最新人教版高中数学选修1-2《合情推理与演绎推理》教材梳理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
庖丁巧解牛
知识·巧学
一、合情推理
1.推理的概念
根据一个或几个已知的事实(或假设)得出一个判断,这种思维方式叫推理.推理一般由两部分组成:前提和结论.
2.合情推理
当前提为真时,结论可能为真的推理,叫做合情推理.合情推理中,当前提为真时,结论可能为真,也可能为假.归纳推理和类比推理是数学中常用的合情推理.一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠,例如费马猜想就被大数学家欧拉推翻了.
方法点拨合情推理是指“合乎情理”的推理.数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向,其推理过程为
3.归纳推理
根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,或者由个别事实概括出一半结论的推理,叫做归纳推理(简称归纳).归纳推理是从部分到整体,从个别到一般的推理.应用归纳推理获得的新结论,一般只能作为猜想,虽然猜想是否正确还有待严格的证明,但是这个猜想可以为我们的研究提供一种方向.
归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.
由归纳推理得到的结论具有猜测的性质,结论是否真实,还需要经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.
归纳推理是一种具有创造性的推理.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.
方法点拨归纳推理的前提与结论只具有或然性联系,其结论不一定正确.结论的正确性还需要理论证明或实践检验.其一般步骤为:通过观察个别情况发现某些相同性质;从已知的相同性质中推出一个明确表述的一般性命题.
4.类比推理
根据两类不同事物之间具有某些类似(或一致)性和其中一类对象的某些已知特征,推测另一类事物具有与这些类似(或相同)的性质的推理,叫做类比推理(简称类比).类比推理是由特殊到特殊的推理.运用类比推理常常是先要寻找合适的类比对象,我们可以从不同角度出发确定类比对象,基本原则是根据当前的实际,选择适当的类比对象.
方法点拨类比推理的一般步骤为:找出两类事物之间的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
二、演绎推理
1.演绎推理
根据一般性的真命题(或逻辑规则)导出特殊性命题为真的推理,叫做演绎推理.演绎推理的特征是:当前提为真时,结论必然为真.演绎推理是由一般到特殊的推理.数学中的证明主要是通过演绎推理来进行的.常见的演绎推理包括:假言推理、三段论推理、关系推理、完全归纳推理等,演绎推理的一般形式是三段论推理.
2.假言推理
如果一个推理的规则能用符号表示为“如果p q,p真,则q真”,那么这种推理规则
叫做假言推理.假言推理的本质是,通过判断结论的充分条件为真,判断结论为真.
方法点拨假言推理的步骤可以概括为:确定命题p能够推出命题q;判断命题p是否为真,如果p为真,则q为真.
3.三段论推理
如果一个推理规则能用符号“如果b⇒c,a⇒b,则a⇒c”,那么这种推理规则叫做三段论推理.三段论推理都是由三个命题组成的,两个前提,一个结论;第一个命题称为大前提,它提供了一个一般性的原理;第二个命题叫小前提,它指出了一个特殊对象,这两个判断结合起来,揭示了一般原理与特殊对象的内在联系,从而得到第三个命题——结论.如在民事审判中,以现行有效的法律规定作为大前提,以经过法庭审理查明的事实作为小前提,按照三段论的推理规则,最后得出判决结论的方法,是增强判决书说理性的好方法.任何一个三段论推理都有而且仅有三个词项,每个词项在三个命题中重复出现一次.
三段论推理可以表示为,大前提:M是P;小前提:S是M;结论:S是P.在三段论推理中,尽可能少地选择原始概念和一组不加证明的原始命题(公理、公设),以此为出发点,应用演绎推理,推出尽可能多的结论的方法,称为公理法.公理化方法的精髓是:利用尽可能少的前提,推出尽可能多的结论.
深化升华用集合的观点来分析,三段论的推理依据是:如果集合M中的每一个元素都具有属性P,且S是M的子集,那么集合S中的每一个元素都具有属性P.
4.关系推理
如果一个推理规则可以用符号表示为“如果a≥b,b≥c,则a≥c”,那么这种推理规则叫做关系推理.
方法点拨关系推理的步骤:确定原式a和式子b存在关系a≥b;论证式子b和c存在关系b≥c,从而推出a≥c.
5.完全归纳推理
把所有情况都考虑在内的演绎推理规则叫做完全归纳推理.
误区警示在数学中,证明命题的正确性,都是用演绎推理,而合情推理不能用作证明. 三、合情推理与演绎推理
合情推理与演绎推理是常见的两种推理方式.
从推理形式上看,合情推理是由局部到整体、个别到一般的推理(归纳),或是由特殊到特殊的推理(类比);而演绎推理是由一般到特殊的推理.
从推理所得的结论来看,合情推理的结论不一定正确,有待于进一步证明;演绎推理在大前提、小前提和推理形式都正确的情况下,得到的结论一定正确.
方法点拨在数学中,证明命题的正确性,都是用演绎推理,而合情推理不能用作证明.
