2020-2021福州市三牧中学初一数学下期中第一次模拟试题附答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.B
解析:B
【解析】
【分析】
根据平移的概念,依次判断即可得到答案;
【详解】
解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:
A、将一张纸对折,不符合平移定义,故本选项错误;
B、电梯的上下移动,符合平移的定义,故本选项正确;
C、摩天轮的运动,不符合平移定义,故本选项错误;
【详解】
解:A.∠BAC=∠ACD能判断AB//CD(内错角相等,两直线平行),故A正确;
B.∠1=∠2得到AD∥BC,不能判断AB//CD,故B错误;
C.∠3=∠4得到AD∥BC,不能判断AB//CD,故C错误;
D.∠BAD=∠BCD,不能判断AB//CD,故D错误;
故选A.
【点睛】
本题主要考查了平行线的判定的运用,解题时注意:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行.
解析:如果两个角是对顶角,那么这两个角相等
【解析】
【分析】
命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.
【详解】
题设为:对顶角,结论为:相等,
故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,
故答案为:如果两个角是对顶角,那么这两个角相等;
【详解】
如果将一个图形上各点的横坐标不变,纵坐标乘以2,
则这个图形发生的变化是:纵向拉伸为原来的2倍.
故选:B.
【点睛】
本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.
12.B
解析:B
【解析】
【分析】
先根据题目的定义新运算,得到关于x的不等式组,再得到不等式组的解集即可.
∴不能得出两直线平行;
D、∵∠1=∠2,
∴AB∥CD(同位角相等,两直线平行).
故选D.
【点睛】
本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.
2.B
解析:B
【解析】
【分析】
根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE的度数.
【点睛】
此题考查二元一次方程的解,解题关键在于掌握方程的解即为能使方程左右两边相等的未知数的值.
7.C
解析:C
【解析】
【分析】
各项利用不等式的基本性质判断即可得到结果.
【详解】
由x<y,
可得:x-1<y-1,-2x>-2y, , ,
故选:C.
【点睛】
此题考查不等式的性质,熟练掌握不等式的性质是解题的关键.
18.95°【解析】如图作EF∥AB则EF∥CD∴∠ABE+∠BEF=180°∵∠ABE=120°∴∠BEF=60°∵∠DCE=∠FEC=35°∴∠BEC=∠BEF+∠FEC=95°故答案为95°点睛:本
解析:95°
【解析】
如图,作EF∥AB,则EF∥CD,
∴∠ABE+∠BEF=180°,∵∠ABE=120°,∴∠BEF=60°,
∵∠DCE=∠FEC=35°,∴∠BEC=∠BEF+∠FEC=95°.
故答案为95°.
点睛:本题关键在于构造平行线,再利用平行线的性质解题.
19.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个
17.关于 的不等式 的解集为 ,写出一组满足条件的实数 , 的值: _________, ___________.
18.如图,已知 , , ,则 __________.
19.将命题“对顶角相等”用“如果……那么……”的形式可以改写为______.
20.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.
3.点M(2,-3)关于原点对称的点N的坐标是: ( )
A.(-2,-3)B.(-2, 3)C.(2, 3)D.(-3, 2)
4.若 ,则xy的值为( )
A.0B.1C.-1D.2
5.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
A. B. C. D.
6.已知 的解 ,则 的解为()
A. B. C. D.
解析:
【解析】
【分析】
把 与 的值代入方程计算即可求出 的值.
【详解】
解:把 代入二元一次方程 ,得: ,
解得: .
故答案为:
【点睛】
此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
15.【解析】【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式k2x<k1x+b解集【详解】两条直线的交点坐标为(-12)且当x>-1时直线l2在直线l1的下方
解析:
【解析】
【分析】
由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.
【详解】
两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>-1.
故答案为:x>-1.
