行星齿轮机构的主要结构、类型和传动原理

合集下载

行星齿轮工作原理

行星齿轮工作原理

行星齿轮工作原理行星齿轮,也称为行星传动,是广泛应用于各种机械装置中的一种传动机构。

它由一个太阳齿轮、一组行星齿轮和一个内齿圈组成。

行星齿轮通常用于需要高传动比和紧凑结构的应用,如自行车排挡、汽车变速器、机器人等等。

行星齿轮的工作原理是将输入的动力通过齿轮的组合转换为输出的动力,并且可以在传递动力的同时实现传动比的改变。

行星齿轮的工作过程如下:1.太阳齿轮:太阳齿轮位于行星齿轮机构的中心位置,接受输入的动力。

当太阳齿轮旋转时,它会通过齿轮齿距的干涉将动力传递给行星齿轮。

2.行星齿轮:行星齿轮是连接在太阳齿轮和内齿圈之间的一组齿轮。

它们被一个轴连接在一起,并且每个行星齿轮都有自己的齿数。

当太阳齿轮旋转时,行星齿轮也会随之旋转。

3.内齿圈:内齿圈是行星齿轮机构的外部齿轮,它与行星齿轮嵌合在一起。

当行星齿轮旋转时,内齿圈也会转动。

而内齿圈的齿数要大于行星齿轮的齿数,从而实现较大的传动比。

行星齿轮机构的工作原理主要是基于齿轮的齿距干涉和相对转动来实现动力的传递和传动比的改变。

当太阳齿轮旋转时,它的齿距会与行星齿轮的齿距相干涉,从而将动力传递给行星齿轮。

同时,行星齿轮的转动也会受到内齿圈的影响,进一步改变传动比。

行星齿轮的优点主要有以下几个方面:1.高传动比:由于行星齿轮结构的特殊性,可以实现大传动比的转动,比其他传动机构更有优势。

2.紧凑结构:行星齿轮机构的结构紧凑,占用空间小,适用于空间有限的场合。

3.负载分配:行星齿轮机构可以将负载分散到多个行星齿轮上,从而提高传动的可靠性和承载能力。

4.无倒退传动:行星齿轮机构的输出轴可以在不断电或无法输入动力的情况下保持静止,不会产生倒退传动的问题。

总结来说,行星齿轮是一种应用广泛的传动机构,通过太阳齿轮、行星齿轮和内齿圈的组合运动,可以实现输入动力的传递和输出动力的变化。

其结构紧凑、传动效率高、传动比可调等特点使得行星齿轮在各种机械装置中都得到了广泛应用。

行星齿轮机构工作原理

行星齿轮机构工作原理

行星齿轮机构工作原理
行星齿轮机构是一种常见的传动机构,由中心轴和多个行星轮组成。

其工作原理是通过行星轮的旋转和组合,实现不同轴之间的传动。

行星齿轮机构的核心组成部分包括一个太阳轮、若干个行星轮和一个内齿轮。

太阳轮位于行星齿轮机构的中心,内齿轮则位于太阳轮的周围。

每个行星轮与太阳轮和内齿轮都有啮合,形成一个闭环结构。

当输入轴与太阳轮相连并旋转时,太阳轮带动行星轮一起旋转。

行星轮由于自身的轴向运动,使得行星轮上的齿与内齿轮啮合。

内齿轮同样自转,与行星轮之间的啮合形成了传动。

因此,太阳轮的旋转通过行星轮与内齿轮的相互作用,最终带动输出轴的旋转。

行星齿轮机构的特点是传动比较大、传动效率高,且体积小。

在实际应用中,行星齿轮机构通常被用于需要高扭矩输出和减速传动的场合。

例如,行星齿轮机构常用于汽车变速器、工业机械和机器人等领域。

总之,行星齿轮机构通过太阳轮、行星轮和内齿轮之间的复杂啮合关系,实现了输入轴与输出轴之间的传动。

其工作原理简单而高效,因此被广泛应用于各种机械传动系统中。

行星齿轮的结构及原理

行星齿轮的结构及原理

行星齿轮的结构及原理行星齿轮是一种机械传动元件,具有紧凑、高转矩传递和高精度传动等优点,在工业领域中得到广泛应用。

行星齿轮由行星轮、太阳轮和内齿圈三部分组成,其传动原理与差速器相似,可以实现多种不同的传动方式。

下面介绍行星齿轮的结构及原理。

行星齿轮由以下三个部分组成:行星轮、太阳轮和内齿圈。

其中,地球仪齿轮结构是行星齿轮的一种特殊结构,它将行星轮和太阳轮合二为一,实现了行星齿轮的紧凑结构。

(1)行星轮行星轮是行星齿轮传动中的动力源,它通常由若干个行星齿轮组成,每一个行星轮都与行星轮轴相连,行星轮的轴心不在齿轮轴线上,其作用是使行星轮绕齿轮中心轴自转和公转。

