径为R,则OA=OB=R ,OE=r ,且R+r=AE.⊥底面△BCD 为正三角形,∴BE=a 33在ABE Rt ∆中,a aaBE AB AE 36312222=-=-=,∴a r R 36=+ ① 在BEO Rt ∆中,222OE BE BO +=,即22233r a R +⎪⎪⎭⎫⎝⎛= ②由①②,得a r a R 12646==, ∴1:3:=r R , 即球心O 为正四面体高h 的四等分点.例24 求棱长为2的正四面体内切球和外接球的体积.2.正三棱柱的内切球与外接球的半径之比正三棱柱的内切球与外接球的球心是重合的,过侧棱1AA 和它们的球心O 作截面如下图所示:设正三棱柱底面边长为a . 由于内切球投影到底面的圆是底面正三角形的内切圆,所以a R 632=,从而正三棱柱的高为a R h 3322== . 在O D A Rt 11∆中,得,22222211211256333a a a R D A R =⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=.1251a R =∴ 因此1:5:21=R R . 例25 一个正三棱柱恰好有一个内切球和一个外接球,则此内切球与外接球表面积之比为 .巩固练习1. 在正三棱锥S ABC -中,6AB BC CA ===,点D 是SA 的中点,若SB CD ⊥,则该三棱锥外接球的表面积为 .2.已知三棱锥P ABC -的底面是正三角形,PA a =,点A 在侧面PBC 内的射影H 是PBC ∆的垂心,当三棱锥P ABC -体积最大值时,三棱锥P ABC -的外接球的表面积为( ) A .343aB .23a πC .33a π D .212a3.在平面四边形PACB 中,已知120APB ∠=︒,23PA PB ==,10AC =,8BC =.沿对角线AB 折起得到四面体P ABC -,当PA 与平面ABC 所成的角最大时,该四面体的外接球的半径为 .4.已知正三棱柱111ABC A B C -中,侧面11BCC B 的面积为4,则正三棱柱111ABC A B C -外接球表面积的最小值为( ) A .23πB .43πC .83πD .163π5.已知正方体1111ABCD A BC D -棱长为2,点P 是上底面1111D C B A 内一动点,若三棱锥P ABC -的外接球表面积恰为414π,则此时点P 构成的图形面积为________. 6.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______.备注:1.三角形内切圆的半径S S S S AO B AO C BO C ABC∆∆∆∆++=r c b a cr br ar )(21212121++=++= 内切圆r C ABC ∆=21所以三角形内切圆的半径为CSr 2=,其中S 为△ABC 的面积,C 为△ABC 的周长. 2. 三角形外接圆的半径利用正弦定理R C c B b A a 2sin sin sin ===,CcB b A a R sin 2sin 2sin 2===.①正三角形:a a R 3360sin 2=︒=,其中a 为正三角形的边长.②直角三角形:290sin 2cc R =︒=,其中c 为直角三角形的斜边.3. 正三角形的内切圆与外接圆的半径之比正三角形的内切圆与外接圆的两个圆心“二心合一”. 设正三角形的边长为a ,内切圆半径为r ,外接圆半径为R.由于a a R 3360sin 2=︒=,a a a a a a C S r 6360sin 2122=++︒⋅⋅⋅⨯==, 所以1:2:=r R ,即圆心O 为正三角形高h 的三等分点.。

2023届高三数学一轮复习专题 空间几何体的外接球与内切球问题 讲义 (解析版)

2023届高三数学一轮复习专题  空间几何体的外接球与内切球问题  讲义 (解析版)

空间几何体的外接球与内切球问题高考分析: 球与几何体的切接问题是近几年高考的高频考点,常以选择题和填空题的形式出现,以中档题和偏难题为主. 一、几种常见几何体的外接与内切球 1.长方体的外接球 (1)球心:体对角线的交点;(2)半径:R =a 2+b 2+c 22(a ,b ,c 为长方体的长、宽、高).2.正方体的外接球、内切球及与各条棱相切的球 (1)外接球:球心是正方体的中心;半径R =32a(a 为正方体的棱长); (2)内切球:球心是正方体的中心;半径r =2a(a 为正方体的棱长);(3)与各条棱都相切的球:球心是正方体的中心;半径=2r a (a 为正方体的棱长). 3.正四面体的外接球与内切球(1)外接球:球心是正四面体的中心;半径R (a 为正四面体的棱长);(2)内切球:球心是正四面体的中心;半径r (a 为正四面体的棱长).求外接球问题常用方法:1.补体法。

将几何体补形成长方体正方体等常见模型去求解2.外接球的球心都在过底面外接圆圆心的垂线上(注意球体可以滚动所以可以选择较为方便计算的那一面作为底面)3.利用外接球球心到几何体各顶点距离都等于半径4.球心与截面圆圆心的连线垂直于截面圆求外接球的关键是确定球心位置,进而计算出外接球半径。

题型一:柱体的外接球1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_________.2.已知三棱柱111ABC A B C -的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12 ,则该三棱柱的体积为_________.3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π4.已知圆柱的底面半径为12,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π4题型二:锥体的外接球5.求棱长为1的正四面体外接球的体积为_________.6.已知正四棱锥P -ABCD 内接于一个半径为R 的球,则正四棱锥P -ABCD 体积的最大值是( )A.16R 381B.32R 381C.64R 381 D .R 3 7.如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,PB ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若PB =1,∠APB =∠BAD =π3,则三棱锥P -AOB 的外接球的体积是_________.8.已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A.B.C. 1D.9.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π10.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱切开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均是直角三角形的四面体).在如图所示的堑堵ABC -A 1B 1C 1中,AA 1=AC =5,AB =3,BC =4,则阳马C 1-ABB 1A 1的外接球的表面积是( )A .25πB .50πC .100πD .200π11.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π12.已知正三棱锥的所有顶点都在球O 的球面上,其底面边长为3,E,F ,G 分别为为侧棱AB,AC,AD 的中点.若O 在三棱锥A -BCD 内,且三棱锥A -BCD 的体积是三棱锥O -BCD 体积的3倍,则平面EFG 截球O 所得截面的面积为微专题 球与几何体的切接问题——内切球1.半径为R 的球的外切圆柱(球与圆柱的侧面、两底面都相切)的表面积为_________,体积为_________.2.若正四面体的棱长为a ,则其内切球的半径为_________.3.已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( ) A .18 B .12 C .6 3 D .434.将半径为3,圆心角为2π3的扇形围成一个圆锥(接缝处忽略不计),则该圆锥的内切球的体积为( )A.2π3 B.3π3 C.4π3D .2π 5.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.66π B.π3 C.π6 D.33π题型三 最值问题6.已知底面是正六边形的六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为3,则球O 的表面积为_________.7.四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等于8+83,则球O 的体积等于( )A.32π3B.322π3 C .16π D.162π38.已知SAB 是边上为2的等边三角形,045ACB ∠=,则三棱锥体积最大时,CA = ;其外接球的表面积为。

