最新人教版九年级上学期解一元二次方程(第1课时)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 + 6x = -4 x2 + 6x + 9 = -4 + 9
2 (x + 3) =5
移项 两边加 9,左边 配成完全平方式 左边写成完全 平方形式 降次
x3 5 x 3 5 ,或 x 3 5
解一次方程
x1 3 5 , x2 3 5
4.归纳小结
(1)用配方法解一元二次方程的基本思路是什么? 2 把方程配方为(x + n) = p 的形式,运用开平方法, 降次求解. (2)配方法解一元二次方程的一般步骤有哪些? (3)在配方法解一元二次方程的过程中应该注意 哪些问题?
5.布置作业
1.教科书第 6 页 练习;第 9 页 练习. 2.思考:利用本节课的知识,试解关于 x 的方程 x 2 + px + q =0.
(当 p≥0 时)
平方根 的意义ቤተ መጻሕፍቲ ባይዱ
降次
xn p
3.归纳配方法解方程的步骤
(1)用配方法解一元二次方程的基本思路是什么? 2 把方程配方为(x + n) = p 的形式,运用开平方法, 降次求解. (2)配方法解一元二次方程的一般步骤有哪些?
3.归纳配方法解方程的步骤
解一元二 次方程的一般 步骤: x2 + 6x + 4 = 0
③ 6 2 2 两边加 9 9,即( )=3 =9 2 x2 + 6x + 9 = -4 + 9
2 (x + 3 ) =5
x2 + 6x = -4
一般地,当二次项系数为 1 时,二次式加上一次项 系数一半的平方,二次式就可以写成完全平方的形式.
2.推导求根公式
议一议:结合方程①的解答过程,说出解一般二次 项系数为 1 的一元二次方程的基本思路是什么?具体步 骤是什么? 配方
通过 配成完全平方形式 来解一元二次方程的方法, 叫做配方法. 具体步骤: (1)移项; (2)在方程两边都加上一次项系数一半的平方.
3.归纳配方法解方程的步骤
问题5 通过解方程 x 2 + 6x + 4=0 ,请归纳这类方程 是怎样解的?
2 结构特征:方程可化成 (x + n) = p 的形式,
九年级
上册
21.2 解一元二次方程(第1课时)
课件说明
• 学习目标: 1.会用直接开平方法解一元二次方程,理解配方的 基本过程,会用配方法解一元二次方程; 2.在探究如何对比完全平方公式进行配方的过程中, 进一步加深对化归的数学思想的理解. • 学习重点: 理解配方法及用配方法解一元二次方程.
1.创设情境,导入新知
(当 p≥0 时) 平方根 的意义 降次
x p
问题3
2 解方程:(x + 3) = 5.
2.推导求根公式
问题4 怎样解方程 x 2 + 6x + 4 = 0 ①?
x 2 + 6x + 9 = 5
2 (x + 3) =5
②
2.推导求根公式
试一试:与方程 x2 + 6x + 9 = 5 ② 比较, 怎样解方程 x2 + 6x + 4 = 0 ① ? 怎样把方 解: 移项 程①化成方程
问题1 在设计人体雕像时,使雕像的上部(腰以 上)与下部(腰以下)的高度比,等于下部与全部(全 身)的高度比,可以增加视觉美感.按此比例,如果雕 像的高为 2 m,那么它的下部应设计为多高? A 解:设雕像的下部高为 x m, 据题意,列方程得 C x 2 =2 (2 - x) , 整理得 x 2 + 2x - 4 = 0.
B
1.创设情境,导入新知
你会解哪些方程,如何解的? 二元、三元 一次方程组 消元
一元一次方程 思考:如何解一元二次方程. 一元二次方程
降次
2.推导求根公式
问题2 解方程 x 2 = 25,依据是什么? 平方根的意义 解得 x 1 = 5,x 2 = - 5. 请解下列方程: x 2 = 3,2x 2 - 8=0,x 2 = 0,x 2 = - 2… 这些方程有什么共同的特征? 结构特征:方程可化成 x 2 = p 的形式,
x2 + 6x = -4 ③ ②的形式呢? 怎样保证 变形的正确性 呢? 两边加 9 x2 + 6x + 9 = -4 + 9 左边写成平方形式
2 即 (x + 3) =5 由此可得…
2.推导求根公式
回顾解方程 过程: x2 + 6x + 4 = 0
x2 + 6x = -4 x2 + 6x + 9 = -4 + 9
2 (x + 3 ) =5
移项 两边加 9,左边 配成完全平方式 左边写成完全 平方形式 降次
x3 5 x 3 5 ,或 x 3 5
解一次方程
x1 3 5 , x2 3 5
2.推导求根公式
想一想:以上解法中,为什么在方程③两边加 9? 加其他数可以吗?如果不可以,说明理由.