(2)太阳轮太阳轮是行星齿轮结构中的被动元件,它与外部环形齿轮相连,不但负责传递动力,还起到支撑、固定行星轮的作用。

(3)内齿圈内齿圈是行星齿轮结构中的固定元件,它通常由内部齿轮组成,与太阳齿轮相贴合而构成一个内在的环形齿轮。

它通过与太阳轮齿合,使其转动并产生一个输出速度。

行星齿轮传动是一种典型的行星式结构,其传动原理类似于自行车中的“牙轮组”和汽车中的“差速器”。

行星齿轮可以实现多种不同的传动方式,下面介绍其中三种常见的传动方式:(1)行星轮固定,输出端固定当行星轮固定不动时,行星轮的齿轮将有一个与太阳轮齿轮相等的转速,并与内齿圈齿轮相向工作,产生一个输出速度。

此情况下,行星轮的公转速度与内齿圈的自转速度相等,而太阳轮的自转速度为零。

(3)内齿圈固定,太阳轮转速变化总之,行星轮的自转和太阳轮的自转和公转的组合可以实现多种不同的传动方式,具有极高的灵活性和多样性。

具体采用哪种传动方式,取决于具体的需求和应用环境。

行星齿轮 介绍及原理

行星齿轮 介绍及原理

行星减速机构成及意义、特点行星减速机主要传动结构为:行星轮,太阳轮,外齿圈.行星减速机因为结构原因,单级减速最小为3,最大一般不超过10,常见减速比为:3.4.5.6.8.10,减速机级数一般不超过3,但有部分大减速比定制减速机有4级减速.相对其他减速机,行星减速机具有高刚性,高精度(单级可做到1分以内),高传动效率(单级在97% -98%),高的扭矩/体积比,终身免维护等特点.因为这些特点,行星减速机多数是安装在步进电机和伺服电机上,用来降低转速,提升扭矩,匹配惯量.减速机额定输入转速最高可达到18000rpm(与减速机本身大小有关,减速机越大,额定输入转速越小)以上,工业级行星减速机输出扭矩一般不超过2000Nm,特制超大扭矩行星减速机可做到10000 Nm以上.工作温度一般在-25℃到100℃左右,通过改变润滑脂可改变其工作温度.行星减速机的几个概念:级数:行星齿轮的套数.由于一套星星齿轮无法满足较大的传动比,有时需要2套或者3套来满足拥护较大的传动比的要求.由于增加了星星齿轮的数量,所以2级或3级减速机的长度会有所增加,效率会有所下降.回程间隙:将输出端固定,输入端顺时针和逆时针方向旋转,使输入端产生额定扭矩+-2%扭矩时,减速机输入端有一个微小的角位移,此角位移就是回程间隙.单位是"分",就是一度的六十分之一.也有人称之为背隙.行星减速机是一种用途广泛的工业产品,其性能可与其它军品级减速机产品相媲美,却有着工业级产品的价格,被应用于广泛的工业场合。

该减速器体积小、重量轻,承载能力高,使用寿命长、运转平稳,噪声低。

具有功率分流、多齿啮合独用的特性。

最大输入功率可达104kW。

适用于起重运输、工程机械、冶金、矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器和航空航天等工业部门行星系列新品种WGN定轴传动减速器、WN子母齿轮传动减速器、弹性均载少齿差减速器。