空间几何体的外接球和内切球问题讲课教案

空间几何体的外接球和内切球问题讲课教案

空间几何体的外接球和内切球问题空间几何体的外接球和内切球问题类型1 外接球的问题1.必备知识:(1)简单多面体外接球的球心的结论.结论1:正方体或长方体的外接球的球心是其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.(2)构造正方体或长方体确定球心.(3)利用球心O 与截面圆圆心O 1的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心.2.方法技巧:(1)几何体补成正方体或长方体.(2)轴截面法(3)空间向量法1AB DC AD BC BD AC ======例1-1、正四面体的棱长都为,求此四面体外接球和内切球的半径例1-2、四面体中,, 求此四面体外接球的表面积 例1-3.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( )A.3B.6C.36D.9训练1(创新110页) 某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.25πB.26πC.32πD.36π训练2(创新110页)已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( ) A.3π B.4π C.5π D.6π例2-1(创新110页)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,P A ⊥平面ABC ,P A =2,∠ABC =120°,则球O 的体积的最小值为( ) A.773π B.2873π C.19193π D.76193π 例2-1(创新109页)三棱锥P -ABC 中,平面P AC ⊥平面ABC ,AB ⊥AC ,P A =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( )A.23πB.234πC.64πD.643π 类型2 内切球问题1.必备知识:(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(2)正多面体的内切球和外接球的球心重合. (3)正棱锥的内切球和外接球球心都在高线上,但不一定重合.2.方法技巧:体积分割是求内切球半径的通用做法.【例3】 体积为4π3的球与正三棱柱的所有面均相切,则该棱柱的体积为________. 空间几何体的外接球和内切球问题近几年高考题1、(2019全国1卷第12题)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,90CEF ∠=︒,则球O 的体积为( )A .B .C . D2、(2018全国3卷第10题).设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .3.(2017全国1卷第16题)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.4、(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π4 5、(2016年全国1卷第6题).如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是 ( )(A )17π (B )18π (C )20π (D )28π6、(2016年全国3卷第10题)在封闭的直三棱柱ABC −A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) (A)4π (B)9π2 (C)6π (D)32π37、(2015年全国1卷第11题).圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=( )(A ) 1 (B)2 (C )4 (D )88、(2015年全国2卷第9题).已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( ) A .36πB .64πC .144πD .256π 7.(2014·大纲全国,8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B.16πC.9πD.27π49、(2013年课标1卷第6题)、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 310、(2012课标卷第11题)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 36 ()C 23 ()D 2211、(2011课标卷第15题)已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 。