【点睛】
此题考查一次函数与一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
7.若 ,则下列不等式中成立的是()
A. B.
C. D.
8.下列现象中是平移的是()
A.将一张纸对折B.电梯的上下移动
C.摩天轮的运动D.翻开书的封面
9.如图,下列条件中,能判断AB//CD的是( )
A.∠BAC=∠ACDB.∠1=∠2C.∠3=∠4D.∠BAD=∠BCD
10.如果a>b,那么下列各式中正确的是( )
【点睛】
此题考查命题与定理,“如果”后面是命题的条件,“那么”后面是条件的结论,解题的关键是找到相应的条件和结论,比较简单.
20.【解析】【分析】设购一件甲商品需要x元一件乙商品需要y元一件丙商品需要z元建立方程组整体求解即可【详解】解:设购一件甲商品需要x元一件乙商品需要y元一件丙商品需要z元由题意得把这两个方程相加得5x+
A.a﹣2<b﹣2B. C.﹣2a<﹣2bD.﹣a>﹣b
11.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是()
A.横向拉伸为原来的2倍B.纵向拉伸为原来的2倍
C.横向压缩为原来的 D.纵向压缩为原来的
12.我们定义 ,例如: ,若 满足 ,则 的整数解有( )
A.0个B.1个C.2个D.3个
一、选择题
1.D
解析:D
【解析】
【分析】
由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.
【详解】
A、∵∠1=∠2,
∴AD∥BC(内错角相等,两直线平行);
B、∵∠1=∠2,∠1、∠2不是同位角和内错角,
∴不能得出两直线平行;
C、∠1=∠2,∠1、∠2不是同位角和内错角,
解析:5477
【解析】
【分析】
根据算术平方根的小数点移动规律可直接得出.
【详解】
解: ,
故答案为:0.5477.
【点睛】
本题考查了算术平方根的应用,注意:当被开方数的小数点每向左或向右移动两位,平方根的小数点就向左或向右移动一位.
14.【解析】【分析】把与的值代入方程计算即可求出的值【详解】解:把代入二元一次方程得:解得:故答案为:【点睛】此题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值
【详解】
解:解不等式 下一步为化系数为1,且解集为 ,说明 , ,
∴可取 ,则 ,
故答案为:2, .(答案不唯一)
【点睛】
此题考查运用不等式的性质解一元一次不等式,不等式的性质为:①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式性质2::不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.
故答案为:70.
17.【解析】【分析】通关观察解不等式下一步为化系数为1且解集为说明据此可写出ab的值【详解】解:解不等式下一步为化系数为1且解集为说明∴可取则故答案为:2(答案不唯一)【点睛】此题考查运用不等式的性质解
解析:
【解析】
【分析】
通关观察解不等式 下一步为化系数为1,且解集为 ,说明 , ,据此可写出a,b的值.
【详解】
解:结合题意可知 可化为 ,
解不等式可得 ,
故x的整数解只有1;
故选:B.
【点睛】
本题考查的是一元一次不等式组的求解,根据题意得到不等式组并正确求解即可.
二、填空题
13.5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出【详解】解:故答案为:05477【点睛】本题考查了算术平方根的应用注意:当被开方数的小数点每向左或向右移动两位平方根的小数点就向左或向
2020-2021福州市三牧中学初一数学下期中第一次模拟试题附答案
一、选择题
1.如图,已知∠1=∠2,其中能判定AB∥CD的是()
A. B.
C. D.
2.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50º,∠ABC=100º,则∠CBE的度数为()
A.45°B.30°C.20°D.15°
二、填空题
13.已知 ,则 ______.
14.已知 是关于x、y的二元一次方程 的解,则m=__________.
15.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2xk1x+b的解集为______.
16.如图,直线a平移后得到直线b,∠1=60°,∠B=130°,则∠2=________°.
三、解答题
21.解不等式(组):
(1)解不等式 ,并把它的解集表示在数轴上;
(2)解不等式组:
22.解不等式组: .
23.解不等式: ,并把解集在数轴上表示出来.
24.如图,已知 , .
(1)求证: .
(2)若 , 平分 , ,求 .
25.解方程组
(1)
(2)
【参考答案】***试卷处理标记,请不要删除
解析:【解析】
D、翻开的封面,不符合平移的定义,故本选项错误.
