哈密顿系统中混沌的几何判据
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈密顿系统中混沌的几何判据
【摘要】:用几何方法研究哈密顿系统的混沌是近二十年来出现的新领域。本论文研究了几类典型的哈密顿系统,并给出了一系列哈密顿系统混沌的几何判据,揭示了哈密顿系统内在的几何性质与其混沌行为的本质联系。第二章我们推广了L.Horwitz等人在2007年提出的判断混沌的几何方法,使得该方法不仅适用于标准哈密顿系统,还适用于势能与动量弱耦合的情况。提出了平均不稳定比(MUR)的概念,并对Dicke模型的经典系统做了计算。推广的方法MUR不仅和Poincare 截面方法的结果吻合得很好,而且在数值稳定性上优于人们熟知的最大李雅普诺夫指数方法。第三章主要研究了二维哈密顿系统势能面、等势线与混沌之间的关系。我们发现势能面的凹陷区域是稳定区域,凸起区域和既不凸也不凹的区域都是不稳定的。另外还证明了如果系统的等势线有凹向平衡点的部分,系统将是不稳定的。以此为依据我们提出了判断二维哈密顿系统混沌的平均凸指标(MCI)和凹比率(CR)。我们对典型的混沌模型进行数值计算后,发现MCI、CR和Poincare截面、L.Horwitz等人的新几何方法的数值结果完全一致。MCI和CR直观简洁,为混沌的几何研究方法提供了新观点和新内容。第四章研究了Dicke模型中混沌与几何相位之间的联系。当光场和原子的耦合强度增大至临界点时,Dicke系统的能级间距概率分布从泊松分布变为Wigner分布,而Wigner分布被视为量子混沌的标志,这说明Dicke量子系统在临界点开始出现量子混沌;与Dicke量子系统对
应的经典系统在临界点也从规则运动变为混沌运动。在临界点处Dicke量子系统基态的几何相位即Berry相位也发生了剧烈的变化。我们引入了几何相位阶数的概念,Dicke系统几何相位的阶数在临界点从有限值跃变为∞。我们把Dicke量子系统基态几何相位阶数的跃变作为量子混沌出现的标志。【关键词】:哈密顿系统混沌量子混沌几何方法几何相位
【学位授予单位】:山西大学
【学位级别】:博士
【学位授予年份】:2011
【分类号】:O415.5
【目录】:中文摘要8-10ABSTRACT10-12第一章绪论12-341.1混沌研究简史12-141.2混沌的基本特征14-171.3哈密顿系统中的混沌17-241.3.1哈密顿力学17-201.3.2KAM定理20-241.4混沌研究的常用方法24-31参考文献31-34第二章混沌研究的几何方法34-502.1混沌研究的几何方法34-372.2混沌的新几何判断方法37-422.3推广的新几何判断方法42-462.4小结46-47参考文献47-50第三章二维哈密顿系统中的势能面、等势线与混沌50-683.1二维哈密顿系统的不稳定判据50-523.2二维哈密顿系统中的势能面与混沌52-573.3二维哈密顿系统中的等势线与混沌57-653.4小结65-66参考文献66-68第四章混
沌与几何相位68-904.1量子混沌68-764.1.1能谱的统计描述68-714.1.2无规矩阵理论71-744.1.3量子混沌的特征74-764.2几何相位76-794.3Dicke模型中的混沌与几何相位79-854.3.1Dicke模型中的混沌79-834.3.2Dicke模型中的几何相位83-854.4小结85-86参考文献86-90总结与展望90-92附录数值计算中的辛算法92-95参考文献95-96研究成果96-98致谢98-102 本论文购买请联系页眉网站。