同济大学微积分课件 PPT

合集下载

大学微积分课件(PPT幻灯片版)pptx

大学微积分课件(PPT幻灯片版)pptx

高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关

连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。

同济大学微积分第三版课件第二章第七节

同济大学微积分第三版课件第二章第七节

3!
3! 5!
相应的误差分别为
R4x5 1!x5,R6x7 1!x7.
y
P1 x x
P5xx31!x351!x5
y sin x
O
x
P3
x
x
1 3!
x3
利用Mathematica可以做出函数y sin x与其近似多 项式的图形. 从图中可以看到, y sin x与其泰勒多项
式 Pn x 随着 n 的增大而越来越贴近.
y P1 x
y P5 x y P13 x y P9 x y P17 x
y sin x
y P3 x y P11 x
y P19 x
y P7 x
y P15 x
常见函数的麦克劳林展开式:
co sx11x21x4 2 ! 4 !
2 m 1 m !x2mR 2m 1x,
其中
R2m1xcos2 xm m 2!1πx2m2.
f nn!x0xx0n.

上式称为函数 f x 的 n 阶泰勒多项式.
例1 求 f x ex 在 x 0 处的1阶和2阶泰勒多项式.
解 因 f0 1 ,f0 1 ,f0 1
故而1阶泰勒多项式为:
P 1 x f0 f0 x 1 x .
2阶泰勒多项式为:
P 2 x f0 f0 x f2 0 x 2 1 x x 2 2 .
lim x3
lim3!x3
, 6
故原极限为
1
lim
x0
sin x
x
x2
1
e 6.
知识回顾 Knowledge Review
x1 x1
y
x
1
12
,
y21,y22,

同济大学微积分第三版课件第二章第六节

同济大学微积分第三版课件第二章第六节

曲线有水平切线. 若记点 C y
的横坐标为 , 则有
C
y f x
f ( ) 0.
A
B
Oa
bx
进一步观察, 当 f a f b 时, 又看到在曲线弧 AB
上, 至少有一点 C, 弧 AB在该点处的切线 CT 平行于弦
AB, 又切线CT 的斜率是 f (b) f (a) , 以 记C 的横坐
例3 设函数 y x 4 , 画出曲线在 0,100,10中的图
x
形, 在同一平面上作出过点 1,5,8,8.5的割线, 并作
相应的切线.
割线的斜率为: k 0.5. 所以, 割线方程:
y 0.5x 4.5. 为求切点的x 坐标, 求解方程:
4 1 0.5.
π 2

上连续,
可导,

g x 1 sin x 0 x 0, π / 2, 即满足定理的条
件, 现求 0,π / 2, 使得
f π / 2 f 0 f g π / 2 g 0 g .

f g

π π
/ /
2 2
当 x 0 时,
f (x0 x) f (x0 ) 0; x
由函数 f (x) 在点 x0处的可导性及极限的保号性, 得
f (x0 )
f(x0 )

lim
x 0
f (x0 x) x
f (x0 ) 0,
f (x0)
f(x0 )

lim
x 0
f ( ) 0.
证 因 f Ca,b,故f x必在a,b上取到最大值 M 与 最小值 m.若 M m, f C a,b, 有

高等数学同济大学第六版1-01-函数课件

高等数学同济大学第六版1-01-函数课件

x cos y
y arccos x
反正弦函数 y arcsin x
证明 x 1,1 , arcsin x arccos x
y arcsin x

2
记 arcsin x [ , ], 2 2 arccos x [0, ],
x [1,1], y arcsin x [
0, x a H ( x) 1, x a
1
o a x
Heaviside 是一位英国的电子工程师,他 用 Heaviside 函数来描述事物由量变到质 变的一个过程与状态。
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数.
例如,
Байду номын сангаас
2 x 1, f ( x) 2 x 1,

, ] cos 2 2
1 sin 2 1 x 2 ,
sin 1 cos 2 1 x 2 , x 2 1 x 2 1,
反余弦函数 y arccos x
sin( ) sin cos cos sin
函 数
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。 微积分的研究是以极限的思想为基 本思想,以极限的方法为基本方法—— 极限是基本工具。 但根本上,微积分这一学说的诞生 的基础是——笛卡儿的解析几何。
2 2
y x2 1
x0 x0
y 2x 1
函数的几何特性
1.函数的有界性:

同济大学微积分课件ch.ppt

同济大学微积分课件ch.ppt

例 求函数z x2 y3 2xy 在点1,2 处的导数.
解 zx 2x 2y, zy 3y2 2x,
所以 zx 1,2 6, zy 1,2 4.
x 例 设 z arctan y ,求 zx , zy.
解 由一元复合函数的求导法则得
11 y
zx
1
x 2
y
y
x2
, y2
zy
1
2z
a2
2z .
y2
x2

z cos x ay,
x
2z x2
sin
x
ay ,
z a cos x ay,y2z x2来自a2sin x
ay .
从而有
2z
a2
2z .
y2
x2
例 验证函数 z ln x2 y2 满足拉普拉斯方程
2z 2z 0.
x2 y2

z
x
x2
x
y2
,
2z x2
lim y z lim f x0, y0 y f x0, y0
y y 0
y 0
y
存在,则称此极限为函数z f x, y 在点 x0, y0 对 y
的偏导数,记作
z
, y x0 , y0
zy
x0, y0
,
f ,
y x0 , y0
fy x0, y0 .
当函数z f x, y 在点 x0, y0 同时存在对 x, y 的偏导数, 则称函数 z f x, y 在点 x0, y0 可偏导.
yx
x
y
,
2z z
z yy
y2
y
y
.
而其中的第二与第三项称为混合偏导.

高等数学(同济第六版)课件 第四、五章 3. 微积分基本公式

高等数学(同济第六版)课件  第四、五章 3. 微积分基本公式

(sec x 1) sec xd sec x
2 2
4 0
sec4 xd sec x sec2 xd sec x
1 1 1 5 4 1 3 4 sec x 0 sec x 0 (4 2 1) ( 2 2 1) 5 3 5 3
4 0
2 sin x cos 2 x 1 ( 2) dx sin x d cos x d cos x cos x cos x cos x 3
1 (cos x )d cos x cos x 1 1 2 ( t )dt t ln t C t 2
mx n , ( p 2 4q 0) 型的积分 基本类型4: 2 x px q mx n mx n 先将分母分解因式: 2 x px q ( x a )( x b ) mx n A B 由: ( x a )( x b ) x a x b
| sin x cos x | dx | sin x cos x | dx (cos x sin x )dx (sin x cos x )dx
4 0 4 0
2 0
2 4 2 4
(sin x cos x )
4 0
( cos x sin x )
2 4
( 2 1) ( 1 2 ) 2( 2 1)
y x 2 和 x y 2 所围成的图形的面积. 例2 求由曲线
解 A
1
0
xdx x 2dx
0
1
2 x 3
31 2
1 21 2 1 1 x 0 3 3 3 3 0

同济大学高等数学上课件D全微分

同济大学高等数学上课件D全微分

机动 目录 上页 下页 返回 完毕
z
fx (x ,y ) x fy (x ,y ) y x y
lxyi m00 0,
lim
x0
y0
0
注意到 xy , 故有
z fx ( x ,y ) x fy ( x ,y ) y o()
所以函数 zf(x,y)在点 (x, y) 可微.
令 δx,δy,δz分别表示 x , y , z 的绝对误差界,
那 么
z 的绝对误差界约为
δ z fx ( x ,y )δ x fy ( x ,y )δ y
z 的相对误差界约为
zzffx((xx,,yy))δxffy((xx,,yy))δy
第十三页,共25页。
机动 目录 上页 下页 返回 完毕
特别注意
解: 由欧姆定律可知 RU244( 欧) I6
所以 R 的相对误差约为
δ R δU δ I 0.3 + 0.5 RU I
R 的绝对误差约为
δ R R = 0.032 ( 欧 )
第十六页,共25页。
机动 目录 上页 下页 返回 完毕
内容小结
1. 微分定义: (zf(x,y))
z fx(x ,y ) x fy(x ,y ) yo()
2) f(x,0)0, fx(0,0)0;同理 fy(0,0)0.
3) 当 (x,y)(0,0)时 ,
fx(x,y) ysin
1 x2 y2
x2 y
cos
(x2 y2)3
1 x2 y2
当 P ( x ,y ) 点 沿 y 射 x 趋 ( 0 ,0 线 ) 时 于 ,
lim
(x,x) (0,0)
[f(x x ,y y )f(x,y y)]