数学研究课题---空间几何体的外接球与内切球问题

数学研究课题---空间几何体的外接球与内切球问题

数学研究课题---空间几何体的外接球与内切球问题例1.用两个平行平面去截半径为R 的球面,两个截面圆的半径为cm r 241=,cm r 152=.两截面间的距离为cm d 27=,求球的表面积.分析:此类题目的求解是首先做出截面图,再根据条件和截面性质做出与球的半径有关的三角形等图形,利用方程思想计算可得.解:设垂直于截面的大圆面交两截面圆于2211,B A B A ,上述大圆的垂直于11B A 的直径交2211,B A B A 于21,O O ,如图2.设2211,d OO d OO ==,则⎪⎩⎪⎨⎧=+=+=+2222222121152427R d R d d d ,解得25=R .)(2500422cm R S ππ==∴圆.说明:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.例2.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算.例3.试比较等体积的球与正方体的表面积的大小.分析:首先抓好球与正方体的基本量半径和棱长,找出等量关系,再转化为其面积的大小关系.解:设球的半径为r ,正方体的棱长为a ,它们的体积均为V ,则由ππ43,3433V r V r ==,343πV r =,由,3V a =得3V a =. 322324)43(44V V r S ππππ===球. 32322322166)(66V V V a S ====正方体.∴<2164π <324V π32216V ,即正方体球S S <.说明:突出相关的面积与体积公式的准确使用,注意比较大小时运算上的设计.例4.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.解:如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.设R OA r OO ==,1,正四面体的一个面的面积为S .依题意得)(31r R S V BCD A +=-, 又S r V V BCD O BCD A ⋅⨯==--3144r r R 4=+∴即r R 3=.所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R rππ外接球的体积内切球的体积. 说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 41=(h 为正四面体的高),且外接球的半径r R 3=.例5 半径为R 的球内接一个各棱长都相等的四棱锥.求该四棱锥的体积.分析:四棱锥的体积由它的底面积和高确定,只需找到底面、高与球半径的关系即可,解决这个问题的关键是如何选取截面,如图所示.解:∵棱锥底面各边相等, ∴底面是菱形. ∵棱锥侧棱都相等,∴侧棱在底面上射影都相等,即底面有外接圆.∴底面是正方形,且顶点在底面上的射影是底面中心,此棱锥是正棱锥. 过该棱锥对角面作截面,设棱长为a ,则底面对角线a AC 2=,故截面SAC 是等腰直角三角形.又因为SAC 是球的大圆的内接三角形,所以R AC 2=,即R a 2=.∴高R SO =,体积33231R SO S V =⋅=底. 说明:在作四棱锥的截面时,容易误认为截面是正三角形,如果作平等于底面一边的对称截面(过棱锥顶点,底面中心,且与底面一边平行),可得一个腰长为斜高、底为底面边长的等腰三角形,但这一等腰三角形并不是外接球大圆的内接三角形.可见,解决有关几何体接切的问题,如何选取截面是个关键.解决此类问题的方法通常是先确定多面体的棱长(或高或某个截面内的元素)与球半径的关系,再进一步求解.例6 在球面上有四个点P 、A 、B 、C ,如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===.求这个球的表面积.分析:24R S π=球面,因而求球的表面关键在于求出球的半径R . 解:设过A 、B 、C 三点的球的截面半径为r , 球心到该圆面的距离为d , 则222d r R +=.由题意知P 、A 、B 、C 四点不共面,因而是以这四个点为顶点的三棱锥ABC P -(如图所示).ABC ∆的外接圆是球的截面圆.由PA 、PB 、PC 互相垂直知,P 在ABC 面上的射影'O 是ABC ∆的垂心,又a PC PB PA ===,所以'O 也是ABC ∆的外心,所以ABC ∆为等边三角形,且边长为a 2,'O 是其中心,从而也是截面圆的圆心.据球的截面的性质,有'OO 垂直于⊙'O 所在平面,因此P 、'O 、O 共线,三棱锥ABC P -是高为'PO 的球内接正三棱锥,从而'PO R d -=.由已知得a r 36=,a PO 33'=,所以2'2222)(PO R r d r R -+=+=,可求得a R 23=,∴2234a R S ππ==球面. 说明:涉及到球与圆柱、圆锥、圆台切接问题,一般作其轴截面;涉及到球与棱柱、棱锥、棱台的切接问题,一般过球心及多面体中特殊点或线作截面,把空间问题化为平面问题,进而利用平面几何的知识寻找几何体元素间的关系.例7 已知棱长为3的正四面体ABCD ,E 、F 是棱AB 、AC 上的点,且FC AF 2=,AE BE 2=.求四面体AEFD 的内切球半径和外接球半径.分析:可用何种法求内切球半径,把AEF D V -分成4个小体积(如图).解:设四面体AEFD 内切球半径为r ,球心N ,外接球半径R ,球心M ,连结NA 、NE 、NF 、ND ,则EFD N ADE N AFD N AEF N AEFD V V V V V ----+++=.四面体AEFD 各面的面积为2392==∆∆ABC AEF S S ,23332==∆∆ABC AFD S S ,43331==∆∆ABC AED S S . DEF ∆各边边长分别为3=EF ,7==DE DF ,∴345=∆DEF S . ∵2292==ABCD ADEF V V ,)(31DEF AED AFD AEF AEFD S S S S r V ∆∆∆∆+++=,∴)43543323323(3122+++=r , ∴86=r . 如图,AEF ∆是直角三角形,其个心是斜边AF 的中点G .设ABC ∆中心为1O ,连结1DO ,过G 作平面AEF 的垂线,M 必在此垂线上, 连结1GO 、MD .∵ABC MG 平面⊥,ABC DO 平面⊥1, ∴1//DO MG ,1GO MG ⊥.在直角梯形DM GO 1中,11=GO ,61=DO ,R MD =,1222-=-=R AG AM MG ,又∵22121)(MD GO MG DO =+-,∴2221)16(R R =+--,解得:210=R . 综上,四面体AEFD 的内切球半径为86,外接球半径为210.说明:求四面体外接半径的关键是确定其球心.对此多数同学束手无策,而这主要是因本题图形的背景较复杂.若把该四面体单独移出,则不参发现其球心在过各面三角形外心且与该三角形所在平面垂直的直线上,另还须注意其球心不一定在四面体内部.本题在求四面体内切球半径时,将该四面体分割为以球心为顶点,各面为底面的四个三棱锥,通过其体积关系求得半径.这样分割的思想方法应给予重视.例8 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴222AC BC AB =+,ABC ∆是以AC 为斜边的直角三角形. ∴ABC ∆的外接圆的半径为15,即截面圆的半径15=r , 又球心到截面的距离为R d 21=, ∴22215)21(=-R R ,得310=R .∴球的表面积为πππ1200)310(4422===R S .说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.例如,过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=.例9 正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.分析:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,而点面距离常可以用等体积法解决.解:如图,球O 是正三棱锥ABC P -的内切球,O 到正三棱锥四个面的距离都是球的半径R .PH 是正三棱锥的高,即1=PH .E 是BC 边中点,H 在AE 上, ABC ∆的边长为62,∴26263=⨯=HE . ∴3=PE可以得到2321=⋅===∆∆∆PE BC S S S PBC PAC PAB . 36)62(432==∆ABC S 由等体积法,ABC O PBC O PAC O PAB O ABC P V V V V V -----+++= ∴R R ⨯⨯+⨯⨯⨯=⨯⨯36313233113631 得:2633232-=+=R ,∴πππ)625(8)26(4422-=-==R S 球. ∴33)26(3434-==ππR V 球. 说明:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比如:四个半径为R 的球两两外切,其中三个放在桌面上,第四个球放在这三个球之上,则第四个球离开桌面的高度为多少?这里,四个球的球心这间的距离都是R 2,四个球心构成一个棱长为R 2的正四面体,可以计算正四面体的高为R R 362236=⨯,从而上面球离开桌面的高度为R R 3622+.例10 求球与它的外切圆柱、外切等边圆锥的体积之比.分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.解:如图,等边SAB ∆为圆锥的轴截面,此截面截圆柱得正方形11CDD C ,截球面得球的大圆圆1O.设球的半径ROO=1,则它的外切圆柱的高为R2,底面半径为R;ROOOB330cot1=︒⋅=,RROBSO33360tan=⋅=︒⋅=,∴334RVπ=球,3222RRRVππ=⋅=柱,3233)3(31RRRVππ=⋅⋅=锥,∴964∶∶∶∶锥柱球=VVV.例11正三棱锥ABCP-的侧棱长为l,两侧棱的夹角为α2,求它的外接球的体积.分析:求球半径,是解本题的关键.解:如图,作⊥PD底面ABC于D,则D为正ABC∆的中心.∵⊥OD底面ABC,∴O、P、D三点共线.∵lPCPBPA===,α2=∠APB.∴ααsin22cos2222lllAB=-=.∴αsin33233==ABAD,设β=∠APD,作PAOE⊥于E,在APDRt∆中,∵αβsin332sin==PAAD,又ROAOP==,∴lPAPE2121==.在POERt∆中,∵αβ2sin3412cos-===lPEPOR,∴)sin43(2sin433sin34123422332ααπαπ--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=llV球.说明:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这类截面通常指圆锥的轴截面、球的大圆、多面体的对角面等,在这个截面中应包括每个几何体的主要元素,且这个截面必须能反映出体和体之间的主要位置关系和数量关系.例12 在球心同侧有相距cm9的两个平行截面,它们的面积分别为249cmπ和2400cmπ.求球的表面积.分析:可画出球的轴截面,利用球的截面性质,求球的半径.解:如图为球的轴截面,由球的截面性质知,21//BOAO,且若1O、2O分别为两截面圆的圆心,则11AOOO⊥,22BOOO⊥.设球的半径为R.∵ππ4922=⋅BO,∴)(72cmBO=同理ππ40021=⋅AO,∴)(201cmAO=设xcmOO=1,则cmxOO)9(2+=.在AOORt1∆中,22220+=xR;在BOORt2∆中,2227)9(++=xR,∴222)9(720++=+xx,解得15=x,∴22222520=+=xR,∴25=R∴)(2500422cmRSππ==球.∴球的表面积为22500cmπ.几何体与球切、接的问题1 球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1 球与正方体如图所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH和其内切圆,则2aOJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则132A O R '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题. (1)正方体的内切球,如图1. 位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r a =.(2)正方体的外接球,如图2. 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合;数据关系:设正方体的棱长为a ,球的半径为r ,这时有23r a =.(3)正方体的棱切球,如图3. 位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有22r a =. 例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A 2B .1C .212+D 2思路分析:由题意推出,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==得知直线EF 被球O 截得的线段就是球的截面圆的直径. 【解析】由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =点评:本题考查球与正方体“接”的问题,利用球的截面性质,转化成为求球的截面圆直径.1.2 球与长方体例 2自半径为R 的球面上一M ,引点球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.思路分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.【解析】以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.点评:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算.. 例 3已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A.16πB.20πC.24πD.32π思路分析:正四棱柱也是长方体.由长方体的体积16及高4可以求出长方体的底面边长为2,可得长方体的长、宽、高分别为2,2,4,长方体内接于球,它的体对角线正好为球的直径.【解析】正四棱柱也是长方体。