2 (x + 3) =5
移项 两边加 9,左边 配成完全平方式 左边写成完全 平方形式 降次
x3 5 x 3 5 ,或 x 3 5
解一次方程
x1 3 5 , x2 3 5
4.归纳小结
(1)用配方法解一元二次方程的基本思路是什么? 2 把方程配方为(x + n) = p 的形式,运用开平方法, 降次求解. (2)配方法解一元二次方程的一般步骤有哪些? (3)在配方法解一元二次方程的过程中应该注意 哪些问题?
5.布置作业
1.教科书第 6 页 练习;第 9 页 练习. 2.思考:利用本节课的知识,试解关于 x 的方程 x 2 + px + q =0.
(当 p≥0 时)
平方根 的意义ቤተ መጻሕፍቲ ባይዱ
降次
xn p
3.归纳配方法解方程的步骤
(1)用配方法解一元二次方程的基本思路是什么? 2 把方程配方为(x + n) = p 的形式,运用开平方法, 降次求解. (2)配方法解一元二次方程的一般步骤有哪些?
3.归纳配方法解方程的步骤
解一元二 次方程的一般 步骤: x2 + 6x + 4 = 0
③ 6 2 2 两边加 9 9,即( )=3 =9 2 x2 + 6x + 9 = -4 + 9
2 (x + 3 ) =5
x2 + 6x = -4
一般地,当二次项系数为 1 时,二次式加上一次项 系数一半的平方,二次式就可以写成完全平方的形式.
2.推导求根公式
议一议:结合方程①的解答过程,说出解一般二次 项系数为 1 的一元二次方程的基本思路是什么?具体步 骤是什么? 配方
通过 配成完全平方形式 来解一元二次方程的方法, 叫做配方法. 具体步骤: (1)移项; (2)在方程两边都加上一次项系数一半的平方.
3.归纳配方法解方程的步骤
问题5 通过解方程 x 2 + 6x + 4=0 ,请归纳这类方程 是怎样解的?
2 结构特征:方程可化成 (x + n) = p 的形式,
九年级
上册
21.2 解一元二次方程(第1课时)
课件说明
• 学习目标: 1.会用直接开平方法解一元二次方程,理解配方的 基本过程,会用配方法解一元二次方程; 2.在探究如何对比完全平方公式进行配方的过程中, 进一步加深对化归的数学思想的理解. • 学习重点: 理解配方法及用配方法解一元二次方程.
1.创设情境,导入新知
(当 p≥0 时) 平方根 的意义 降次
x p
问题3
2 解方程:(x + 3) = 5.
2.推导求根公式
问题4 怎样解方程 x 2 + 6x + 4 = 0 ①?
x 2 + 6x + 9 = 5
2 (x + 3) =5
②
2.推导求根公式
试一试:与方程 x2 + 6x + 9 = 5 ② 比较, 怎样解方程 x2 + 6x + 4 = 0 ① ? 怎样把方 解: 移项 程①化成方程
问题1 在设计人体雕像时,使雕像的上部(腰以 上)与下部(腰以下)的高度比,等于下部与全部(全 身)的高度比,可以增加视觉美感.按此比例,如果雕 像的高为 2 m,那么它的下部应设计为多高? A 解:设雕像的下部高为 x m, 据题意,列方程得 C x 2 =2 (2 - x) , 整理得 x 2 + 2x - 4 = 0.
B
1.创设情境,导入新知
你会解哪些方程,如何解的? 二元、三元 一次方程组 消元
一元一次方程 思考:如何解一元二次方程. 一元二次方程
降次
2.推导求根公式
问题2 解方程 x 2 = 25,依据是什么? 平方根的意义 解得 x 1 = 5,x 2 = - 5. 请解下列方程: x 2 = 3,2x 2 - 8=0,x 2 = 0,x 2 = - 2… 这些方程有什么共同的特征? 结构特征:方程可化成 x 2 = p 的形式,
x2 + 6x = -4 ③ ②的形式呢? 怎样保证 变形的正确性 呢? 两边加 9 x2 + 6x + 9 = -4 + 9 左边写成平方形式
2 即 (x + 3) =5 由此可得…
2.推导求根公式
回顾解方程 过程: x2 + 6x + 4 = 0
x2 + 6x = -4 x2 + 6x + 9 = -4 + 9
2 (x + 3 ) =5
移项 两边加 9,左边 配成完全平方式 左边写成完全 平方形式 降次
x3 5 x 3 5 ,或 x 3 5
解一次方程
x1 3 5 , x2 3 5
2.推导求根公式
想一想:以上解法中,为什么在方程③两边加 9? 加其他数可以吗?如果不可以,说明理由.