同济大学微积分ppt课件

同济大学微积分ppt课件
集合的差: A \ B x x A但x B
4
集合的运算满足如下运算率:
交换率: A B B A, A B B A
结合率: 分配率:
A B C A B C,
A B C A B C
A B C A C B C, A B C A C B C.
11
T
T(X)
X Y
12
例 设 X 1,2,3,Y 2,4,6,8,
T

X Y,

x

2
x,
则T 是 X 到 Y 的映射.
例 设 X 1,1,Y ,,
X Y
T



x

tan


2
x

则T 是 X 到 Y 的映射.
13
2. 几类重要映射
有界性 设函数 y f x 的定义域为 D, 数集 X D,
如果M 0,x X , 都有 f x M , 就称 f
在 X 上有界, 否则称为无界函数.
y
y
M
M
有界
O
x
M
O
x
M 无界
22
例 y sin x 在 , 上是有界函数,
y

tan
x

X Y,
T1


x

sin
x,
Y Z ,
T2


y

y2,
则复合映射T2 T1为
X Z,
T


x
(sin x)2.
17
三、一元函数
1.概念

同济大学高等数学ppt第一章

同济大学高等数学ppt第一章
同济大学高等数 学ppt第一章
contents
目录
• 第一章绪论 • 第一章极限论 • 第一章连续论 • 第一章导数论 • 第一章微分论 • 第一章不定积分论
01
CATALOGUE
第一章绪论
高等数学的研究对象
变量与函数
级数与广义积分 空间解析几何与向量代数
极限理论 微积分学
高等数学的发展历程
线性性质
不定积分具有线性性质,即对于 任意常数C1,C2,有 (C1+C2)*f(x)=C1*f1(x)+C2*f2( x)。
积分常数
不定积分的结果是一个函数,其 常数项为0。
区间可加性
如果在区间(a,b)上有f(x)=f(x), 则在(a,b)上,f(x)的积分等于f(x) 在(a,b)上定积分的值。
不定积分的计算方法
直接积分法
利用不定积分的定义和性质,将 已知函数进行恒等变形,从而得 到其原函数。
换元积分法
通过引入新的变量,将已知函数 进行换元,从而将复杂函数分解 为简单函数的组合,以便于计算 。
分部积分法
通过将两个函数乘积的导数与其 中一个函数求导再与另一个函数 乘积进行交换,从而得到两个函 数的积的不定积分的一种方法。
利用微分的近似性,我们可以对一些复杂的 函数进行近似计算,从而简化计算过程。例 如,当我们需要计算一个复杂函数的值时, 我们可以先找到这个函数在某一点的微分, 然后用这个微分来近似计算函数的值。
微分在近似计算中的应用
在实际的科学研究和工程设计中,经常会遇 到一些复杂的数学问题,如求解方程、优化 问题等。在这些情况下,利用微分进行近似 计算可以提供一种有效的解决问题的方法。
02
微分的近似性

同济大学微积分课件ch6_1

同济大学微积分课件ch6_1

n 维空间中.
为了方便,下面的讨论我们仅限于二维Leabharlann 间的讨论.1.邻域 设P 0
x0 , y0 R2 , 为正数,称集合
U P0 , P R 2 P, P0




x, y
x x0
2
y y0 ,
2
为点 P 0
为此我们引入 n 维空间及相应点集的概念.
我们用
R
2
x, y x, y R.
表示二维空间下点的集合.
R3
x, y, z x, y, z R.
2 n i
表示三维空间下点的集合.
n 更一般, 我们用 R 表示 n 元有序数组的集合,即
Rn
x , x ,, x x R, i 1,2,, n.