2023届高三数学一轮复习专题 空间几何体的外接球与内切球研究 讲义 (解析版)

2023届高三数学一轮复习专题  空间几何体的外接球与内切球研究  讲义 (解析版)

空间几何体的外接球与内切球研究专题补充内容一。

三角形的四心:1。

重心:三条中线的交点。

★重心定理:三角形的重心到顶点的距离等于它到对边中点距离的2倍。

2。

垂心:三条高线的交点。

3OA OB OC==4。

ABC=r()11112222ABC OAB OAC OBCS S S S ar br cr a b c r =++=++=++补充内容二。

等边三角形中的一些重要的量:设等边三角形边长为a。

★★1;2。

面积2ABCS=;3。

O为正三角形中心(正三角形四心合一),外接圆半径3AO R ==,内切圆半径6OD r ==。

:2:1R r =。

补充内容三:正棱锥。

如正三棱锥、正四面体、正四棱锥。

★★(2)过底面正多边形的中心作底面的垂线,则垂线上任一点到正多边形各顶点的距离都相等,垂线上点(正多边形的中心除外)与底面正多边形均构成正棱锥。

一.棱柱的外接球:一、正方体、长方体外接球与内切球研究:设正方体棱长为a ,。

① 正方体外接球直径为体对角线,即2R =② 正方体内切球直径为棱长,即2r a =。

推广:长方体相邻三棱长为,,a b c 2R =,其中2R 为长方体外接球直径。

题型一:若有三边两两垂直的,则用补形法构造一个长方体,该长方体的体对角2.直三棱柱外接球:规律:直三棱柱外接球的球心位于上下底面三角形外接圆圆心连线的中点上。

例1.在三棱柱中,侧棱垂直于底面,且三棱柱的体积为3,则三棱柱的外接球的表面积为( )111ABC A B C -90,301ACB BAC BC ∠=∠==,,111ABC A B C -111ABC A B C -A. B . C . D .解:0090301ACB BAC BC ∠=∠==,,2ACAB ∴==3又三棱柱的体积为 ∴棱柱的高为因三棱柱上下底面三角形的外心在斜边的中点上11,AB A B ∴三棱柱外接球的球心位于中点连线的中点上,如图:12R OA ∴===2416.S R ππ∴==球注意:本题也可以用补形法构造一个长方体。

高中数学立体几何中的外接球与内切球问题

高中数学立体几何中的外接球与内切球问题

高中数学立体几何中的外接球与内切球问题
在高中数学的立体几何中,外接球与内切球问题是一个重要的探讨点。

这个问
题涉及到如何在一个给定的立体图形中,找到一个外切于该图形的球和一个内切于该图形的球。

首先,让我们来看外接球问题。

在立体几何中,给定一个多面体,如正方体或
正四面体,我们想找到一个球,使得该球恰好外接于该多面体的每一个面上。

所谓外接,即球与每一个面都有且只有一个公共点,这个点是每个面的外接圆心。

以正方体为例,我们可以观察到正方体的每一个面都是正方形,而正方形的外
接圆心恰好位于该正方形的中心点。

因此,我们可以得出结论:正方体的外接球的圆心与该正方体的每个面的外接圆心重合。

接下来,让我们来看内切球问题。

在立体几何中,给定一个多面体,如正方体
或正四面体,我们想找到一个球,使得该球恰好内切于该多面体的每一个面上。

所谓内切,即球与每一个面都有且只有一个公共点,这个点是每个面的内切圆心。

以正方体为例,我们可以观察到正方体的每一个面都是正方形,而正方形的内
切圆心恰好位于该正方形的中心点。

因此,我们可以得出结论:正方体的内切球的圆心与该正方体的每个面的内切圆心重合。

总结起来,对于任何一个给定的多面体,我们可以找到一个外接球和一个内切球。

外接球的圆心与每个面的外接圆心重合,而内切球的圆心与每个面的内切圆心重合。

这个问题在高中数学的立体几何中十分重要,理解了外接球和内切球的性质,可以帮助我们更好地理解和解决相关的几何问题。

方法技巧专题03空间几何体外接球和内切球

方法技巧专题03空间几何体外接球和内切球

方法技巧专题03空间几何体外接球和内切球空间几何体的外接球和内切球是几何体与球之间的特殊关系,它们在几何体的研究中具有重要的意义。

本文将对空间几何体的外接球和内切球进行详细的解析。

一、空间几何体的外接球空间几何体的外接球是指能够将该几何体完全包含在内的最小的球,也称为最小外接球。

以三角形为例,说明如何确定三角形的外接球。

【图一】假设三角形ABC的三个顶点坐标分别为A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3)。

1.首先,可以计算出三角形的三条边长a,b,c。

a=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)b=√((x3-x2)^2+(y3-y2)^2+(z3-z2)^2)c=√((x1-x3)^2+(y1-y3)^2+(z1-z3)^2)2.然后,计算三角形的面积S。