齿轮箱各级行星之间的扭矩变化

齿轮箱各级行星之间的扭矩变化

齿轮箱是一种机械传动装置,常用于各种工业设备和机械设备中。

其主要功能是将电动机的旋转运动通过齿轮传动转换成所需的转矩和转速,从而驱动机械设备的运行。

而在齿轮箱中,行星齿轮传动机构是一种常见的结构形式,它由太阳轮、行星轮、内齿轮和行星架等部件组成。

其独特的结构使得其中各级行星之间的扭矩变化十分复杂,本文将就此进行深入探讨。

一、行星齿轮传动原理行星齿轮传动是由一对或多对行星组成的齿轮传动机构。

太阳轮一般用电机的输出轴来驱动,内齿轮则用来输出所需的扭矩和转速。

行星架上的行星轮由行星架内部的固定轴带动,从而实现了太阳轮到内齿轮的传动。

在行星齿轮传动中,行星架的运动会导致行星轮和太阳轮的相对运动,从而使得齿轮之间的传动比例发生变化。

二、行星齿轮传动的扭矩传递过程1、太阳轮到行星轮的扭矩传递在行星齿轮传动中,太阳轮和行星轮之间的扭矩传递是相对简单的。

由于太阳轮是由电机直接驱动的,因此其扭矩基本上不会发生太大的变化。

而行星轮在行星齿轮传动中的扭矩变化主要受到行星架的影响,而行星架的位置变化会导致行星轮扭矩的变化。

2、行星轮到内齿轮的扭矩传递行星轮到内齿轮的扭矩传递是行星齿轮传动中的关键环节。

在这一过程中,行星架的运动将会直接影响到内齿轮的扭矩大小。

一般情况下,行星架的运动会使内齿轮的扭矩发生变化,而且这种变化会随着行星架位置的改变而改变。

行星齿轮传动中行星架的设计和制造十分重要,它直接影响着内齿轮的扭矩传递效果。

三、行星齿轮传动中的扭矩传递特点1、扭矩平稳传递的特点由于行星齿轮传动中行星齿轮的运动是相对均衡的,因此其扭矩传递也相对平稳。

太阳轮和行星轮之间的扭矩传递基本上不会受到太大的影响,而内齿轮的扭矩传递受到行星架位置的变化影响较大。

在实际的工业生产中,行星齿轮传动常被用于需要稳定扭矩传递的场合。

2、扭矩变化规律的特点行星齿轮传动中,行星架位置的变化将直接影响内齿轮的扭矩传递效果。

齿轮箱内部的结构和材质对于扭矩的传递会有很大影响。

三齿轮传动机构

三齿轮传动机构

◆ O/D档→输入轴→C1→后圈→后星
后架→
└太阳轮→前星→前圈→→ 输出轴
└前架F2逆止
◆ D1传动比;1.00×2.804
47
AT
AT
丰田A340E-D2档(后两排传动)
◆ O/D档→输入轴→C1→后圈→后星→后架→→→→→输出轴 └太阳轮被B2.F1锁住
◆ D2档传动比:1.00×1.531
一个外齿轮与一个内齿轮啮合时,转动 方向相同。
太阳轮、齿圈、行星架、三者齿数的关 系是:行星架>齿圈>太阳轮
7
AT
AT
§3.2 行星齿轮机构的变速原理
◇ 行星齿轮机构参数α:
z2 >1
z1
Z1-太阳轮齿数 Z2-齿圈齿数
◇ 单排行星齿轮机构运动特性方程式:
n1 n2 1 n3 0
外圈转速)、前排滑转。
37
AT
AT
4T65E-D3档
D3档 动力传动路线 ;
┌→ C3→F2←前太← ┐
链轮┴→ C2→→→前架 →┴→前圈→主减速器
D3档 传动比; 1.00

传动;C2+C3 锁止;F2

38
AT
AT
D3 档 动 力 传 递 说 明
输入 输入
输出
C2和C3分别传递动力前架后圈和前太阳轮。 F2逆向锁止(内圈转速>外圈转速),故C3
50
AT
AT
丰田A340E-R档
◆ O/D档→输入轴→C2→太阳轮→前星→前圈→输出轴 └前架被B3锁住
◆ R档传动比:1.00×2.220
51
AT
AT
大众01M自动变速器
B2 C2 C1
C3

ngwn型行星齿轮传动原理

ngwn型行星齿轮传动原理

ngwn型行星齿轮传动原理
NGWN型行星齿轮传动是一种常用的行星齿轮传动结构,由内、外齿轮和行星齿轮组成。

其原理如下:
1. 传动原理:
NGWN型行星齿轮传动通过内齿轮驱动行星齿轮的旋转,然
后通过行星齿轮与外齿轮的啮合,实现动力传递。

内齿轮固定不动,外齿轮为输出轴,行星齿轮为输入轴。

通过改变内齿轮和外齿轮的啮合配合关系,可以实现不同的传动比。

2. 结构特点:
NGWN型行星齿轮传动的主要结构特点包括内、外齿轮的啮合、行星齿轮的旋转以及外齿轮的输出。

内齿轮通常是一个内部齿圈,通过内部齿圈的固定实现内齿轮不动。

外齿轮是一个外部齿圈,通过与行星齿轮的啮合实现输出,可以围绕内齿轮转动。

行星齿轮由若干个同心排列的行星齿轮组成,通过与内、外齿轮的啮合实现输入和输出的连续传递。

3. 优点与应用:
NGWN型行星齿轮传动具有传动比大、承载能力高、紧凑型
结构等优点。

常用于工业机械设备中需要大扭矩输出和精密传动的场合,例如机床、冶金设备、纺织设备等。

行星齿轮机构结构

行星齿轮机构结构

支架优化设计
减轻支架的重量
支架是行星齿轮机构中的支撑部件,其重量的轻重对整个 机构的重量有很大影响。在满足使用要求的前提下,应尽 量减轻支架的重量。
提高支架的刚度和稳定性
支架在工作过程中需要承受机构的载荷和弯矩,因此需要 具有良好的刚度和稳定性。可以通过优化支架的结构设计、 增加加强筋等方法来提高其机械性能。
太阳轮的受力分析
太阳轮受到来自行星轮的力矩作用,这些力矩的大小和方向取决于行星轮的位置和 转速。
太阳轮受到的力矩可以分解为切向力矩和径向力矩,切向力矩用于驱动太阳轮旋转, 径向力矩则用于平衡太阳轮的离心力。
太阳轮的受力分析需要考虑太阳轮与行星轮之间的接触力和摩擦力,以及太阳轮自 身的重力和离心力。
单级行星齿轮机构
结构简单,由太阳轮、 行星轮和转臂组成。
制造和维护成本较低。
传动比范围较小,通 常用于高速、小扭矩 的传动系统。
双级行星齿轮机构
由两个单级行星齿轮机构组成, 通过中间齿轮连接。
传动比范围较大,通常用于中 低速、大扭矩的传动系统。
结构相对复杂,制造和维护成 本较高。
多级行星齿轮机构
02 行星齿轮机构的基本组成
行星轮
01
行星轮是行星齿轮机构中的重要 组成部分,通常由一个或多个齿 轮组成,它们围绕一个共同的旋 转中心(即行星轮轴)旋转。
02
行星轮的主要作用是传递动力, 它们可以与太阳轮和内齿圈啮合 ,从而实现动力的传递和减速。
太阳轮
太阳轮是行星齿轮机构中的另一个重 要组成部分,它通常位于机构的中心 位置,并与行星轮和内齿圈啮合。
1
行星轮受到来自太阳轮和内齿圈的力矩作用,这 些力矩的大小和方向取决于行星轮的位置和转速。