问题·探究
问题1 如何理解归纳推理?
导思:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,或者由个别事实概括出一般结论的推理,叫做归纳推理(简称归纳).归纳推理是从部分到整体,从个别到一般的推理.
探究:归纳推理的基本形式是:
∵A1具有性质F,A2具有性质F,…,A n具有性质F,(A1,A2,…,A n都属于A)
∴A类事物都具有性质F.
归纳推理的基础是对个别或部分对象的实验和观察,而缺乏对全体对象的考察,因而所得的结论具有偶然性,只能称之为归纳猜想,其正确与错误是需要严格论证的.
例如:f(x)=(x-1)(x-2)…(x-100)+2.
∵f(1)=2,f(2)=2,…,f(100)=2.
∴由此归纳猜想f(n)=2(n ∈N *).
但这一结果是错误的,事实上f(101)≠2,可见不完全归纳推理得出的结论不可靠,还需要进一步作出判断.
问题2 类比平面向量和空间向量,列出它们相似(相同)的性质.
导思:从平面向量和空间向量的定义、运算法则、运算律、数量积、共线共面以及向量基本定理等几个方面,来进行类比. 探究:(1)从定义的角度考虑
平面向量是平面内既有大小又有方向的向量;空间向量是空间内既有大小又有方向的向量. (2)从运算法则的角度考虑
两个平面向量相加的三角形法则和平行四边形法则在空间中仍成立.始点相同的三个不共面的向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则在空间的推广. (3)从运算律、数量积的角度考虑 平面向量和空间向量是相同的.
运算律:①a +b =b +a (加法交换律);②(a +b )+c =a +(b +c )(加法结合律);③λ(a +b )=λa +λb (数乘分配律).
数量积的性质:①a ·e =|a |c os 〈a ,e 〉(e 是单位向量);②a ⊥b a ·b =0;③|a |2=a ·a . 数量积的运算律:①(λa )·b =λ(a ·b );②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). (4)从向量共线,共面的角度考虑
共线向量定理:向量b 与a (a ≠0)共线的充要条件是:有且只有一个实数λ,使得b =λa .
共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对x,y,使p=x a +y b .
(5)从向量基本定理角度考虑
平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线的向量,那么对于这一平面内任一向量a ,有且只有一对实数λ1,λ2,使得a =λ1e 1+λ2e 2,其中e 1,e 2表示平面向量的一组基底.
空间向量基本定理:如果三个向量a 、b 、c 不共面,那么对于空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫基向量. 典题·热题
例1已知数列{a n }的第1项a 1=1,且a n+1=
n
n
a a +1(n=1,2,3, …),试归纳出这个数列的通项公式.
思路解析:数列{a n }的通项公式是第n 项a n 与序号n 之间的对应关系,我们可以先根据已知条件算出数列{a n }的前几项,然后去归纳出一般性的公式.
解:当n=1时,a 1=1;当n=2时,a 2=2
1111=+; 当n=3时,a 3=3121121
=+;当n=4时,a 4=41
3
1131=+;
……
通过观察可得:数列的前四项都等于相应序号的倒数,由此归纳出a n =
n
1
. 方法归纳 归纳推理得出的一般性结论可能为真也可能为假,结论的正确性有待于进一步的
证明,数列中的证明可以使用数学归纳法,也可以使用数列的基本通项公式及求和公式证明. 例2已知数列{a n }的前n 项和为S n ,a 1=32-
且S n +n
S 1+2=a n (n≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.
思路解析:先化简递推关系式:n≥2时a n =S n -S n-1, ∴S n +
n S 1+2=S n -S n-1, n
S 1+S n-1+2=0. 解:当n=1时,S 1=a 1=3
2
-. 当n=2时,
2
1
S =-2-S 1=34-,∴S 2=43-.
当n=3时,
3
1
S =-2-S 2=45-,∴S 3=54-.
当n=4时,
4
1
S =-2-S 3=56-,∴S 4=65-.
猜想:S n =2
1
++-
n n (n ∈N *). 方法规纳 在归纳推理中,所得的结论的正确性常常要用数学归纳法来加以严格证明.
例3如图,点P 为斜三棱柱ABC —A 1B 1C 1的侧棱BB 1上一点,PM ⊥B 1B 交AA 1于点M ,PN ⊥BB 1交CC 1于点
N.
(1)求证:CC 1⊥MN ;
(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF·EFcos ∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.
思路解析:考虑到三个侧面的面积需要作出三个侧面的高,由已知条件可得△PMN 为三棱柱的直截面,选取三棱柱的直截面的三角形作类比对象. (1)证明:∵PM ⊥BB 1,PN ⊥BB 1,∴BB 1⊥平面PMN. ∴BB 1⊥MN.又CC 1∥BB 1,∴CC 1⊥MN. (2)解:在斜三棱柱ABC-A 1B 1C 1中,有
αcos 211111111112
22A ACC B BCC A ACC B BCC A ABB S S S S S ∙-+=.