S=1/2*,(x1y2+x2y3+x3y1)-(y1x2+y2x3+y3x1)3.根据三角形的面积,可以计算出外接圆的半径R。

R=a*b*c/(4S)4.最后,确定外接球的圆心坐标O。

O=((x1+x2+x3)/3,(y1+y2+y3)/3,(z1+z2+z3)/3)通过上述步骤,就可以确定三角形的外接球的半径和圆心坐标。

同样的方法也可以应用于其他的几何体,如正方体、正六面体等。

二、空间几何体的内切球空间几何体的内切球是指能够与该几何体的表面相切且位于几何体内部的最大的球,也称为最大内切球。

以正方体为例,说明如何确定正方体的内切球。

【图二】假设正方体的边长为a。

1.首先,可以计算正方体的对角线长度d。

d=√(a^2+a^2+a^2)=√3a2.然后,内切球的半径r等于正方体的边长的一半。

r=a/23.最后,可以确定内切球的圆心坐标O。

O=(a/2,a/2,a/2)通过上述步骤,就可以确定正方体的内切球的半径和圆心坐标。

同样的方法也可以应用于其他的几何体,如正六面体、球体等。

总结:空间几何体的外接球和内切球是几何体与球之间的特殊关系,它们在几何体的研究中具有重要的意义。

空间几何体外接球与内切球问题解决方法

空间几何体外接球与内切球问题解决方法

空间几何体的外接球与内切球问题一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).2.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法).四、八大模型类型一柱体背景的模型题型1、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1(1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是(C)A.π16B.π20C.π24D.π32解:162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是π9解:933342=++=R ,ππ942==R S ;(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是.π36解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1,取BC AB ,中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD ,∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为(D )π11.A π7.B π310.C π340.D 解:在ABC ∆中,7120cos 2222=⋅⋅-+= BC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r ,∴3404)372()2()2(2222=+=+=SA r R ,340π=S ,选D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是解:由已知得三条侧棱两两垂直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则⎪⎩⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942==R S ,(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为解:3)2(2222=++=c b a R ,432=R ,23=R πππ2383334343=⋅==R V 球,题型2、对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =)第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222za c y cb x b a ⇒2)2(2222222z y xc b a R ++=++=,补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-.第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .思考:如何求棱长为a 的正四面体体积,如何求其外接球体积?例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为.解:对棱相等,补形为长方体,如图2-1,设长宽高分别为c b a ,,,110493625)(2222=++=++c b a ,55222=++c b a ,5542=R ,π55=S (2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为.π229解:如图2-1,设补形为长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S(3)正四面体的各条棱长都为2,则该正面体外接球的体积为解:正四面体对棱相等的模式,放入正方体中,32=R ,23=R ,ππ2383334=⋅=V (4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是.解:如解答图,将正四面体放入正方体中,截面为1PCO ∆,面积是2.题型3、汉堡模型(直棱柱的外接球、圆柱的外接球)题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ;第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高);第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(h r R +=,解出R 例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为解:设正六边形边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则21=a ,正六棱柱的底面积为833)21(4362=⋅⋅=S ,89833===h Sh V 柱,∴3=h ,4)3(14222=+=R 也可121()23(222=+=R ),1=R ,球的体积为34π=球V ;(2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于.解:32=BC ,4120sin 322==r ,2=r ,5=R ,π20=S ;(3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为.π16解:折叠型,法一:EAB ∆的外接圆半径为31=r ,11=OO ,231=+=R ;法二:231=M O ,21322==D O r ,4413432=+=R ,2=R ,π16=表S ;法三:补形为直三棱柱,可改变直三棱柱的放置方式为立式,算法可同上,略.换一种方式,通过算圆柱的轴截面的对角线长来求球的直径:162)32()2(222=+=R ,π16=表S ;(4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为.π3160解:法一:282164236162=⋅⋅⋅-+=BC ,72=BC ,37423722==r ,372=r ,3404328)2(2122=+=+=AA r R ,π3160=表S ;法二:求圆柱的轴截面的对角线长得球直径,此略.类型二锥体背景的模型题型4、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)1.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=;第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R .例4(1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为.解:法一:由正弦定理(用大圆求外接球直径);法二:找球心联合勾股定理,72=R ,ππ4942==R S ;(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为解:方法一:找球心的位置,易知1=r ,1=h ,r h =,故球心在正方形的中心ABCD 处,1=R ,34π=V 方法二:大圆是轴截面所的外接圆,即大圆是SAC ∆的外接圆,此处特殊,SAC Rt ∆的斜边是球半径,22=R ,1=R ,34π=V .(3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.433B.33C.43D.123解:高1==R h ,底面外接圆的半径为1=R ,直径为22=R ,设底面边长为a ,则260sin 2==a R ,3=a ,433432==a S ,三棱锥的体积为4331==Sh V ;(4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为 60,则该三棱锥外接球的体积为()A.πB.3π C.4πD.43π解:选D,由线面角的知识,得ABC ∆的顶点C B A ,,在以23=r 为半径的圆上,在圆锥中求解,1=R ;(5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为()AA.6B.6C.3D.2解:36)33(12221=-=-=r R OO ,362=h ,62362433131=⋅⋅==Sh V 球题型5、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=;第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径.例5一个几何体的三视图如图所示,则该几何体外接球的表面积为()A.π3B.π2C.316πD.以上都不对解:选C,法一:(勾股定理)利用球心的位置求球半径,球心在圆锥的高线上,221)3(R R =+-,32=R ,ππ31642==R S ;法二:(大圆法求外接球直径)如图,球心在圆锥的高线上,故圆锥的轴截面三角形PMN 的外接圆是大圆,于是3460sin 22==R ,下略;类型三二面角背景的模型题型6、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ;第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,;第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为.解:如图,3460sin 22221=== r r ,3221==r r ,312=H O ,35343121222=+=+=r H O R ,315=R ;法二:312=H O ,311=H O ,1=AH ,352121222=++==O O H O AH AO R ,315=R ;(2)在直角梯形ABCD 中,CD AB //, 90=∠A ,45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为π4解:如图,易知球心在BC 的中点处,π4=表S ;(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为π6解:如图,法一:33)2cos(cos 211-=+∠=∠πO OO B SO ,33sin 21=∠O OO ,36cos 21=∠O OO ,22cos 21211=∠=O OO O O OO ,232112=+=R ,ππ642==R S ;法二:延长1BO 到D 使111r BO DO ==,由余弦定理得6=SB ,2=SD ,大圆直径为62==SB R ;(4)在边长为32的菱形ABCD 中,60=∠BAD ,沿对角线BD 折成二面角C BD A --为120的四面体ABCD ,则此四面体的外接球表面积为π28解:如图,取BD 的中点M ,ABD ∆和CBD ∆的外接圆半径为221==r r ,ABD ∆和CBD ∆的外心21,O O 到弦BD 的距离(弦心距)为121==d d ,法一:四边形21MO OO 的外接圆直径2=OM ,7=R ,π28=S ;法二:31=OO ,7=R ;法三:作出CBD ∆的外接圆直径CE ,则3==CM AM ,4=CE ,1=ME ,7=AE ,33=AC ,72147227167cos -=⋅⋅-+=∠AEC ,7233sin =∠AEC ,72723333sin 2==∠=AEC AC R ,7=R ;(5)在四棱锥ABCD 中,120=∠BDA ,150=∠BDC ,2==BD AD ,3=CD ,二面角C BD A --的平面角的大小为120,则此四面体的外接球的体积为解:如图,过两小圆圆心作相应小圆所在平面的垂线确定球心,32=AB ,22=r ,弦心距32=M O ,13=BC ,131=r ,弦心距321=M O ,∴2121=O O ,72120sin 21==O O OM ,法一:∴292222=+==OM MD OD R ,29=R ,∴329116π=球V ;法二:2522222=-=M O OM OO ,∴29222222=+==OO r OD R ,29=R ,∴329116π=球V .题型7、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型题设:如图7,90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为()A.π12125B.π9125C.π6125D.π3125解:(1)52==AC R ,25=R ,6125812534343πππ=⋅==R V ,选C(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCD A -的外接球的表面积为.解:BD 的中点是球心O ,132==BD R ,ππ1342==R S .类型四多面体的内切球问题模型题型8、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径.第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高;第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高;第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒rS S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABCO ABCP S S S S V r -----+++=3例8(1)棱长为a 的正四面体的内切球表面积是62a π,解:设正四面体内切球的半径为r ,将正四面体放入棱长为2a的正方体中(即补形为正方体),如图,则2622313133a a V V ABCP =⋅==-正方体,又 r a r a Sr V ABC P 223343314314=⋅⋅⋅=⋅=-,∴263332a r a =,62a r =,∴内切球的表面积为6422a r S ππ==表(注:还有别的方法,此略)(2)正四棱锥ABCD S -的底面边长为2,侧棱长为3,则其内切球的半径为2217+解:如图,正四棱锥ABCD S -的高7=h ,正四棱锥ABCD S -的体积为374=-ABCD S V 侧面斜高221=h ,正四棱锥ABCD S -的表面积为284+=表S ,正四棱锥ABCD S -的体积为r r S V ABCD S ⋅+==-328431表,∴3743284=⋅+r ,771427)122(7221728474-=-=+=+=r (3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则该三棱锥的内切球半径为47332++解:如图,3=∆ABC S ,2==∆∆ACP ABP S S ,7=∆BCP S ,743++=表S ,三棱锥ABC P -的体积为332=-ABC P V ,另一表达体积的方式是r r S V ABC P ⋅++==-347331表,∴3323473=⋅++r ,∴47332++=r巩固练习:1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为()A.3B.6C.36D.9解:【A】616164)2(2=++=R ,3=R 【三棱锥有一侧棱垂直于底面,且底面是直角三角形】【共两种】2.三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等于.332π解:260sin 32== r ,16124)2(2=+=R ,42=R ,2=R ,外接球体积332834ππ=⋅【外心法(加中垂线)找球心;正弦定理求球小圆半径】3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于.解:ABC ∆外接圆的半径为,三棱锥ABC S -的直径为3460sin 22== R ,外接球半径32=R ,或1)3(22+-=R R ,32=R ,外接球体积2733233834343πππ=⋅==R V ,4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为.解:PAC ∆的外接圆是大圆,3460sin 22== R ,32=R ,5.三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为.解:973324992cos 222=⋅⋅-+=⋅-+=∠PC PA AC PC PA P ,8121697(1sin 22⋅=-=∠P ,924sin =∠P ,42922992422===R ,829=R 6.三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABCP -外接球的半径为.解:AC 是公共的斜边,AC 的中点是球心O ,球半径为1=R。