行星齿轮机构工作原理

行星齿轮机构工作原理

行星齿轮机构工作原理
行星齿轮机构是一种常见的传动装置,它由太阳轮、行星轮、行星架和内齿轮
组成。

在工程领域中,行星齿轮机构被广泛应用于各种机械传动系统中,其独特的结构和工作原理使其成为一种高效、稳定的传动方式。

本文将详细介绍行星齿轮机构的工作原理。

行星齿轮机构的工作原理可以简单概括为,太阳轮驱动行星轮,行星轮带动内
齿轮旋转。

具体来说,当太阳轮作为输入轴输入动力时,它会驱动行星轮绕太阳轮运动。

同时,行星轮上的行星架也会随之运动,由于行星架上还有内齿轮,内齿轮随之旋转。

这样,太阳轮的转动就能通过行星轮和内齿轮传递到输出轴上,实现动力传递和速度变换的功能。

行星齿轮机构的工作原理具有几个特点:
首先,行星齿轮机构具有多级传动的特点,通过多级行星轮的组合,可以实现
不同速比的传动,从而满足不同工况下的传动需求。

其次,行星齿轮机构的结构紧凑,传动效率高。

由于行星齿轮机构中的齿轮数
量多,传动过程中的齿轮啮合点更多,相比于普通齿轮传动,行星齿轮机构的传动效率更高。

再次,行星齿轮机构的承载能力强。

由于行星齿轮机构中每个齿轮都承担部分
传动力,因此整个传动系统的承载能力更强,能够承受更大的负载。

最后,行星齿轮机构的工作平稳,噪音小。

由于行星齿轮机构中的齿轮数量多,每个齿轮的转速相对较低,传动过程中的振动和噪音也相对较小,从而使得整个传动系统的工作更加平稳。

总的来说,行星齿轮机构是一种高效、稳定的传动装置,其工作原理简单清晰,结构紧凑,传动效率高,承载能力强,工作平稳,噪音小。

因此,在各种机械传动系统中都有着广泛的应用前景。

行星齿轮的工作原理

行星齿轮的工作原理

行星齿轮的工作原理
行星齿轮是一种特殊的齿轮传动机构,它由一个太阳齿轮、若干个行星齿轮、一个环形齿轮和一个行星架组成。

这种结构能够实现大传动比、承载能力强、输出扭矩平稳等优点,因此广泛应用于各种机械传动领域。

1. 基本组成
- 太阳齿轮:位于中心,与行星齿轮啮合
- 行星齿轮:绕太阳齿轮公转,同时自传
- 环形齿轮:内齿环,与行星齿轮啮合
- 行星架:用于支撑和引导行星齿轮运动
2. 工作原理
当行星架固定时,输入动力经太阳齿轮带动行星齿轮绕自身转动和公转,从而带动环形齿轮输出;反之,当环形齿轮固定,输入动力则通过相反的运动传递。

根据固定不同部件,行星齿轮可实现减速或增速传动。

3. 特点
- 大传动比:通过设置多级行星齿轮,可实现很大的传动比
- 承载能力强:齿轮啮合面积大,分散负荷
- 输出扭矩平稳:多个行星齿轮分担输出,扭矩波动小
- 体积小、重量轻:紧凑布局,高功率密度
行星齿轮传动凭借其独特的结构和优异的性能,在工业机械、汽车、
航空航天等领域有着广泛的应用。