所以, lim
x , y 0,0
f x, y 0.
sin xy . 例 求极限 lim x 0 x y 2
解 因
sin xy sin xy sin xy y, 而 lim 1. x 0 x xy xy y 2
所以
sin xy sin xy lim lim y 1 2 2. x 0 x 0 x xy y 2 y 2
P x0 , y0 是 D的聚点,且 P x0 , y0 D, 如果 0 0
x , y x0 , y0
lim
f x, y f x0 , y0 ,
则称函数 f x, y 在点 P 0
连续,或称 f x, y 是 D 上的连续函数,记作
2
3 称 u f x, y, z 为二元函数, x, y, z D R .

同济大学微积分第三版课件第三章第十一节

同济大学微积分第三版课件第三章第十一节

例9 计算反常积分 解 因

x −1 5 5 x −1+1 x ∫1 x − 1dx = ∫1 x − 1 dx 5 5 1 = ∫ x − 1dx + ∫ dx 1 1 x −1
x→1
3 2 5
lim +
x
dx. 1 x −1 = ∞, 所以
5
x
5 2 28 = . = ( x − 1) + 2 x − 1 1 3 3 1
例10 计算反常积分

+∞
1 x x −1
1
dx.
注意到这既是无限区间又是无界函数的反常积分. 解 注意到这既是无限区间又是无界函数的反常积分

+∞
1
dx ∫0 t (1 + t 2 )dt x x − 1 dx = 2tdt
+∞ 0
1
x −1 = t2
+∞
2t
= 2∫
1 dt = π. 2 1+ t

0
−∞
f ( x ) dx, ∫
+∞
0
都收敛, 都收敛 则称反常积分 为
+∞

+∞
−∞
收敛, f ( x ) dx 收敛
+∞
且定义其值

−∞
f ( x ) dx = ∫
0
−∞
f ( x )dx + ∫
0
f ( x )dx.

否则称反常积分

+∞
−∞
发散的 f ( x ) dx 是发散的.
以上这三类积分都称为无穷限的反常积分 以上这三类积分都称为无穷限的反常积分. 无穷限的反常积分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1,1 1,.
以下例中函数的定义域均为实数集。
例3 符号函数 ysgnx,
1 x 0,
ysgnx来自0x 0,y
1 x 0.
ysgnx
O
x
4 321
例 取整函数 y x.
y
x -4 -3 -2 -1O -1 1 2 3 4 5
-2 -3 -4
2. 函数的几种特性
有界性 设函数 y f x 的定义域为 D , 数集 X D,
a
b
x
半开半闭区间: a,bxaxb;
a
b
x
(a,b]xaxb;
a
b
x
无穷区间:
( , ) x x .
x
[a , ) xax
a
x
(a , ) xax
a
x
注意:无穷端不能写成闭的记号
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
邻域:
设a , 是实数,且 0, 则定义点 a 的 邻域为集合:
如果M 0,x X , 都有 f x M, 就称 f
在 X 上有界, 否则称为无界函数.
y
y
M
M
O
有界
x
M
O
x
M 无界
例 y sin x 在 , 上是有界函数,
y
tan
x

2
, 2
上无界.
y
y y tanx
y sin x
1
O
x
O
x
2
2
1
例 试说明函数 f x 1 sin 1 在 x 0 的任何空心邻
X Z,
T
x
T2[T1(x)]
.
称此映射为由T 1 , T 2 构成的复合映射,记为T2 T1.
Y1 Y2
X
Z
例:设 X R ,Y 1 ,1 ,Z 0 ,1 ,
X Y,
T1
x
sin
x,
Y Z,
T2
y
y2,
则复合映射T2 T1为
X Z,
T
x
(sinx)2.
三、一元函数
1.概念
从数集D 到实数集 R 的任一映射 f 称为定义在D 上的
如果对任意的 x D , 都有
f xf x 就称 f x 为偶函数;
如果对任意的 x D , 都有
f xf x 就称 f x 为奇函数.
图形特征:
y
y f x
y
y f x
x O
x
x
偶函数
x O
xx
奇函数
周期函数 设函数 f x 的定义域为D , 如果存在数T 0 ,
使得对任意的 x D , 当xTD,总有
一元函数,通常记为 y f x.而 R R中的集合
(x,y)yf(x),xD ,
称为y f x的图象. 而数集D 则称为函数 y f x
的定义域.
注:在以后的讨论中,更多的是函数的定义域以默认的 方式给出,即定义域为使表达式有效的一切实数.
例 y 1 x, 则定义域为 ,1.
例 y 1 x1,则定义域为 1x2
U (a,)xxa
x|axa
a,a
a
a
a x
如果把邻域的中心去掉,所得到的集合称为点a 的空
心邻域:
U(a,)x0xa
x|a x a ,x a
a ,a a ,a
a
a
a x
二、映射
1. 映射的概念
设 X , Y 是两个非空集合,如果存在一个法则 T , 使得 对 X 中的每个元素x , 按此法则在 Y 中有唯一的元素y 与之对应,那么称T 为从X 到Y 的映射,记作
xx
域内是无界函数.