必修2空间几何体的外接球与内切球

必修2空间几何体的外接球与内切球

空间几何体的外接球与内切球【学习目标】1.通过学习,理解和掌握三角形的外接圆与内切圆的半径,为外接球和内切球的半径求解做好铺垫;2.通过学习,理解外接球球心所在的位置,进而掌握外接球半径的求解方法,也掌握内切球半径的求解方法;3.解决空间几何体的外接球问题,需要一定的空间想象能力,通过外接球问题的求解,提高空间想象能力以及抽象思考的能力。

【学习过程】回忆三角形的外接圆、内切圆及球的知识,完成下列导学案:一、三角形的外接圆和内切圆1.三角形的外接圆:(1)圆心为三边中垂线的交点;(2)外接圆的圆心称为外心;(3)外接圆的半径设为R ,则2sin sin sin a b cR A B C===.2.三角形的内切圆:(1)圆心为三条角平分线的交点;(2)内切圆的圆心称为内心;(3)内切圆的半径设为r ,则2Sr a b c=++.二、空间几何体的外接球和内切球(一)空间几何体的外接球具有以下特点:1.空间几何体的每个顶点都在球面上;2.球心一定在“过每个多边形面的外心且垂直于该面的直线”上.3.具体可以分为以下几种类型;(1)直棱柱的外接球半径:R =r 是底面外接圆半径,h 是棱柱的高.据此,长方体的外接球半径为:R =(2)正棱锥的外接球半径:222222()22r h r h R R R h h++-=⇒==侧棱;其中r 是底面外接圆半径,h 是棱锥的高.(3)几何体不特殊的情况,利用球心的位置特点寻找球心,必能求出外接球半径.(二)空间几何体的内切球具有以下特点:1.空间几何体的每个面都与球相切;2.球心到每个面的距离都是r ,则12121111()3333n n S r S r S r V S S S r V ++⋅⋅⋅+=⇒++⋅⋅⋅+=;3.内切球半径:3V r S =表.三、实例分析实践一:内切球与数学文化例1:《九章算术》一书中,第九章“勾股”中有如下问题:“今有勾八步,股一十五步,问勾中容圆径几何?“其意思是,“今有直角三角形,短的直角边长为8步,长的直角边长为15步,问该直角三角形能容纳圆的直径最大是多少?“通过上述问题我们可以知道,当圆的直径最大时,该圆为直角三角形的内切圆,则往该直角三角形中随机投掷一点,该点落在此三角形内切圆内的概率为()3.20A π3.10B π.4C π.5D π实践二:直棱柱的外接球例2:(2016年云南)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若1,68,3AB BC AB BC AA ⊥===,,则V 的最大值是().4A π9.2B π.6C π32.3D π例3:(2017年云南)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为().A π3.4B π.2C π.4D π实践三:正棱锥的外接球例4:(2015云南)已知,A B 是球O 的球面上两点,90AOB ︒∠=,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积().36A π.64B π.144C π.256D π例5:(2012云南)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为()6A 6B 3C 2D实践四:2018年模考回顾例6:(2018年云南模考)在菱形ABCD 中3A AB π∠==ABD ∆沿BD 折起到PBD ∆的位置,若二面角P BD C --的大小为23π,三棱锥P BCD -的外接球球心为O ,则三棱P BCD -的外接球的表面积为()A B .112C π.3D 【自我检测】1.已知三棱锥D ABC -的体积为2,ABC ∆是边长为2的等边三角形,且三棱锥D ABC -的外接球的球心O 恰好是CD 的中点,则球O 的体积为()52.3A π.27B 32.3C πD,各面均为等边三角形的四面体的外接球的表面积为.3.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径,ABC ∆是等腰直角三角形,AC BC ⊥,,若2AC BC ==,三棱棱的体积是3,则球O 的表面积为.4.三棱锥S ABC -中,,2AB BC SA SC AB BC ⊥====,,二面角S AC B --的余弦值为-3·则该三棱锥S ABC -的外接球的表面积为.5.直三棱柱'''ABC A B C -中,'902BAC AB AC AA︒∠====,,,点,M N 分别为'BA 和''B C 的中点,则三棱锥'A MNC -的外接球的表面积为.。