辛普森式行星齿轮机构

辛普森式行星齿轮机构

辛普森式行星齿轮机构一、引言辛普森式行星齿轮机构是一种常用的减速器,广泛应用于工业生产中。

它由太阳轮、行星轮和内齿圈三个部分组成,具有结构紧凑、传动效率高等优点。

二、辛普森式行星齿轮机构的基本结构辛普森式行星齿轮机构由太阳轮、行星轮和内齿圈三个部分组成。

其中,太阳轮位于中心位置,内齿圈固定不动,而行星轮则绕着太阳轮旋转。

三、辛普森式行星齿轮机构的工作原理当驱动太阳轴旋转时,太阳轴上的太阳轮也会随之旋转。

同时,在太阳轴周围的一个或多个行星架上安装有数个同心排列的小行星轨道,在小行星上还装有小型自转支架。

当驱动太阳轴旋转时,通过小型自转支架使得每个小行星都绕着自己的中心旋转,并且随着整个系统一起绕着太阳轴旋转。

四、辛普森式行星齿轮机构的优点1. 结构紧凑,体积小。

2. 传动效率高,可达到98%以上。

3. 承载能力强,能够承受较大的负载。

4. 可以实现多级减速,适用于不同的工业场合。

五、辛普森式行星齿轮机构的应用辛普森式行星齿轮机构广泛应用于各种工业设备中,如机床、起重设备、输送设备、风力发电机等。

它具有传动效率高、结构紧凑等优点,在工业生产中扮演着重要的角色。

六、辛普森式行星齿轮机构的维护在使用辛普森式行星齿轮机构时,需要注意以下几点:1. 定期检查润滑油是否充足,并及时更换。

2. 定期检查齿轮是否磨损或损坏,并及时更换。

3. 定期检查各个部件是否松动或故障,并及时修理或更换。

4. 遵守使用规程和操作规范,避免过载和过速运转等不良操作。

七、总结辛普森式行星齿轮机构是一种常用的减速器,具有结构紧凑、传动效率高等优点。

它广泛应用于工业生产中,如机床、起重设备、输送设备、风力发电机等。

在使用时需要注意维护保养,以确保其正常运转和延长使用寿命。

行星齿轮机构的传动原理和结构_图文

行星齿轮机构的传动原理和结构_图文

2.单排单级行星齿轮机构的组成及变速原理
(1)单排单级行星齿轮机构的组成
单排单级行星齿轮机构由太阳轮、行 星齿轮架及行星轮和齿圈组成。
齿圈制有内齿,其余齿 轮均为外齿,太阳轮位于 机构中心,行星轮一般有 3个或4个,空套(或装滚 针轴承)在行星齿轮轴上 ,行星齿轮轴均布地固定 在行星架上。
行星轮即可绕行星轴自 转,又可绕太阳轮公转。 太阳轮与行星轮是外啮合 ,二者旋转方向相反;行 星轮与齿圈是内啮合,二 者旋转方向相同。行星齿 轮系统的齿轮均采用斜齿 常啮合状态
(3)单排双级行星齿轮机构传动分析和传动比计算
1)单排双级行星齿轮机构传动分析 单排双级行星齿轮机构必须将太阳轮、齿圏和行星架三个元件中的一 个加以固定,或者将某两个元件互连接在一起,输入与输出才能获得一定的 传动比。改变各元件的运动状态,可获得多个传动比。
2)单排双级行星齿轮机构动力传动比计算 ①用运动方程计算传动比
图3-12行星架与齿圈相连,行星排成一体输出图与结构简图
2)传动比计算
①用运动方程计算传动比
该行星齿轮机构运动方程n1+αn2-(1+α)n3=0中,由于将 行星架与齿圈连成一体n1=n2,该运动方程变为n2+αn2- (1+α)n3=0 得n2/n3=1即传动比i= n2/n3=1 (或n1+αn1- (1+α)n3=0 得n1/n3=1即传动比i= n1/n3=1)即该单排行星齿 轮机构不论齿圈输入还是行星架输入,太阳轮输出,转向相 同,转速相同。
(2)齿圈输入,太阳轮制动,行星架输出 1)转矩传动分析
如图3-6所示,当齿圈输入顺时针旋转时,使行星齿轮也顺时针旋转(两 齿轮內啮合),因太阳轮制动,使行星轮必绕太阳轮顺时针转动,行星轮 在行星架上自转,它必须带着行星架绕太阳轮旋转,于是行星架便被动顺 时针旋转而输出动力。

行星齿轮机构

行星齿轮机构
行星齿轮变速系统
任务?
一、行星齿轮机构的组成 二、行星齿轮机构的分类 三、行星齿轮机构的工作原理 四、行星齿轮变速系统的执行元件
行星齿轮机构的组成
材料一:课本P327图12-68
材料二:实物 材料三: 观看视频
结论:行星齿轮机构由太阳轮、 行星架(行星轮)、齿圈组成
行星齿轮机构的分类
单排行星齿轮机构(见图1269及A341型的超速行星排实物) 按齿轮排数分
多排行星齿轮机构(见A341型 的第二三排行星齿轮排实物)
按行星齿轮组数分
单行星齿轮式(见图12-69)
双行星齿轮式(见图12-71)
行星齿轮机构的工作原理
分析讲解:
可知,当三组件中有一种被固定,另一种作驱 动,剩下的一种作为输出,就有多种组合方式。 请看:
(1)当齿圈被固定,若太阳轮为输入件,行星架 为输出件,则传动比为
(5)当太阳轮与行星架被锁止成为一个整体作为输入件, 齿圈为输出件时,
此时,传动比为1,可作直接档。
(6)当三个元件都不固定时,其中一个输入,另 两个都可自由转动,不输出动力,可作档。
(1)离合器 请看视频
结构: 由离合器鼓、钢片、摩擦片、
活塞回位弹簧等组成。
作用: 用于连接两个转动的元件。 原理: 压力油推动活塞运动,摩擦片与
作业:
1、行星齿轮机构由哪几部分组成?
2、行星齿轮机构的工作原理是什么,各种情 况的传动比是多少?
3、行星齿轮变速系统的执行元件有哪几种?
再见
此时,传动比大于2,可作一档。 (2)当太阳轮被固定,齿圈为输入件,行星架 为输出件,则传动比为
此时,传动比大于1,可作二档。
(3)当太阳轮被固定,行星架为输入件,齿圈 为输出件,传动比为

