同济大学微积分课件 PPT
合集下载
大学微积分课件(PPT幻灯片版)pptx
高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关
系
连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。
同济大学微积分第三版课件第二章第七节
3!
3! 5!
相应的误差分别为
R4x5 1!x5,R6x7 1!x7.
y
P1 x x
P5xx31!x351!x5
y sin x
O
x
P3
x
x
1 3!
x3
利用Mathematica可以做出函数y sin x与其近似多 项式的图形. 从图中可以看到, y sin x与其泰勒多项
式 Pn x 随着 n 的增大而越来越贴近.
y P1 x
y P5 x y P13 x y P9 x y P17 x
y sin x
y P3 x y P11 x
y P19 x
y P7 x
y P15 x
常见函数的麦克劳林展开式:
co sx11x21x4 2 ! 4 !
2 m 1 m !x2mR 2m 1x,
其中
R2m1xcos2 xm m 2!1πx2m2.
f nn!x0xx0n.
⑶
上式称为函数 f x 的 n 阶泰勒多项式.
例1 求 f x ex 在 x 0 处的1阶和2阶泰勒多项式.
解 因 f0 1 ,f0 1 ,f0 1
故而1阶泰勒多项式为:
P 1 x f0 f0 x 1 x .
2阶泰勒多项式为:
P 2 x f0 f0 x f2 0 x 2 1 x x 2 2 .
lim x3
lim3!x3
, 6
故原极限为
1
lim
x0
sin x
x
x2
1
e 6.
知识回顾 Knowledge Review
x1 x1
y
x
1
12
,
y21,y22,
同济大学微积分第三版课件第二章第六节
曲线有水平切线. 若记点 C y
的横坐标为 , 则有
C
y f x
f ( ) 0.
A
B
Oa
bx
进一步观察, 当 f a f b 时, 又看到在曲线弧 AB
上, 至少有一点 C, 弧 AB在该点处的切线 CT 平行于弦
AB, 又切线CT 的斜率是 f (b) f (a) , 以 记C 的横坐
例3 设函数 y x 4 , 画出曲线在 0,100,10中的图
x
形, 在同一平面上作出过点 1,5,8,8.5的割线, 并作
相应的切线.
割线的斜率为: k 0.5. 所以, 割线方程:
y 0.5x 4.5. 为求切点的x 坐标, 求解方程:
4 1 0.5.
π 2
上连续,
可导,
且
g x 1 sin x 0 x 0, π / 2, 即满足定理的条
件, 现求 0,π / 2, 使得
f π / 2 f 0 f g π / 2 g 0 g .
因
f g
π π
/ /
2 2
当 x 0 时,
f (x0 x) f (x0 ) 0; x
由函数 f (x) 在点 x0处的可导性及极限的保号性, 得
f (x0 )
f(x0 )
lim
x 0
f (x0 x) x
f (x0 ) 0,
f (x0)
f(x0 )
lim
x 0
f ( ) 0.
证 因 f Ca,b,故f x必在a,b上取到最大值 M 与 最小值 m.若 M m, f C a,b, 有
高等数学同济大学第六版1-01-函数课件
x cos y
y arccos x
反正弦函数 y arcsin x
证明 x 1,1 , arcsin x arccos x
y arcsin x
2
记 arcsin x [ , ], 2 2 arccos x [0, ],
x [1,1], y arcsin x [
0, x a H ( x) 1, x a
1
o a x
Heaviside 是一位英国的电子工程师,他 用 Heaviside 函数来描述事物由量变到质 变的一个过程与状态。
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数.
例如,
Байду номын сангаас
2 x 1, f ( x) 2 x 1,
, ] cos 2 2
1 sin 2 1 x 2 ,
sin 1 cos 2 1 x 2 , x 2 1 x 2 1,
反余弦函数 y arccos x
sin( ) sin cos cos sin
函 数
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。 微积分的研究是以极限的思想为基 本思想,以极限的方法为基本方法—— 极限是基本工具。 但根本上,微积分这一学说的诞生 的基础是——笛卡儿的解析几何。
2 2
y x2 1
x0 x0
y 2x 1
函数的几何特性
1.函数的有界性:
同济大学微积分课件ch.ppt
例 求函数z x2 y3 2xy 在点1,2 处的导数.