故选B.
【点睛】
本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
9.A
解析:A
【解析】
【分析】
根据直线平行的判定:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行进行判断即可.
10.C
解析:C
【解析】
A.不等式的两边都减2,不等号的方向不变,故A错误;
B.不等式的两边都除以2,不等号的方向不变,故B错误;
C.不等式的两边都乘以−2,不等号的方向改变,故C正确;
D.不等式的两边都乘以−1,不等号的方向改变,故D错误.
故选C.
11.B
解析:B
【解析】
【分析】
根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.
16.【解析】【分析】【详解】解:过B作BD∥a∵直线a平移后得到直线b∴a∥b∴BD∥b∴∠4=∠2∠3=∠1=60°∴∠2=∠ABC-∠3=70°故答案为:70
解析:【解析】
【分析】
【详解】
解:过B作BD∥a,
∵直线a平移后得到直线b,
∴a∥b,
∴BD∥b,
∴∠4=∠2,∠3=∠1=60°,
∴∠2=∠ABC-∠3=70°,
【详解】
解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,
∴AC∥BE,
∴∠CAB=∠EBD=50°(两直线平行,同位角相等),
∵∠ABC=100°,
∴∠CBE的度数为:180°-50°-100°=30°.
故选B.
【点睛】
此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的关键.
【详解】
根据x的不等式x-b>0恰有两个负整数解,可得x的负整数解为-1和-2
综合上述可得
故选A.
【点睛】
本题主要考查不等式的非整数解,关键在于非整数解的确定.
6.A
解析:A
【解析】
【分析】
将x+2与y-1看做一个整体,根据已知方程组的解求出x与y的值即可.
【详解】
根据题意得: ,
解得: .
故选:A.
3.B
解析:B
【解析】试题解析:已知点M(2,-3),
则点M关于原点对称的点的坐标是(-2,3),
故选B.
4.CFra Baidu bibliotek
解析:C
【解析】
解:∵ ,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,所以xy=﹣1.故选C.
5.A
解析:A
【解析】
【分析】
根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.
解析:B
【解析】
【分析】
根据平移的概念,依次判断即可得到答案;
【详解】
解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:
A、将一张纸对折,不符合平移定义,故本选项错误;
B、电梯的上下移动,符合平移的定义,故本选项正确;
C、摩天轮的运动,不符合平移定义,故本选项错误;
【详解】
解:A.∠BAC=∠ACD能判断AB//CD(内错角相等,两直线平行),故A正确;
B.∠1=∠2得到AD∥BC,不能判断AB//CD,故B错误;
C.∠3=∠4得到AD∥BC,不能判断AB//CD,故C错误;
D.∠BAD=∠BCD,不能判断AB//CD,故D错误;
故选A.
【点睛】
本题主要考查了平行线的判定的运用,解题时注意:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行.
解析:如果两个角是对顶角,那么这两个角相等
【解析】
【分析】
命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.
【详解】
题设为:对顶角,结论为:相等,
故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,
故答案为:如果两个角是对顶角,那么这两个角相等;
【详解】
如果将一个图形上各点的横坐标不变,纵坐标乘以2,
则这个图形发生的变化是:纵向拉伸为原来的2倍.
故选:B.
【点睛】
本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.
12.B
解析:B
【解析】
【分析】
先根据题目的定义新运算,得到关于x的不等式组,再得到不等式组的解集即可.
∴不能得出两直线平行;
D、∵∠1=∠2,
∴AB∥CD(同位角相等,两直线平行).
故选D.
【点睛】
本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.
2.B
解析:B
【解析】
【分析】
根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE的度数.
【点睛】
此题考查二元一次方程的解,解题关键在于掌握方程的解即为能使方程左右两边相等的未知数的值.
7.C
解析:C
【解析】
【分析】
各项利用不等式的基本性质判断即可得到结果.
【详解】
由x<y,
可得:x-1<y-1,-2x>-2y, , ,
故选:C.
【点睛】
此题考查不等式的性质,熟练掌握不等式的性质是解题的关键.