行星齿轮机构8种传动原理

行星齿轮机构8种传动原理

行星齿轮机构8种传动原理行星齿轮机构是一种常见的传动装置,由太阳轮、行星轮、内齿轮、外齿轮等组成。

它具有结构紧凑、传动平稳、噪声小等优点,广泛应用于机械制造、自动化控制、机器人等领域。

下面介绍行星齿轮机构的8种传动原理。

1. 行星轮定子传动原理行星轮定子传动原理是指外齿轮作为定子,内齿轮与外齿轮有齿合传动,行星轮则通过其轴承中心固定在外齿轮的轮干上,同时与内齿轮齿合,实现行星轮的转动。

此时太阳轮作为输入轴,输出轴固定在内齿轮上。

该传动原理的优点是传动平稳,缺点是结构较为复杂,制造成本较高。

4. 中心不平行传动原理中心不平行传动原理是指太阳轮与输出轴不在同一中心线上,导致内齿轮与行星轮齿合时,行星轮会向着太阳轮移动。

这种传动方式结构简单,适用性强,但因为该传动方式会导致行星轮受到侧向载荷,造成寿命不足等问题,被逐渐淘汰。

5. 多星行星传动原理多星行星传动原理是指在行星齿轮机构中,行星轮的数量可以大于3个,增加行星轮的数量可以实现更大的减速比,控制了机械装置的速度和扭矩变化。

如果行星轮的数量过多,会增加构件数量,结构复杂度不易控制。

6. 行星轮马达传动原理行星轮马达传动原理是指将行星齿轮机构借助液压或气压等介质驱动。

行星轮马达的工作方式与行星轮减速器基本相同,只不过输入轴变成了液压或气压作用,输出轴与太阳轮同心固定。

行星轮马达优点是输出扭矩大,速度范围广,缺点是成本较高。

7. 非圆行星传动原理非圆行星传动原理是指将行星轮的轮干改为非圆形,例如椭圆形、正六边形等。

非圆行星传动原理可以实现不同的传动比,具有更广泛的应用,同时因为其结构复杂度,也更容易出现故障。

8. 可逆行星传动原理可逆行星传动原理是指在行星齿轮机构中使用可逆式行星轮,即行星轮的驱动梭头可以从输出端移动到输入端,交换输入和输出轴的位置。

这种传动方式可以使行星齿轮机构实现前后转动的变化,广泛应用于机械设备中。

该传动原理的优点是结构简单,适应性强,缺点是因为其可逆性,所以传动效率低。

第3章 行星齿轮变速器结构与工作原理

第3章 行星齿轮变速器结构与工作原理
阳轮
2、拉威娜式自动变速器齿轮机构动力传递 路线
1)行星架制动,小太阳轮输入
传动路线:
小太阳轮→短行星齿轮→长行星齿轮(仅有自 转)→内齿圈→输出轴,此变速结果为同向减 速传动。
2)大太阳轮制动,小太阳轮输入
传动路线:
小太阳轮→短行星齿轮→长行星齿轮(随行星 架公转)→内齿圈→输出轴,此变速结果为 同向减速传动。
3)大太阳轮制动,行星架输入 传动路线:
行星架→长行星齿轮(随行星架公转)→内齿 圈→输出轴,此变速结果为同向增速传动。
4)行星架制动,大太阳轮输入 传动路线:
大太阳轮→长行星齿轮(仅有自转)→内齿圈 →输出轴,此变速结果为反向减速传动。
1)D位一档传动路线
小太阳轮→短行星 齿轮→长行星齿轮 →内齿圈→输出轴
长行星齿轮在带动内 齿圈顺时针转动的同 时,对行星架产生逆 时针力矩,F1在逆 时针方向合行星架固 定。
此时,发动机的动力
经输入轴,小太阳轮、
图3-16 D位1挡传动路线示意图
短行星齿轮、长行星
C1-前进挡离合器;F1-低挡单向离合器; F2-前进挡向离合器 齿轮传给内齿圈和输
出轴。
2)D位2档传动路线
离合器、制动器、单向离合器统称为自动变速器行 星齿轮机构换档执行元件或施力元件。
3.4 典型行星齿轮传动原理及工 作分析
3.4.1 拉威娜式行星齿轮传动原理
图3-13 拉威娜式行星齿轮变速机构 1-小(前)太阳轮;2-行星架;3-短行星轮;4-长行星齿轮;5-齿圈;6-大(后)太阳轮
工作过程:
1)小太阳轮输入,行星架固定
3)D位3档传动路线
C1、C2同时接合,
F2锁止,使输入轴同
时和小、大太阳轮相