秒解空间几何体的外接球和内切球问题

秒解空间几何体的外接球和内切球问题

秒解空间几何体的外接球和内切球问题球体几何问题是高考命题难点和重点,当然也是很多考生看到就头疼的题目.很多考生都会发问,找不到做题的切入点,计算不好,如何处理球体问题.球体往往和其他几何体综合考察,很少单独出现.衍变为空间几何体的内切球或者外接球情景问题。

本论文将对解决这类问题的思想和方法,规律与技巧进行讲述,以期帮助学生更好地理解和学习该部分知识,从而提升学生的数学成绩.一、球体的基本性质1、球的概念(1)从集合得到的定义:在空间中到定点的距离等于或小于定长的点的集合叫做球体,简称球;(2)从旋转给出的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体(solid sphere).2、球的相关公式(1)球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r²=R²-d²;(2)球的面积公式:;(3)球的体积公式: .3、球的相关性质.(1)用一个平面去截一个球,截面是圆面;(2)球心和截面圆心的连线垂直于截面.;(3)球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆;(4)球的大圆是最大的截面圆;(5)过切点的球半径垂直于球的切面.二、几何体外接球1.能补为长方体、正方体或直棱柱(1)有三条线两两垂直--墙角模型(不画球心的位置即可求出球半径)方法:找三条两两垂直的线段,直接用公式,即,求出例1已知各顶点都在同一球面上的正四棱柱的高为,体积为,则这个球的表面积是( C )A. B. C. D.解:,,,,选C;例2若三棱锥的三个侧面两垂直,且侧棱长均为,则其外接球的表面积是解:,(2)对棱相等模型--麻花模型(此类问题可以补形为长方体)例3三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(,,)解:画出一个长方体,标出三组互为异面直线的对棱;设出长方体的长宽高分别为,,,,列方程组,,补充:第三步:根据墙角模型,,,,求出 .例4棱长为的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是.解:截面为,面积是;(3)直棱柱或圆柱模型--汉堡模型(直棱柱的外接球、圆柱的外接球)如图,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)解题步骤:(ⅰ)确定球心的位置,是的外心,则平面;(ⅱ)算出小圆的半径,(也是圆柱的高);(ⅲ)勾股定理:,解出例5一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为,则这个球的体积为解:设正六边形边长为,正六棱柱的高为,底面外接圆的关径为,则,底面积为,,,,,球的体积为.(3)线面垂直模型(一条直线垂直于一个平面)例6如图,平面解题步骤:(ⅰ)将画在小圆面上,为小圆直径的一个端点,作小圆的直径,连接,则必过球心;(ⅱ)为的外心,所以平面,算出小圆的半;径(三角形的外接圆直径算法:利用正弦定理,得),;(ⅲ)利用勾股定理求三棱锥的外接球半径:①;,计算出外接球半径 .2.不能补为柱体的模型基本关系,方程(组)思想解决问题。

专题15 空间几何体外接球和内切球(解析版)

专题15  空间几何体外接球和内切球(解析版)
2 (3)连接 OA ,那么 R OA , 由勾股定理得: R2 r 2 OO 2 r 2 ( PA )2 .
2
1.例题
【例 1】(1)长方体 芰ᑯ䦘 ʂ 芰 ᑯ 䦘 的 8 个顶点在同一个球面上,且 芰 ᐱ , 䦘 ᐱ , 则球的表面积为______.
ᐱ,
安老师高三玩转数学研讨群(721144129)旨在打造课外辅导专用讲义,更多资料关注公众号玩转高中数学研讨 2
球 O 的体积:V 4 R3 64 2 本题正确选项: A
3
3
2.巩固提升综合练习
【练习
1】已知三棱柱
ABC
A1B1C1
的侧棱与底面垂直,
AA1
BC
2, BAC
4
,则三棱柱
ABC A1B1C1 外接球的体积为( )
A.12 3
B. 8 3
C. 6 3
D. 4 3
【答案】D
【解析】设 ABC 的外接圆圆心为 O1 , A1B1C1 的外接圆圆心为 O2 ,
A. 64 2 3
B. 16 2 3
C.16 2
D.16
【答案】(1)
(2)D (3)A
【解析】(1)因为长方体 芰ᑯ䦘 ʂ 芰 ᑯ 䦘 的 8 个顶点在同一个球面上,
所以球的直径等于长方体的对角线长,
设球的半径为 ,因为 芰 ᐱ , 䦘 ᐱ , ᐱ ,
所以 ᐱ
ᐱ ,球的表面积为
ᐱ ,故答案 π.
(2)正三棱柱
1)第一步:求底面外接圆的半径: r 1 a ( a 为角 A 的对边); 2 sin A
2)第二步:由勾股定理得外接球半径: R r 2 ( h )2 ( h 为直棱柱侧棱高度) 2
1.例题 【例 1】直三棱柱 芰ᑯ ʂ 芰 ᑯ 中,已知 芰 芰ᑯ, 芰 ᐱ ,芰ᑯ ᐱ , 在同一球面上,则该球的表面积为__________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学课题研究几何体与球切、接的问题纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见.首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.1 球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题..1 球与正方体如图所示,正方体,设正方体的棱长为,为棱的中点,为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形和其内切圆,则;二是与正方体各棱相切的球,截面图为正方形和其外接圆,则;三是球为正方体的外接球,截面图为长方形和其外接圆,则.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.(1)正方体的内切球,如图1. 位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;数据关系:设正方体的棱长为,球的半径为,这时有.(2)正方体的外接球,如图2. 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合;数据关系:设正方体的棱长为,球的半径为,这时有.(3)正方体的棱切球,如图3. 位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合; 数据关系:设正方体的棱长为,球的半径为,这时有.例 1 棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为()A. B. C. D.思路分析:由题意推出,球为正方体的外接球.平面截面所得圆面的半径得知直线被球截得的线段就是球的截面圆的直径.【解析】由题意可知,球为正方体的外接球.平面截面所得圆面的半径直线被球截得的线段为球的截面圆的直径.点评:本题考查球与正方体“接”的问题,利用球的截面性质,转化成为求球的截面圆直径..2 球与长方体例 2自半径为的球面上一点,引球的三条两两垂直的弦,求的值.思路分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.【解析】以为从一个顶点出发的三条棱,将三棱锥补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.=.点评:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算..例 3已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A.B.C.D.思路分析:正四棱柱也是长方体.由长方体的体积16及高4可以求出长方体的底面边长为2,可得长方体的长、宽、高分别为2,2,4,长方体内接于球,它的体对角线正好为球的直径.【解析】正四棱柱也是长方体。

