电子科技大学随机信 分析期末考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子科技大学20 -20 学年第 学期期 考试 卷
课程名称:_________ 考试形式: 考试日期: 20 年 月 日 考试时长:____分钟 课程成绩构成:平时 10 %, 期中 10 %, 实验 %, 期末 80 % 本试卷试题由___2__部分构成,共_____页。
一、填空题(共20分,共 10
题,每题2 分)
0()cos(),X t A t t ω=+Φ-∞<<∞,其中0ω为常数,A Φ和是相互独立的随机变量,
[]01A ∈,且均匀分布,Φ在[]02π,上均匀分布,则()X t 的数学期望为: 0
2. 已知平稳随机信号()X t 的自相关函数为2()2X R e ττ-=,请写出()X t 和(2)X t +的协方差12-e
3. 若随机过程()X t 的相关时间为1τ,()Y t 的相关时间为2τ,12ττ>,则()X t 比()Y t 的
相关性要__大___,()X t 的起伏特性比()Y t 的要__小___。 4. 高斯随机过程的严平稳与___宽平稳_____等价。
5. 窄带高斯过程的包络服从___瑞利___分布,相位服从___均匀___分布,且在同一时刻其包络和
相位是___互相独立___的随机变量。
6. 实平稳随机过程的自相关函数是___偶____(奇、偶、非奇非偶)函数。
7. 设)(t Y 是一均值为零的窄带平稳随机过程,其单边功率谱密度为)(ωY F ,且0()Y F ωω-为一
偶函数,则低频过程)()(t A t A s c 和是___正交___。
二、计算题(共80分)
X 和Y 的联合概率密度函数为(,)=XY f x y axy ,a 是常数,其中0,1x y ≤≤。求:
1) a ;
2) X 特征函数;
3) 试讨论随机变量X 和Y 是否统计独立。
解:因为联合概率密度函数需要满足归一性,即 (2分)
所以4A = (1分)
X 的边缘概率密度函数:
1
()4201X f x xydy x x ==≤≤⎰ (2分)
所以特征函数
容易得1
()4201Y f y xydx y y ==≤≤⎰
则有 (,)()()XY X Y f x y f x f y = (2分) 因此X 和Y 是统计独立。 (2分)
2. (12分)设随机过程()0xt X t e t -=<<∞,其中x 在(]0,2π均匀分布,求: 1) 求均值()X m t 和自相关函数(,)X R t t τ+; 2) 判断是否广义平稳; 解:
因为()X m t 和(,)X R t t τ+均随时间变化,所以不是广义平稳;(2)L L L L 分
3. (12分)设一个积分电路的输入与输出之间满足关系式:()()t t T
Y t X u du -=⎰
其中T 为积分时间常数,
如输入随机过程()X t 是平稳随机过程,且已知其功率谱密度为()X S ω,求()Y t 的功率谱和自相关函数
解:很显然,()Y t 是平稳随机过程,故有:
4. (16分)已知零均值的窄带高斯随机过程00()()cos ()sin X t a t t b t t ωω=-,其中0100ωπ=,且已知()
X t 的功率谱如图所示,求: 1) 自相关函数()a R τ和()b R τ; 2) ()a t 和()b t 的一维联合概率密度; 解:
因为()X t 是零均值的高斯随机过程,因此有: (2分)
00()()
10()()0
x x a b S S S S ωωωωωπ
ωω⎧-++≤⎪==⎨
⎪⎩其它
(2分)
所以3
10()()0
a b S S ωπ
ωω⎧≤⎪=⎨
⎪⎩=其它
(2分)
因此sin(10)
()()3
a b R R πτττπτ
== (2分)
因为()a t 和()b t 都为零均值的高斯随机过程,且在同一时刻是独立的,所以只要求出其方差,即可得到其一维联合概率密度: (3分)
显然有和22
30a b σσ== (2分)
所以:
22
60
(,;,)(;)(;)60a b ab a b e
f a b t t f a t f b t π
+-==
(3分)
5. (12分)一数学期望为零的平稳高斯白噪声()N t ,功率谱密度为
0/2N ,经过如图所示的系统,输出为()Y t ,求输出过程的相
关函数。
解:令1/RC α=,得RC 积分电路的功率传输函数为:
2
2
2
2
()H αωαω=+ (2分) 则()X t 的功率谱密度为:
20
2
2()2X N S αωαω=+ (2分) 得()X t 的自相关函数为:
()4
X N R e
ατ
αω-=
(2分)
最后得:
6. (12分)证明平稳随机过程()X t 希尔伯特变换^
()X t 的自相关函数^
()()X X R R ττ=。 证明:平稳随机过程进行希尔伯特变换后仍为平稳随机过程,因此有: 证毕