解 zx 2x 2y, zy 3y2 2x,
所以 zx 1,2 6, zy 1,2 4.
x 例 设 z arctan y ,求 zx , zy.
解 由一元复合函数的求导法则得
11 y
zx
1
x 2
y
y
x2
, y2
zy
1
2z
a2
2z .
y2
x2
证
z cos x ay,
x
2z x2
sin
x
ay ,
z a cos x ay,y2z x2来自a2sin x
ay .
从而有
2z
a2
2z .
y2
x2
例 验证函数 z ln x2 y2 满足拉普拉斯方程
2z 2z 0.
x2 y2
证
z
x
x2
x
y2
,
2z x2
lim y z lim f x0, y0 y f x0, y0
y y 0
y 0
y
存在,则称此极限为函数z f x, y 在点 x0, y0 对 y
的偏导数,记作
z
, y x0 , y0
zy
x0, y0
,
f ,
y x0 , y0
fy x0, y0 .
当函数z f x, y 在点 x0, y0 同时存在对 x, y 的偏导数, 则称函数 z f x, y 在点 x0, y0 可偏导.
yx
x
y
,
2z z
z yy
y2
y
y
.
而其中的第二与第三项称为混合偏导.
高等数学(同济第六版)课件 第四、五章 3. 微积分基本公式
(sec x 1) sec xd sec x
2 2
4 0
sec4 xd sec x sec2 xd sec x
1 1 1 5 4 1 3 4 sec x 0 sec x 0 (4 2 1) ( 2 2 1) 5 3 5 3
4 0
2 sin x cos 2 x 1 ( 2) dx sin x d cos x d cos x cos x cos x cos x 3
1 (cos x )d cos x cos x 1 1 2 ( t )dt t ln t C t 2
mx n , ( p 2 4q 0) 型的积分 基本类型4: 2 x px q mx n mx n 先将分母分解因式: 2 x px q ( x a )( x b ) mx n A B 由: ( x a )( x b ) x a x b
| sin x cos x | dx | sin x cos x | dx (cos x sin x )dx (sin x cos x )dx
4 0 4 0
2 0
2 4 2 4
(sin x cos x )
4 0
( cos x sin x )
2 4
( 2 1) ( 1 2 ) 2( 2 1)
y x 2 和 x y 2 所围成的图形的面积. 例2 求由曲线
解 A
1
0
xdx x 2dx
0
1
2 x 3
31 2
1 21 2 1 1 x 0 3 3 3 3 0
同济大学高等数学上课件D全微分
机动 目录 上页 下页 返回 完毕
z
fx (x ,y ) x fy (x ,y ) y x y
lxyi m00 0,
lim
x0
y0
0
注意到 xy , 故有
z fx ( x ,y ) x fy ( x ,y ) y o()
所以函数 zf(x,y)在点 (x, y) 可微.
令 δx,δy,δz分别表示 x , y , z 的绝对误差界,
那 么
z 的绝对误差界约为
δ z fx ( x ,y )δ x fy ( x ,y )δ y
z 的相对误差界约为
zzffx((xx,,yy))δxffy((xx,,yy))δy
第十三页,共25页。
机动 目录 上页 下页 返回 完毕
特别注意
解: 由欧姆定律可知 RU244( 欧) I6
所以 R 的相对误差约为
δ R δU δ I 0.3 + 0.5 RU I
R 的绝对误差约为
δ R R = 0.032 ( 欧 )
第十六页,共25页。
机动 目录 上页 下页 返回 完毕
内容小结
1. 微分定义: (zf(x,y))
z fx(x ,y ) x fy(x ,y ) yo()
2) f(x,0)0, fx(0,0)0;同理 fy(0,0)0.
3) 当 (x,y)(0,0)时 ,
fx(x,y) ysin
1 x2 y2
x2 y
cos
(x2 y2)3
1 x2 y2
当 P ( x ,y ) 点 沿 y 射 x 趋 ( 0 ,0 线 ) 时 于 ,
lim
(x,x) (0,0)
[f(x x ,y y )f(x,y y)]
同济大学微积分ppt课件
集合的差: A \ B x x A但x B
4
集合的运算满足如下运算率:
交换率: A B B A, A B B A
结合率: 分配率:
A B C A B C,
A B C A B C
A B C A C B C, A B C A C B C.