由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2,2,4,因为长方体内接于球,所以它的体对角线正好为球的直径.长方体体对角线长为,故球的表面积为.故选C.点评:本题考查球与长方体“接”的问题,利用长方体的性质,转化成为求其体对角线.2 球与锥体的切接规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1正四面体与球的切接问题(1) 正四面体的内切球,如图4. 位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为,高为;球的半径为,这时有;(可以利用体积桥证明)(2) 正四面体的外接球,如图5. 位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球心重合; 数据关系:设正四面体的棱长为,高为;球的半径为,这时有;(可用正四面体高减去内切球的半径得到)(3) 正四面体的棱切球,如图6. 位置关系:正四面体的六条棱与球面相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为,高为;球的半径为,这时有例 4设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.思路分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.【解析】如图,正四面体的中心为,的中心为,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.设,正四面体的一个面的面积为.依题意得, 又即.所以..点评:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径(为正四面体的高),且外接球的半径.2.2其它棱锥与球的切接问题球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径.这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.例5正三棱锥的高为1,底面边长为,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.思路分析:此题求解的关键是搞清球的半径与正三棱锥的高及底面边长的关系,由等体积法可得:,得到.【解析】如图,球是正三棱锥的内切球,到正三棱锥四个面的距离都是球的半径.是正三棱锥的高,即.是边中点,在上,的边长为,∴. ∴可以得到.由等体积法,∴ 得:,∴. ∴.点评:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径来求出,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.例6若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是.思路分析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法.三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,由侧棱长均相等,所以可构造正方体模型.【解析】此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法,所以三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,且侧棱长均相等,所以可构造正方体模型,如图1,则,那么三棱锥的外接球的直径即为正方体的体对角线,故所求表面积是.(如图1)图2图1点评:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中计算问题,这是解决几何体与球切接问题常用的方法.例7 已知三棱锥的所有顶点都在球的球面上,是边长为1的正三角形,是球的直径,且;则此棱锥的体积为()A. B. C. D.思路分析:的外接圆是球面的一个小圆,由已知可得其半径,从而得到点到面的距离.由为球的直径点到面的距离即可求得棱锥的体积.【解析】的外接圆半径为,点到面的距离为球的直径点到面的距离此棱锥的体积为选.点评:本题难度不大,主要是利用转化与化归思想,将棱锥高应用球的几何性质计算得到.3 球与球相切问题对于球与球的相切组合成复杂的几何体问题,要根据丰富的空间想象力,通过准确确定各个小球的球心的位置,或者巧借截面图等方法,将空间问题转化平面问题求解.例8已知有半径分别为2、3的球各两个,且这四个球彼此相外切,现有一个球与此四个球都相外切,则此球的半径为.思路分析:结合图形,分析四个球的球心A、B、C、D的位置,知AD=AC=BD=BC=5,AB=6,CD=4.设AB中点为E、CD中点为F,连结EF.在△ABF中可得,在△EBF中可得.由于对称性可得第五个球的球心O在EF上,连结OA、OD.设第五个球的半径为r,根据OE+OF=EF建立的方程.【解析】如图:设四个球的球心分别为A、B、C、D,则AD=AC=BD=BC=5,AB=6,CD=4.设AB中点为E、CD中点为F,连结EF.在△ABF中求得BF=,在△EBF中求得EF=.由于对称性可得第五个球的球心O在EF上,连结OA、OD.设第五个球的半径为r,则OA=r+3,OD=r+2,于是OE=,OF=,∵OE+OF=EF∴平方整理再平方得解得或(舍掉),故答案为.点评:本题通过分析球心的位置,根据它们构成的几何体特征,转化成平面几何中三角形边角关系,利用方程思想得解.例9把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.思路分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2.【解析】四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为.点评:本题难度不大,主要是利用转化与化归思想,将棱锥高应用球的几何性质计算得到.4 球与几何体的各条棱相切问题球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:.例10把一个皮球放入如图10所示的由8根长均为20 cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为()A.l0cm B.10 cmC.10cm D.30cm思路分析:根据题意球心O在图中AP上,过O作BP的垂线ON垂足为N,ON=R,OM=R,由各个棱都为20,得到AM=10,BP=20,BM=10,AB=,设,在BPM中,由,得.在PAM中, 由,得.在ABP中得, ,在ONP中得, ,从而,.在OAM中, 由,建立方程即可得解.【解析】如图所示,由题意球心在AP上,球心为O,过O作BP的垂线ON垂足为N,ON=R,OM=R,因为各个棱都为20,所以AM=10,BP=20,BM=10,AB=,设,在BPM中,,所以.在PAM中, ,所以.在ABP中, ,在ONP中, ,所以,所以.在OAM中, ,所以,,解得,或30(舍),所以,故选B.点评:本题难度较大,主要是利用转化与化归思想,将问题转化成平面几何问题,应用三角形中的边角关系,建立的方程.5 球与旋转体切接问题首先画出球及其它旋转体的公共轴截面,然后寻找几何体与几何体几何元素之间的关系.例11求球与它的外切圆柱、外切等边圆锥的体积之比.思路分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.【解析】如图,等边为圆锥的轴截面,此截面截圆柱得正方形,截球面得球的大圆圆.设球的半径,则它的外切圆柱的高为,底面半径为;, ,∴,, ,∴.点评:本题充分利用轴截面,将问题转化成平面几何问题,应用三角形中的边角关系,建立与球半径的联系.例12在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.思路分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图的截面图,在图中,观察与和棱长间的关系即可.【解析】如图,球心和在上,过,分别作的垂线交于.则由得., .(1)设两球体积之和为,则==当时,有最小值.当时,体积之和有最小值.点评:本题充分利用轴截面,将问题转化成平面几何问题,应用三角形中的边角关系,建立与球半径的联系,将球的体积之和用或表示,应用二次函数的图象和性质确定其最小值.本题综合性较强,是函数与立体几何相结合的典例.综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.高考题往往与三视图相结合,题目的难易不一,在复习中切忌好高骛远,应重视各种题型的备考演练,重视高考信息的搜集,不断充实题目的类型,升华解题的境界.。

相关文档
最新文档