七年级数形结合数学专题训练

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系------数形结合思想的平台

一、知识点:

1.平面直角坐标系的定义;

2.坐标平面内点的坐标的定义;

3.各象限内及坐标轴上点的坐标的特征;

4.一三(二四)象限角平分线上的坐标特点;

5.与坐标轴平行的直线上的点的坐标的特征;

6.一维、二维坐标;

7、点的坐标与点到坐标轴的距离之间的关系,

8、坐标平面内线段长度与线段两端点坐标之间的关系;

9、面积割补法;

10、绝对值的性质;

11、图形面积公式;

12、平移的性质;

二、基本思想方法:

1、思想:数形结合思想、分类讨论思想、方程思想、算术法。

2、方法:画示意图、平移。

三、典型题目

(一)基础知识训练

1.如图,数轴上A,B两点表示的数分别是1和2,点A关于点B的对称点是点C,则点C所表示的数是.在x轴上,到原点距离为5的坐标.

2.(1)请在下面的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(4,1),(1,-2);

(2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM.

①写出点C的坐标;

②平移线段AB使点A移动到点C,画出平移后的线段CD,并写出点D的坐标.

(注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式)

3.已知直角坐标平面内两点A(-2,-3)、B(3,-3),将点B 向上平移5个单位到达点C,求:

(1)A、B两点间的距离;

(2)写出点C的坐标;

(3)四边形OABC的面积.

4.在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),求四边形ABCD的面积

5.计算图中四边形ABOD的面积.

6.已知点A(-4,-1),B(2,-1)

(1)在y轴上找一点C,使之满足S△ABC=12.求点C的坐标(写必要的步骤);

(2)在直角坐标系中找一点C,能满足S△ABC=12的点C有多少个这些点有什么特征

7.如图,每个小正方形的边长为单位长度1.

(1)写出多边形ABCDEF各个顶点A、B、C、D、E、F的坐标,说出各点到两坐标轴的距离;并总结坐标平面内的点到坐标轴距离公式。

(2)点C与E的坐标什么关系?

(3)直线CE与两坐标轴有怎样的位置关系

(4)你能求出图中哪些线段的长度(总结公式)哪些图形的面积

8.如图,在△ABC中,已知点A(0,3),B(-2,-3),C(3,-5).

(1)在给出的平面直角坐标系中画出△ABC;

(2)将△ABC向左平移4个单位,作出平移后的△A′B′C′;(3)点B′到x、y轴的距离分别是多少

9.如,在平面直角坐标系中,O为坐标原点,已知点A(0,a),B(b,b),C(c,a),其中a,b满足关系式|a-4|+(b-2)2=0,c=a+b.

(1)求A、B、C三点的坐标,并在坐标系中描出各点;

(2)在坐标轴上是否存在点Q,使△COQ得面积与△ABC的面积相等若存在,求出点Q的坐标;若不存在,请说明理由;(3)如果在第四象限内有一点P(2,m),请用含m的代数式表示四边形BCPO的面积.

10.如图所示,长方形ABCD在坐标平面内,点A的坐标是A (2,1),且边AB、CD与x轴平行,边AD,BC与y轴平行,AB=4,AD=2.

(1)求B、C、D三点的坐标;

(2)怎样平移,才能使A点与原点重合

11.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是.

11.如图,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴

向右平移得到△CDE.如果CB=1,那么OE的长为.

12.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.

(1)若|x+2y-5|+|2x-y|=0,试分别求出1秒钟后A、B两点的坐标;

(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化若不发生变化,请求出其值;若发生变化,请说明理由;

(3)如图,延长BA

至E,在∠ABO的内部作射线BF交x轴于

点C,若∠EA C、∠FCA、∠ABC的平分线相交于点G,过点G 作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何请写出你的结论并说明理由.

13.如图,是用四张相同的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法,写出一个关于a、b的恒等式.

14.已知关于x的不等

式组

3x+m<

x>−5

的所有整数解的和为-9,求m的取值范围.

15.小明和小斌到郊外旅游,小明骑自行车,小斌骑电动车,

同时出发沿相同路线前往.如图,l1,l2分别表示小明和小斌前往目的地所走的路程S与所用的时间t的关系.

(1)他们中谁先到目的地早到多少时间?

(2)小明和小斌的速度分别是多少?

(3)当他们中第一人到达目的地时,另一人还差几千米到达目的地

16.“龟兔赛跑”:龟跑得慢,但坚持不懈;而兔跑得快,看不起龟,中途睡觉,醒来龟已到终点.下列哪个图象能大致表示“龟兔赛跑”中路程s与时间t的关系()

A.B.C.D.

17.如图,是一辆汽车的速度随时间变化的图象,请你根据图象提供的信息填空:

(1)汽车在整个行驶过程中,最高速度是千米/时;

(2)汽车第二次减速行驶的“时间段”是;(3)汽车出发后,8分钟到10分钟之间的运动情况如何.

相关文档
最新文档