18.95°【解析】如图作EF∥AB则EF∥CD∴∠ABE+∠BEF=180°∵∠ABE=120°∴∠BEF=60°∵∠DCE=∠FEC=35°∴∠BEC=∠BEF+∠FEC=95°故答案为95°点睛:本
解析:95°
【解析】
如图,作EF∥AB,则EF∥CD,
∴∠ABE+∠BEF=180°,∵∠ABE=120°,∴∠BEF=60°,
∵∠DCE=∠FEC=35°,∴∠BEC=∠BEF+∠FEC=95°.
故答案为95°.
点睛:本题关键在于构造平行线,再利用平行线的性质解题.
19.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个
17.关于 的不等式 的解集为 ,写出一组满足条件的实数 , 的值: _________, ___________.
18.如图,已知 , , ,则 __________.
19.将命题“对顶角相等”用“如果……那么……”的形式可以改写为______.
20.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.
3.点M(2,-3)关于原点对称的点N的坐标是: ( )
A.(-2,-3)B.(-2, 3)C.(2, 3)D.(-3, 2)
4.若 ,则xy的值为( )
A.0B.1C.-1D.2
5.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
A. B. C. D.
6.已知 的解 ,则 的解为()
A. B. C. D.
解析:
【解析】
【分析】
把 与 的值代入方程计算即可求出 的值.
【详解】
解:把 代入二元一次方程 ,得: ,
解得: .
故答案为:
【点睛】
此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
15.【解析】【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式k2x<k1x+b解集【详解】两条直线的交点坐标为(-12)且当x>-1时直线l2在直线l1的下方
解析:
【解析】
【分析】
由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.
【详解】
两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>-1.
故答案为:x>-1.
【点睛】
此题考查一次函数与一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
7.若 ,则下列不等式中成立的是()
A. B.
C. D.
8.下列现象中是平移的是()
A.将一张纸对折B.电梯的上下移动
C.摩天轮的运动D.翻开书的封面
9.如图,下列条件中,能判断AB//CD的是( )
A.∠BAC=∠ACDB.∠1=∠2C.∠3=∠4D.∠BAD=∠BCD
10.如果a>b,那么下列各式中正确的是( )
【点睛】
此题考查命题与定理,“如果”后面是命题的条件,“那么”后面是条件的结论,解题的关键是找到相应的条件和结论,比较简单.
20.【解析】【分析】设购一件甲商品需要x元一件乙商品需要y元一件丙商品需要z元建立方程组整体求解即可【详解】解:设购一件甲商品需要x元一件乙商品需要y元一件丙商品需要z元由题意得把这两个方程相加得5x+
A.a﹣2<b﹣2B. C.﹣2a<﹣2bD.﹣a>﹣b
11.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是()
A.横向拉伸为原来的2倍B.纵向拉伸为原来的2倍
C.横向压缩为原来的 D.纵向压缩为原来的
12.我们定义 ,例如: ,若 满足 ,则 的整数解有( )
A.0个B.1个C.2个D.3个
一、选择题
1.D
解析:D
【解析】
【分析】
由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.
【详解】
A、∵∠1=∠2,
∴AD∥BC(内错角相等,两直线平行);
B、∵∠1=∠2,∠1、∠2不是同位角和内错角,
∴不能得出两直线平行;
C、∠1=∠2,∠1、∠2不是同位角和内错角,
解析:5477
【解析】
【分析】
根据算术平方根的小数点移动规律可直接得出.
【详解】
解: ,
故答案为:0.5477.
【点睛】
本题考查了算术平方根的应用,注意:当被开方数的小数点每向左或向右移动两位,平方根的小数点就向左或向右移动一位.
14.【解析】【分析】把与的值代入方程计算即可求出的值【详解】解:把代入二元一次方程得:解得:故答案为:【点睛】此题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值
【详解】
解:解不等式 下一步为化系数为1,且解集为 ,说明 , ,
∴可取 ,则 ,
故答案为:2, .(答案不唯一)
【点睛】
此题考查运用不等式的性质解一元一次不等式,不等式的性质为:①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式性质2::不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.