11
T
T(X)
X Y
12
例 设 X 1,2,3,Y 2,4,6,8,
T
X Y,
x
2
x,
则T 是 X 到 Y 的映射.
例 设 X 1,1,Y ,,
X Y
T
x
tan
2
x
则T 是 X 到 Y 的映射.
13
2. 几类重要映射
有界性 设函数 y f x 的定义域为 D, 数集 X D,
如果M 0,x X , 都有 f x M , 就称 f
在 X 上有界, 否则称为无界函数.
y
y
M
M
有界
O
x
M
O
x
M 无界
22
例 y sin x 在 , 上是有界函数,
y
tan
x
在
X Y,
T1
x
sin
x,
Y Z ,
T2
y
y2,
则复合映射T2 T1为
X Z,
T
x
(sin x)2.
17
三、一元函数
1.概念
4
集合的运算满足如下运算率:
交换率: A B B A, A B B A
结合率: 分配率:
A B C A B C,
A B C A B C
A B C A C B C, A B C A C B C.
11
T
T(X)
X Y
12
例 设 X 1,2,3,Y 2,4,6,8,
T
X Y,
x
2
x,
则T 是 X 到 Y 的映射.
例 设 X 1,1,Y ,,
X Y
T
x
tan
2
x
则T 是 X 到 Y 的映射.
13
2. 几类重要映射
有界性 设函数 y f x 的定义域为 D, 数集 X D,
如果M 0,x X , 都有 f x M , 就称 f
在 X 上有界, 否则称为无界函数.
y
y
M
M
有界
O
x
M
O
x
M 无界
22
例 y sin x 在 , 上是有界函数,
y
tan
x
在
X Y,
T1
x
sin
x,
Y Z ,
T2
y
y2,
则复合映射T2 T1为
X Z,
T
x
(sin x)2.
17
三、一元函数
1.概念
同济大学高等数学ppt第一章
同济大学高等数 学ppt第一章
contents
目录
• 第一章绪论 • 第一章极限论 • 第一章连续论 • 第一章导数论 • 第一章微分论 • 第一章不定积分论
01
CATALOGUE
第一章绪论
高等数学的研究对象
变量与函数
级数与广义积分 空间解析几何与向量代数
极限理论 微积分学
高等数学的发展历程
线性性质
不定积分具有线性性质,即对于 任意常数C1,C2,有 (C1+C2)*f(x)=C1*f1(x)+C2*f2( x)。
积分常数
不定积分的结果是一个函数,其 常数项为0。
区间可加性
如果在区间(a,b)上有f(x)=f(x), 则在(a,b)上,f(x)的积分等于f(x) 在(a,b)上定积分的值。
不定积分的计算方法
直接积分法
利用不定积分的定义和性质,将 已知函数进行恒等变形,从而得 到其原函数。
换元积分法
通过引入新的变量,将已知函数 进行换元,从而将复杂函数分解 为简单函数的组合,以便于计算 。
分部积分法
通过将两个函数乘积的导数与其 中一个函数求导再与另一个函数 乘积进行交换,从而得到两个函 数的积的不定积分的一种方法。
利用微分的近似性,我们可以对一些复杂的 函数进行近似计算,从而简化计算过程。例 如,当我们需要计算一个复杂函数的值时, 我们可以先找到这个函数在某一点的微分, 然后用这个微分来近似计算函数的值。
微分在近似计算中的应用
在实际的科学研究和工程设计中,经常会遇 到一些复杂的数学问题,如求解方程、优化 问题等。在这些情况下,利用微分进行近似 计算可以提供一种有效的解决问题的方法。
02
微分的近似性
contents
目录
• 第一章绪论 • 第一章极限论 • 第一章连续论 • 第一章导数论 • 第一章微分论 • 第一章不定积分论
01
CATALOGUE
第一章绪论
高等数学的研究对象
变量与函数
级数与广义积分 空间解析几何与向量代数
极限理论 微积分学
高等数学的发展历程
线性性质
不定积分具有线性性质,即对于 任意常数C1,C2,有 (C1+C2)*f(x)=C1*f1(x)+C2*f2( x)。
积分常数