M
0 ,取x0
2n
1

/2
其中 n21 M2121 M2

f x02n2M
所以 f x 无界.
y y 1 sin 1 xx
O
x
单调性 设函数 f x 的定义域为D , 区间 I D ,
如果对任意的 x1, x2 I, 当 x1 x 2 时,总有
f x1f x2, 则称函数 f x 为区间 I 上的单调增加函数;
同济大学微积分课件
一、集合
1. 集合的概念 在数学中,把具有某种特定性质的事物组成的总体称 为一个集合. 集合中的事物称为该集合的.
如果元素 a 在集合 A 中,记为
a A;
否则,记为
a A.
只有有限个元素的集合称为有限集,否则称为无限集.
常用数集:
自然数集: N 0 ,1 ,2 , ,n ,
2. 几类重要映射
设 T 是 X 到 Y 的映射.
满射:若 Y TX,即yY,xX,使得 y Tx. 单射:若 x1 x2, 则必有Tx1Tx2.
一一对应:既单又满的映射称为一一对应.
例 在前面的两例中,例2是一一对应,而例1则不是.
3. 逆映射与复合映射
逆映射:设T 是X 到Y 的一一映射,则对Y 中任一元素y ,
整数集: 有理数集: 复数集:
Z 0 , 1 , 2 , , n ,
Qqp
pZ,qZ*
C a b ia ,b R ,i2 1
2.集合的运算
设 A , B 是两个集合,由此定义如下几个集合:
集合的交: AB xx A 且 x B
集合的并: AB xx A 或 x B
集合的差: A \Bxx A 但 x B
可以确定X 中的唯一元素 x , 满足 Tx y, 称此对应
关系为映射T 的逆映射,记为T 1 .


X 1 ,2 ,3 ,Y 2 ,4 ,6 ,T
X Y
x
2x
则:
Y X
T
1
y
y 2
复合映射:设有映射 T 1:X Y 1 ,T 2:Y 2 Z ,其中 Y1 Y2 , 由此可以确定一个从 X 到 Z 的映射 T ,
如果 x1 x 2 时,总有
f x1f x2, 则称函数 f x 为区间 I 上的单调减少函数.
图形特征:
y f x2
y f x
y
f x1
y f x
f x1
O
x1
x2
单调增加函数图形
f x2
x
O
x1
x2
x
单调减少函数图形
奇偶性 设函数 f x 的定义域为 D 关于原点对称,
集合的运算满足如下运算率:
交换率: A B B A ,A B B A
结合率:
AB C ABC ,
AB C ABC
分配率:
A B C A C B C , A B C A C B C .
3.区间和邻域
设 a , b 是实数,且 a b ,
开区间:
a,bxaxb;
闭区间:
a
b
x
a,bxaxb;
T:XY.
而元素 y 称为 x 的象,记作T x , 即
y T(x).
T
T (X )
X Y
例 设 X 1 ,2 ,3 ,Y 2 ,4 ,6 ,8 ,
X Y,
T
x
2x,
则T 是 X 到 Y 的映射.
例 设 X 1 ,1 ,Y , ,
X Y
T
x
tan
2
x
则T 是 X 到 Y 的映射.
相关文档
最新文档