故答案为:70.
17.【解析】【分析】通关观察解不等式下一步为化系数为1且解集为说明据此可写出ab的值【详解】解:解不等式下一步为化系数为1且解集为说明∴可取则故答案为:2(答案不唯一)【点睛】此题考查运用不等式的性质解
解析:
【解析】
【分析】
通关观察解不等式 下一步为化系数为1,且解集为 ,说明 , ,据此可写出a,b的值.
【详解】
解:结合题意可知 可化为 ,
解不等式可得 ,
故x的整数解只有1;
故选:B.
【点睛】
本题考查的是一元一次不等式组的求解,根据题意得到不等式组并正确求解即可.
二、填空题
13.5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出【详解】解:故答案为:05477【点睛】本题考查了算术平方根的应用注意:当被开方数的小数点每向左或向右移动两位平方根的小数点就向左或向
2020-2021福州市三牧中学初一数学下期中第一次模拟试题附答案
一、选择题
1.如图,已知∠1=∠2,其中能判定AB∥CD的是()
A. B.
C. D.
2.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50º,∠ABC=100º,则∠CBE的度数为()
A.45°B.30°C.20°D.15°
二、填空题
13.已知 ,则 ______.
14.已知 是关于x、y的二元一次方程 的解,则m=__________.
15.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2xk1x+b的解集为______.
16.如图,直线a平移后得到直线b,∠1=60°,∠B=130°,则∠2=________°.
三、解答题
21.解不等式(组):
(1)解不等式 ,并把它的解集表示在数轴上;
(2)解不等式组:
22.解不等式组: .
23.解不等式: ,并把解集在数轴上表示出来.
24.如图,已知 , .
(1)求证: .
(2)若 , 平分 , ,求 .
25.解方程组
(1)
(2)
【参考答案】***试卷处理标记,请不要删除
解析:【解析】
D、翻开的封面,不符合平移的定义,故本选项错误.
故选B.
【点睛】
本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
9.A
解析:A
【解析】
【分析】
根据直线平行的判定:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行进行判断即可.
10.C
解析:C
【解析】
A.不等式的两边都减2,不等号的方向不变,故A错误;
B.不等式的两边都除以2,不等号的方向不变,故B错误;
C.不等式的两边都乘以−2,不等号的方向改变,故C正确;
D.不等式的两边都乘以−1,不等号的方向改变,故D错误.
故选C.
11.B
解析:B
【解析】
【分析】
根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.
16.【解析】【分析】【详解】解:过B作BD∥a∵直线a平移后得到直线b∴a∥b∴BD∥b∴∠4=∠2∠3=∠1=60°∴∠2=∠ABC-∠3=70°故答案为:70
解析:【解析】
【分析】
【详解】
解:过B作BD∥a,
∵直线a平移后得到直线b,
∴a∥b,
∴BD∥b,
∴∠4=∠2,∠3=∠1=60°,
∴∠2=∠ABC-∠3=70°,
【详解】
解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,
∴AC∥BE,
∴∠CAB=∠EBD=50°(两直线平行,同位角相等),
∵∠ABC=100°,
∴∠CBE的度数为:180°-50°-100°=30°.
故选B.
【点睛】
此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的关键.
【详解】
根据x的不等式x-b>0恰有两个负整数解,可得x的负整数解为-1和-2
综合上述可得
故选A.
【点睛】
本题主要考查不等式的非整数解,关键在于非整数解的确定.
6.A
解析:A
【解析】
【分析】
将x+2与y-1看做一个整体,根据已知方程组的解求出x与y的值即可.
【详解】
根据题意得: ,
解得: .
故选:A.
3.B
解析:B
【解析】试题解析:已知点M(2,-3),
则点M关于原点对称的点的坐标是(-2,3),
故选B.
4.CFra Baidu bibliotek
解析:C
【解析】
解:∵ ,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,所以xy=﹣1.故选C.
5.A
解析:A
【解析】
【分析】
根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.