不定积分的结果是一个函数,其 常数项为0。
区间可加性
如果在区间(a,b)上有f(x)=f(x), 则在(a,b)上,f(x)的积分等于f(x) 在(a,b)上定积分的值。
不定积分的计算方法
直接积分法
利用不定积分的定义和性质,将 已知函数进行恒等变形,从而得 到其原函数。
换元积分法
通过引入新的变量,将已知函数 进行换元,从而将复杂函数分解 为简单函数的组合,以便于计算 。
分部积分法
通过将两个函数乘积的导数与其 中一个函数求导再与另一个函数 乘积进行交换,从而得到两个函 数的积的不定积分的一种方法。
利用微分的近似性,我们可以对一些复杂的 函数进行近似计算,从而简化计算过程。例 如,当我们需要计算一个复杂函数的值时, 我们可以先找到这个函数在某一点的微分, 然后用这个微分来近似计算函数的值。
微分在近似计算中的应用
在实际的科学研究和工程设计中,经常会遇 到一些复杂的数学问题,如求解方程、优化 问题等。在这些情况下,利用微分进行近似 计算可以提供一种有效的解决问题的方法。
02
微分的近似性
同济大学微积分课件ch6_1
n 维空间中.
为了方便,下面的讨论我们仅限于二维Leabharlann 间的讨论.1.邻域 设P 0
x0 , y0 R2 , 为正数,称集合
U P0 , P R 2 P, P0
x, y
x x0
2
y y0 ,
2
为点 P 0
为此我们引入 n 维空间及相应点集的概念.
我们用
R
2
x, y x, y R.
表示二维空间下点的集合.
R3
x, y, z x, y, z R.
2 n i
表示三维空间下点的集合.
n 更一般, 我们用 R 表示 n 元有序数组的集合,即
Rn
x , x ,, x x R, i 1,2,, n.
所以, lim
x , y 0,0
f x, y 0.
sin xy . 例 求极限 lim x 0 x y 2
解 因
sin xy sin xy sin xy y, 而 lim 1. x 0 x xy xy y 2
所以
sin xy sin xy lim lim y 1 2 2. x 0 x 0 x xy y 2 y 2
P x0 , y0 是 D的聚点,且 P x0 , y0 D, 如果 0 0
x , y x0 , y0
lim
f x, y f x0 , y0 ,
则称函数 f x, y 在点 P 0
连续,或称 f x, y 是 D 上的连续函数,记作
2
3 称 u f x, y, z 为二元函数, x, y, z D R .
同济大学微积分第三版课件第三章第十一节
例9 计算反常积分 解 因
∫
x −1 5 5 x −1+1 x ∫1 x − 1dx = ∫1 x − 1 dx 5 5 1 = ∫ x − 1dx + ∫ dx 1 1 x −1
x→1
3 2 5
lim +
x
dx. 1 x −1 = ∞, 所以
5
x
5 2 28 = . = ( x − 1) + 2 x − 1 1 3 3 1
例10 计算反常积分
∫
+∞
1 x x −1
1
dx.
注意到这既是无限区间又是无界函数的反常积分. 解 注意到这既是无限区间又是无界函数的反常积分
∫
+∞
1
dx ∫0 t (1 + t 2 )dt x x − 1 dx = 2tdt
+∞ 0
1
x −1 = t2
+∞
2t
= 2∫
1 dt = π. 2 1+ t
∫
0
−∞
f ( x ) dx, ∫
+∞
0
都收敛, 都收敛 则称反常积分 为
+∞
∫
+∞
−∞
收敛, f ( x ) dx 收敛
+∞
且定义其值
∫
−∞
f ( x ) dx = ∫
0
−∞
f ( x )dx + ∫
0
f ( x )dx.
⑶
否则称反常积分
∫
+∞
−∞
发散的 f ( x ) dx 是发散的.
以上这三类积分都称为无穷限的反常积分 以上这三类积分都称为无穷限的反常积分. 无穷限的反常积分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1,1 1,.