行星齿轮机构的传动原理和结构通用课件

行星齿轮机构的传动原理和结构通用课件
行星齿轮机构。
制造工艺流程
1 2 3
铸造
行星齿轮机构的部分或全部零件可以通过铸造工 艺制造出来,铸造工艺能够生产出形状复杂的零 件。
切削加工
对于一些形状简单的零件,可以通过切削加工工 艺制造出来,切削加工工艺能够保证零件的精度 和表面质量。
组装与调试
行星齿轮机构的所有零件制造完成后,需要进行 组装和调试,以确保其传动性能和稳定性。
行星齿轮机构的传动效率
效率计算
行星齿轮机构的传动效率可以通 过计算各齿轮副的效率来获得, 考虑齿轮副的摩擦、轴承摩擦等
因素。
效率影响因素
行星齿轮机构的传动效率受到多种 因素的影响,如齿轮精度、润滑情 况、轴承摩擦等。
效率优化
通过优化设计行星齿轮机构的结构 和参数,可以提高传动效率,减少 能量损失。
如果发现行星齿轮机构有异常声响或振动 ,可能是齿轮磨损严重,需要更换磨损的 齿轮。
轴承损坏会导致行星齿轮机构运转不平稳 ,需要更换损坏的轴承。
润滑不良
安装问题
如果发现行星齿轮机构温度过高或者运转 声音异常,可能是润滑不良引起的,需要 检查润滑系统并进行调整。
安装不正确会导致行星齿轮机构运转不平 稳或者产生振动,需要重新检查并调整安 装状态。
相啮合。
行星齿轮机构的分类
差动行星齿轮机构
差动行星齿轮机构是一种常见的行星齿轮机构,其特点是行星架 的转速等于两个转动元件(太阳轮和内齿圈)转速之和。
差速器行星齿轮机构
差速器行星齿轮机构是汽车中常用的行星齿轮机构,其特点是能够 实现左右轮的差速。
复合行星齿轮机构
复合行星齿轮机构是由两个或多个行星齿轮机构组合而成的,能够 实现更复杂的传动比关系。
制造过程中的质量控制

行星齿轮结构及工作原理

行星齿轮结构及工作原理

行星齿轮机构和工作原理一、 简单的行星齿轮机构的特点行星齿轮机构的组成:简单(单排)的行星齿轮机构是变速机构的基础,通常自动变速器的变速机构都由两排或三排以上行星齿轮机构组成。

简单行星齿轮机构包括一个太阳轮、若干个行星齿轮和一个齿轮圈,其中行星齿轮由行星架的固定轴支承,允许行星轮在支承轴上转动。

行星齿轮和相邻的太阳轮、齿圈总是处于常啮合状态,通常都采用斜齿轮以提高工作的平稳性(如图l所示)。

如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。

正如太阳位于太阳系的中心一样,太阳轮也因其位置而得名。

行星轮除了可以绕行星架支承轴旋转外,在有些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的自转和绕着太阳的公转一样,当出现这种情况时,就称为行星齿轮机构作用的传动方式。