其中α为平面CC 1B 1B 与平面CC 1A 1A 所成的二面角. ∵CC 1⊥平面PMN ,∴上述的二面角的平面角为∠MNP. 在△PMN 中,PM 2=PN 2+MN 2-2PN·MN·cos ∠MNP
⇒PM 2·
CC 12=PN 2·CC 12+MN 2·CC 12-2(PN·CC 1)·(MN·CC 1)·cos ∠MNP, 由于11B BCC S =PN·CC 1,11A ACC S =MN·CC 1,11A ABB S =MP·BB 1, ∴αcos 211111111112
2
2
A ACC
B BC
C A ACC B BCC A ABB S S S S S ∙-+=.
例4(2005广东高考)设平面内有n 条直线(n≥3),其中有且仅有两条直线互相平行,任意
三条直线不过同一点,若用f(n)表示这n 条直线交点的个数,则f(4)= ______________;当n >4时,f(n)=______________.
思路解析:通过观察不难发现每增加一条直线,交点增加的个数等于原来直线的条数. 由f(2)=0,f(3)=2,f(4)=5,f(5)=9,…
可得每增加一条直线,交点增加的个数等于原来直线的条数. ∴f(3)-f(2)=2,f(4)-f(3)=3,f(5)-f(4)=4,…,f(n)-f(n-1)=n-1. 累加得f(n)=f(2)+2+3+4+…+n-1=2
1
2)]1(2)[2(=-+-n n (n+1)(n-2).
答案:5
2
1
(n+1)(n-2) 深化升华 本小题主要考查观察、分析、归纳推理、累加求通项公式等知识,是一个很灵活的题目,在解题的过程中要善于观察发现规律,通过规律来解决问题揭示本质. 例5用三段论证明,并指出每一步推理的大前提和小前提.如图所示,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D 、E 是垂足.求证:AB 的中点M 到D 、E 的距离相等.
思路解析:解答本题需要利用直角三角形斜边上的中线性质作为大前提. 证明:(1)∵有一个内角是直角的三角形是直角三角形,(大前提) 在△ABD 中,AD ⊥BC ,即∠ADB=90°,(小前提) ∴△ABD 是直角三角形.(结论) 同理,△ABE 也是直角三角形.
(2)∵直角三角形斜边上的中线等于斜边的一半,(大前提)
而M 是Rt △ABD 斜边AB 的中点,DM 是斜边上的中线,(小前提)
∴DM=
21
AB(结论). 同理,EM=2
1
AB.
∴DM=EM.
方法归纳 “三段论”是演绎推理的一般模式,包括:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况作出的判断.
例6求证函数y=1
21
2+-x x 是奇函数,且在定义域上是增函数.
思路解析:本题在证明过程中使用了三段论推理,假言推理等推理规则.
证明:y=1
22
1122)12(+-=+-+x
x x . 所以f(x)的定义域为x ∈R . f(-x)+f(x)=(1-
122+-x
)+(1-122+x )=2-(122+x +122+-x )=2-(121+x +1
222+∙x x
) =2-1
2)
12(2++x
x =2-2=0, 即f(-x)=-f(x),所以f(x)是奇函数. 任取x 1,x 2∈R ,且x 1<x 2.则f(x 1)-f(x 2)=(1-
1221+x )-(1-1222-x )=2(1
21
1211
2+-+x x ) =2·)
12)(12(2212
2
1++-x x x x . 由于x 1<x 2,从而12x
<22x
,12x
-22x
<0, 所以f(x 1)<f(x 2),故f(x)为增函数.
例7(2005辽宁高考)已知椭圆22
22b
y a x +=1(a >b >0)的左右焦点分别是F 1(-c ,0)、F 2(c ,0),
Q 是椭圆外的动点,满足|F 1|=2a.点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足2TF ∙=0,|2TF |≠0. (1)设x 为点P 的横坐标,证明|F 1|=a+x a
c
; (2)求点T 的轨迹C 的方程.
思路解析:本题主要考查平面向量、椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力,其中数形结合是解析几何解决问题的常用方法.
(1)证明:设点P 的坐标为(x,y),
由P(x,y)在椭圆上,得|F 1|=2
222
2
2
2
)()(x a
b b
c x y c x -++=++
=2222
2222222)(22x a c a a cx x a c c b cx x a b a +=++=+++-.
由x≥-a ,知a+
x a c ≥-c+a >0.所以|F 1|=a+x a
c
. (2)解:设点T 的坐标为(x,y),
当|PT |=0时,点(a ,0)和点(-a ,0)在轨迹上. 当|PT |≠0且|2TF |≠0时, 由|PT |·|2TF |=0,得PT ⊥2TF .
又||=|2PF |,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,||=
2
1|F 1|=a ,所以有x 2+y 2=a 2
. 综上所述,点T 的轨迹方程是x 2+y 2=a 2.
方法归纳 求轨迹时可以从两个方面来解:设动点的坐标,利用题目给出的条件整理得出方程;观察曲线的几何特征,直接由曲线的定义得出.。