以下例中函数的定义域均为实数集。
例3 符号函数 ysgnx,
1 x 0,
ysgnx来自0x 0,y
1 x 0.
ysgnx
O
x
4 321
例 取整函数 y x.
y
x -4 -3 -2 -1O -1 1 2 3 4 5
-2 -3 -4
2. 函数的几种特性
有界性 设函数 y f x 的定义域为 D , 数集 X D,
a
b
x
半开半闭区间: a,bxaxb;
a
b
x
(a,b]xaxb;
a
b
x
无穷区间:
( , ) x x .
x
[a , ) xax
a
x
(a , ) xax
a
x
注意:无穷端不能写成闭的记号
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
邻域:
设a , 是实数,且 0, 则定义点 a 的 邻域为集合:
如果M 0,x X , 都有 f x M, 就称 f
在 X 上有界, 否则称为无界函数.
y
y
M
M
O
有界
x
M
O
x
M 无界
例 y sin x 在 , 上是有界函数,
y
tan
x
在
2
, 2
上无界.
y
y y tanx
y sin x
1
O
x
O
x
2
2
1
例 试说明函数 f x 1 sin 1 在 x 0 的任何空心邻
X Z,
T
x
T2[T1(x)]
.
称此映射为由T 1 , T 2 构成的复合映射,记为T2 T1.
Y1 Y2
X
Z
例:设 X R ,Y 1 ,1 ,Z 0 ,1 ,
X Y,
T1
x
sin
x,
Y Z,
T2
y
y2,
则复合映射T2 T1为
X Z,
T
x
(sinx)2.
三、一元函数
1.概念
从数集D 到实数集 R 的任一映射 f 称为定义在D 上的
如果对任意的 x D , 都有
f xf x 就称 f x 为偶函数;
如果对任意的 x D , 都有
f xf x 就称 f x 为奇函数.
图形特征:
y
y f x
y
y f x
x O
x
x
偶函数
x O
xx
奇函数
周期函数 设函数 f x 的定义域为D , 如果存在数T 0 ,
使得对任意的 x D , 当xTD,总有
一元函数,通常记为 y f x.而 R R中的集合
(x,y)yf(x),xD ,
称为y f x的图象. 而数集D 则称为函数 y f x
的定义域.
注:在以后的讨论中,更多的是函数的定义域以默认的 方式给出,即定义域为使表达式有效的一切实数.
例 y 1 x, 则定义域为 ,1.
例 y 1 x1,则定义域为 1x2
U (a,)xxa
x|axa
a,a
a
a
a x
如果把邻域的中心去掉,所得到的集合称为点a 的空
心邻域:
U(a,)x0xa
x|a x a ,x a
a ,a a ,a
a
a
a x
二、映射
1. 映射的概念
设 X , Y 是两个非空集合,如果存在一个法则 T , 使得 对 X 中的每个元素x , 按此法则在 Y 中有唯一的元素y 与之对应,那么称T 为从X 到Y 的映射,记作
xx
域内是无界函数.
解
设
M
0 ,取x0
2n
1
,
/2
其中 n21 M2121 M2
则
f x02n2M
所以 f x 无界.
y y 1 sin 1 xx
O
x
单调性 设函数 f x 的定义域为D , 区间 I D ,
如果对任意的 x1, x2 I, 当 x1 x 2 时,总有
f x1f x2, 则称函数 f x 为区间 I 上的单调增加函数;
同济大学微积分课件
一、集合
1. 集合的概念 在数学中,把具有某种特定性质的事物组成的总体称 为一个集合. 集合中的事物称为该集合的.
如果元素 a 在集合 A 中,记为
a A;
否则,记为
a A.
只有有限个元素的集合称为有限集,否则称为无限集.
常用数集:
自然数集: N 0 ,1 ,2 , ,n ,
2. 几类重要映射
设 T 是 X 到 Y 的映射.
满射:若 Y TX,即yY,xX,使得 y Tx. 单射:若 x1 x2, 则必有Tx1Tx2.
一一对应:既单又满的映射称为一一对应.