在整个行星齿轮机构中,如行星轮的自转存在,而行星架则固定不动,这种方式类似平行轴式的传动称为定轴传动。

齿圈是内齿轮,它和行星轮常啮合,是内齿和外齿轮啮合,两者间旋转方向相同。

行星齿轮的个数取决于变速器的设计负荷,通常有三个或四个,个数愈多承担负荷愈大。

简单的行星齿轮机构通常称为三构件机构,三个构件分别指太阳轮、行星架和齿圈。

这三构件如果要确定相互间的运动关系,一般情况下首先需要固定其中的一个构件,然后确定谁是主动件,并确定主动件的转速和旋转方向,结果被动件的转速、旋转方向就确定了。

二、 单排行星齿轮机构的工作原理根据能量守恒定律,三个元件上输入和输出的功率的代数和应等于零,从而得到单排行星齿轮机构一般运动规律的特性方程。

特性方程:n1+an2-(1+a)n3=0n1——太阳轮转速,n2——齿圈转速,n3——行星架转速,a——齿圈与太阳轮齿数比。

由特性方程可以看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、环形内齿圈和行星架三个机构中,任选两个分别作为主动件和从动件,而使另一个元件固定不动,或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)改善换档的平稳性。
连锁作用
锁止作用
单向离合器会装反吗? 单向离合器装反会如何?
一、行星齿轮机构
小结
n1+αn2-(1+α) n3 = 0
1档 2档 倒档 超速或4档
3档
小结
二、换档执行机构
常见有多片离合器,制动器(制动带)及单向离合器三种 离合器单向阀作用:防止高速运转时,不作用的离合器被压紧。
三、带式制动器
带式制动器结构:
1-变速器壳体 2-制动带 3-制动鼓 4-活塞 5-液压缸施压腔 6-液压 缸端盖 7-液压缸释放腔 8-推杆 9-调整螺钉 10-回位弹簧
带式制动器工作过程:
间隙如何测量、调整?
1.2.3、单向离合器
常见类型有:棘轮式、滚柱斜槽式 和 楔块式单向(超越)离合器 作用:连锁作用,固定作用,改善换档的平稳性。
四、直接传动★
n1
n2 刚性联接3
直接传动:传动比=1 条件:任何两元件被刚性联接。 n1+αn2-(1+α) n3 = 0 n3= n1或n3= n2或n1= n2 传动比=1
五、增速传动
制动n1
输出n2 输入n3
一)、 ★增速传动:传动比=α/(1+α ) 条件:主动件-行星架,被动件-齿圈,固定件-太阳轮。 n1+αn2-(1+α) n3 = 0 n1=0 传动比=n3/n2=α/ (1+α )
连锁作用
连接作用
C0 C1
C2
C2
C1
C1
C2
C2 C1 连接作用与连锁作用
1.2.2、制动器
一、作用与种类 作用:固定作用—将行星齿轮机构中某一元件与壳体相连,使 该元件固定。 种类:带式和多片式制动器。 固定作用
B0
B2 B1
二、片式制动器
结构基本同离合器,所不同的是制动器的壳体,活塞上没有单向阀 。
单排行星齿轮机构的传动方案
1档 2档 倒档 超速或4档
3档
讨论
1、单排行星齿轮机构能否满足车辆的档位要求? 2、三元件主动、被动与固定的变换如何实施?采用什么机构? 3、当直接传动时,图中利用离合器使行星架与齿圈连成一体;还有其他的方法 实现直接传动吗? C1结合,B1作用或结合,传动比=1+α ;C1,C2同时结合,传动比=1 C1,C2离合器,B1制动带,(B1)制动器; 设计出能实现传动比1+α,1, 1/(1+α)的单排行星齿轮机构离合器,制动带 的配置方法。
齿圈n2
r2
行星轮
r1
太阳轮n1
行星架n3
一、不传递动力
齿圈n2
太阳轮n1
行星架n3
一)、不传递动力:传动比=0 条件:三个元件自由转动 n1+αn2-(1+α) n3 = 0
二、减速传动
制动n2
输入n1
输出n3
二)★减速:传动比=1+α ★ 条件: 主动件-太阳轮,被动件-行星架,固定件-齿圈。 n1+αn2-(1+α) n3 = 0 n2=0 传动比=n1/n3=1+α
制动n2
输出n1
输入n3
二)、增速传动:传动比=1/ (1+α ) 条件:主动件-行星架,被动件-太阳轮,固定件-齿圈。 n1+αn2-(1+α) n3 = 0 n2=0 传动比=n3/n1=1/ (1+α )
六、增速反向传动
被动件
输出n1
输入n2 制动n3
主动件
增速反向传动:传动比=-1/ α 条件:主动件-齿圈,被动件-太阳轮,固定件-行星架。 n1+αn2-(1+α) n3 = 0 n3=0 传动比=n2/n1=-1/ α
1.2 换档执行机构
常见的有多片离合器,制动器(制动带)及单向离合器三种; 其中,单向离合器的工作情况是由运动条件所决定,而离合 器的接合和分离及制动器的制动和释放是由液压控制系统自 动控制的。
有什么作用?--连接、连锁和固定
1.2.1、多片式离合器
一、离合器结构
离合器活塞
离合器鼓;
卡环;
弹簧座 钢片、摩擦片
回位弹簧
二、离合器工作过程
分离
接合
三、带有球阀的多片离合器
单向阀作用:防止高速运转时,不作用的离合器被压紧。
1-球阀 2-进油腔 3-油封 4-泄油通道 5-活塞
进油时,球阀封死泄油孔
泄油后、球阀离开泄油孔。?
四、离合器作用
(1)连接作用—将行星齿轮机构中某一元件与主动部分相连。 (2)连锁作用—将行星齿轮机构中任二元件连锁为一体,实现直接传动。
输入n2 制动n1
输出n3
二)、减速:传动比=(1+α)/α ★ 条件:主动件-齿圈,被动件-行星架,固定件-太阳轮。 n1+αn2-(1+α) n3 = 0 n1=0 传动比=n2/n3=(1+α)/α
三、减速反向传动★
:主动件-太阳轮,被动件-齿圈,固定件-行星架。 n1+αn2-(1+α) n3 = 0 n3=0 传动比=n1/n2=-α
B1 传动比=1
C2
C1
输入n3
B
C
输出n2
输入n3
B
C
单排行星齿轮传动
输出n2
输入n3
B
C
输出n2
输入n3
B
C
输出n2
档位
C
B
传动比
1档

×
1
2档
×

α/(1+α)
如果输入n2,输出n3?
输出n3
B
C
输入n2
输出n3
B
C
档位
C
B
1档
×

2档

×
输入n2
传动比 (1+α)/ α 1
如果输入n2,输出n3?
离合器作用: (1)连接作用—将行星齿轮机构中某一元件与主动部分相连。 (2)连锁作用—将行星齿轮机构中任二元件连锁为一体,实现直接
传动。
1、滚柱斜槽式单向(超越)离合器
1-外环 2-内环 3-滚柱 4-弹簧。
二、楔块式单向(超越)离合器
1-外环 2-内环 3-楔块。
三、棘轮式单向(超越)离合器
1-外轮 2-棘爪 3-棘轮 4-叶片弹簧。
四、单向离合器作用
(1) 连锁作用 ---将二元件直接连接使之一起运动。
(2) 固定作用—将行星齿轮机构中某一元件与壳体相连,使该元件被固定。
行星齿轮机构的主要结构 、类型和传动原理
齿轮传动机构类型分:固定轴式(平行轴式), 行星齿轮式传动机构
1.1 行星齿轮机构传动原理 1.1.1 单排行星齿轮机构
组成:太阳轮、齿圈、行星轮与行星架 。
1.1.2 单排行星齿轮机构传动过程分析
令太阳轮齿数为Z1、半径为r1,齿圈齿数为Z2、半径为r2。设 α=Z2/Z1=r2/r1;则有公式: n1+αn2-(1+α) n3 = 0。 分别把三元件中任一元件当主动件,被动件及固定件就可以得到以下 不同的传动方案:
相关文档
最新文档