例 在前面的两例中,例2是一一对应,而例1则不是.
3. 逆映射与复合映射
逆映射:设T 是X 到Y 的一一映射,则对Y 中任一元素y ,
整数集: 有理数集: 复数集:
Z 0 , 1 , 2 , , n ,
Qqp
pZ,qZ*
C a b ia ,b R ,i2 1
2.集合的运算
设 A , B 是两个集合,由此定义如下几个集合:
集合的交: AB xx A 且 x B
集合的并: AB xx A 或 x B
集合的差: A \Bxx A 但 x B
可以确定X 中的唯一元素 x , 满足 Tx y, 称此对应
关系为映射T 的逆映射,记为T 1 .
例
设
X 1 ,2 ,3 ,Y 2 ,4 ,6 ,T
X Y
x
2x
则:
Y X
T
1
y
y 2
复合映射:设有映射 T 1:X Y 1 ,T 2:Y 2 Z ,其中 Y1 Y2 , 由此可以确定一个从 X 到 Z 的映射 T ,
如果 x1 x 2 时,总有
f x1f x2, 则称函数 f x 为区间 I 上的单调减少函数.
图形特征:
y f x2
y f x
y
f x1
y f x
f x1
O
x1
x2
单调增加函数图形
f x2
x
O
x1
x2
x
单调减少函数图形
奇偶性 设函数 f x 的定义域为 D 关于原点对称,
集合的运算满足如下运算率:
交换率: A B B A ,A B B A
结合率:
AB C ABC ,
AB C ABC
分配率:
A B C A C B C , A B C A C B C .
3.区间和邻域
设 a , b 是实数,且 a b ,
开区间:
a,bxaxb;
闭区间:
a
b
x
a,bxaxb;
T:XY.
而元素 y 称为 x 的象,记作T x , 即
y T(x).
T
T (X )
X Y
例 设 X 1 ,2 ,3 ,Y 2 ,4 ,6 ,8 ,
X Y,
T
x
2x,
则T 是 X 到 Y 的映射.
例 设 X 1 ,1 ,Y , ,
X Y
T
x
tan
2
x
则T 是 X 到 Y 的映射.
以下例中函数的定义域均为实数集。
例3 符号函数 ysgnx,
1 x 0,
ysgnx来自0x 0,y
1 x 0.
ysgnx
O
x
4 321
例 取整函数 y x.
y
x -4 -3 -2 -1O -1 1 2 3 4 5
-2 -3 -4
2. 函数的几种特性
有界性 设函数 y f x 的定义域为 D , 数集 X D,
a
b
x
半开半闭区间: a,bxaxb;
a
b
x
(a,b]xaxb;
a
b
x
无穷区间:
( , ) x x .
x
[a , ) xax
a
x
(a , ) xax
a
x
注意:无穷端不能写成闭的记号
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
邻域:
设a , 是实数,且 0, 则定义点 a 的 邻域为集合:
如果M 0,x X , 都有 f x M, 就称 f
在 X 上有界, 否则称为无界函数.
y
y
M
M
O
有界
x
M
O
x
M 无界
例 y sin x 在 , 上是有界函数,
y
tan
x
在
2
, 2
上无界.
y
y y tanx
y sin x
1
O
x
O
x
2
2
1
例 试说明函数 f x 1 sin 1 在 x 0 的任何空心邻
X Z,
T
x
T2[T1(x)]
.
称此映射为由T 1 , T 2 构成的复合映射,记为T2 T1.
Y1 Y2
X
Z
例:设 X R ,Y 1 ,1 ,Z 0 ,1 ,
X Y,
T1
x
sin
x,
Y Z,
T2
y
y2,
则复合映射T2 T1为
X Z,
T
x
(sinx)2.
三、一元函数
1.概念
从数集D 到实数集 R 的任一映射 f 称为定义在D 上的
如果对任意的 x D , 都有
f xf x 就称 f x 为偶函数;
如果对任意的 x D , 都有
f xf x 就称 f x 为奇函数.
图形特征:
y
y f x
y
y f x
x O
x
x
偶函数
x O
xx
奇函数
周期函数 设函数 f x 的定义域为D , 如果存在数T 0 ,
使得对任意的 x D , 当xTD,总有
一元函数,通常记为 y f x.而 R R中的集合
(x,y)yf(x),xD ,
称为y f x的图象. 而数集D 则称为函数 y f x
的定义域.
注:在以后的讨论中,更多的是函数的定义域以默认的 方式给出,即定义域为使表达式有效的一切实数.
例 y 1 x, 则定义域为 ,1.
例 y 1 x1,则定义域为 1x2
U (a,)xxa
x|axa
a,a
a
a
a x
如果把邻域的中心去掉,所得到的集合称为点a 的空
心邻域:
U(a,)x0xa
x|a x a ,x a
a ,a a ,a
a
a
a x
二、映射
1. 映射的概念
设 X , Y 是两个非空集合,如果存在一个法则 T , 使得 对 X 中的每个元素x , 按此法则在 Y 中有唯一的元素y 与之对应,那么称T 为从X 到Y 的映射,记作
xx
域内是无界函数.
解
设
M
0 ,取x0
2n
1
,
/2
其中 n21 M2121 M2
则
f x02n2M
所以 f x 无界.
y y 1 sin 1 xx
O
x
单调性 设函数 f x 的定义域为D , 区间 I D ,
如果对任意的 x1, x2 I, 当 x1 x 2 时,总有
f x1f x2, 则称函数 f x 为区间 I 上的单调增加函数;
同济大学微积分课件
一、集合
1. 集合的概念 在数学中,把具有某种特定性质的事物组成的总体称 为一个集合. 集合中的事物称为该集合的.
如果元素 a 在集合 A 中,记为
a A;
否则,记为
a A.
只有有限个元素的集合称为有限集,否则称为无限集.
常用数集:
自然数集: N 0 ,1 ,2 , ,n ,
2. 几类重要映射
设 T 是 X 到 Y 的映射.
满射:若 Y TX,即yY,xX,使得 y Tx. 单射:若 x1 x2, 则必有Tx1Tx2.
一一对应:既单又满的映射称为一一对应.
例 在前面的两例中,例2是一一对应,而例1则不是.
3. 逆映射与复合映射
逆映射:设T 是X 到Y 的一一映射,则对Y 中任一元素y ,
整数集: 有理数集: 复数集:
Z 0 , 1 , 2 , , n ,
Qqp
pZ,qZ*
C a b ia ,b R ,i2 1
2.集合的运算
设 A , B 是两个集合,由此定义如下几个集合:
集合的交: AB xx A 且 x B
集合的并: AB xx A 或 x B
集合的差: A \Bxx A 但 x B
可以确定X 中的唯一元素 x , 满足 Tx y, 称此对应
关系为映射T 的逆映射,记为T 1 .
例
设
X 1 ,2 ,3 ,Y 2 ,4 ,6 ,T
X Y
x
2x
则:
Y X
T
1
y
y 2
复合映射:设有映射 T 1:X Y 1 ,T 2:Y 2 Z ,其中 Y1 Y2 , 由此可以确定一个从 X 到 Z 的映射 T ,
如果 x1 x 2 时,总有
f x1f x2, 则称函数 f x 为区间 I 上的单调减少函数.
图形特征:
y f x2
y f x
y
f x1
y f x
f x1
O
x1
x2
单调增加函数图形
f x2
x
O
x1
x2
x
单调减少函数图形
奇偶性 设函数 f x 的定义域为 D 关于原点对称,
集合的运算满足如下运算率:
交换率: A B B A ,A B B A
结合率:
AB C ABC ,
AB C ABC
分配率:
A B C A C B C , A B C A C B C .
3.区间和邻域
设 a , b 是实数,且 a b ,
开区间:
a,bxaxb;
闭区间:
a
b
x
a,bxaxb;
T:XY.
而元素 y 称为 x 的象,记作T x , 即
y T(x).
T
T (X )
X Y
例 设 X 1 ,2 ,3 ,Y 2 ,4 ,6 ,8 ,
X Y,
T
x
2x,
则T 是 X 到 Y 的映射.
例 设 X 1 ,1 ,Y , ,
X Y
T
x
tan
2
x
则T 是 X 到 Y 的映射.