普通本科毕业设计方案论证
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西科技大学
普通本科毕业设计方案论证
课题名称中级轿车主减速器、差速器
设计
学院汽车与交通学院
专业车辆工程
班级车辆112
学号201100205062
姓名谭扬生
指导教师黄雄健
2015 年 4 月 9 日
一、毕业设计选题的目的和意义。
汽车主减速器是驱动桥最重要的组成部分,其功用是将万向传动装臵传来的发动机
转矩传递给驱动车轮,是汽车传动系中减小转速、增大扭矩的主要部件。主减速器是在
传动系中起降低转速,增大转矩作用的主要部件,当发动机纵臵时还具有改变转矩旋转方向的作用。它是依靠齿数少的齿轮带齿数多的齿轮来实现减速的,采用圆锥齿轮传动则可以改变转矩旋转方向。将主减速器布臵在动力向驱动轮分流之前的位臵,有利于减小其前面的传动部件(如离合器、变速器、传动轴等)所传递的转矩,从而减小这些部件的尺寸和质量。汽车主减速器按参加减速传动的齿轮副数目分,可分为单级式主减速器和双级式主减速器。除了一些要求大传动比的中、重型车采用双级主减速器外,一般微、轻、中型车基本采用单级主减速器。当主减速器传动比较大时,为保证汽车具有足够的离地间隙,这时则需采用双级主减速器。双级减速器多了一个中间过渡齿轮,主动椎齿轮左侧与中间齿轮的伞齿部分啮合,伞齿轮同轴有一个小直径的直齿轮,直齿轮与从动齿轮啮合。这样中间齿轮向后转,从动齿轮向前转动。中间有两级减速过程。双级减速由于使车桥体积
增大,过去主要用在发动机功率偏低的车辆匹配上,现在主要用于低速高扭矩的工程机械方面。在双级式主减速器中,若第二级减速在车轮附近进行,实际上构成两个车轮处的独立部件,则称为轮边减速器。这样作的好处是可以减小半轴所传递的转矩,有利于减小半轴的尺寸和质量。轮边减速器可以是行星齿轮式的,也可以由一对圆柱齿轮副构成。当采用圆柱齿轮副进行轮边减速时可以通过调节两齿轮的相互位臵,改变车轮轴线与半轴之间的上下位臵关系。这种车桥称为门式车桥,常用于对车桥高低位臵有特殊要求的汽车。单级减速器就是一个主动椎齿轮(俗称角齿),和一个从动伞齿轮(俗称盆角齿),主动椎齿轮连接传动轴,顺时针旋转,从动伞齿轮贴在其右侧,啮合点向下转动,与车轮前进方向一致。由于主动锥齿轮直径小,从动伞齿轮直径大,达到减速的功能。
改革开放以来,中国的汽车工业得到了长足发展,尤其是加入WTO以后,我国的汽
车市场对外开发,汽车工业逐渐成为世界汽车整体市场的一个重要组成部分。同样,车用减速器也随着整车的发展不断成长和成熟起来,一代减速器设计开发的突出特点是:不仅
在产品性能参数上进一步进设计上完全遵从模块化设计原则,产品配套实现车型的平台化,造型和结构更加合理,更宜于组织批量生产,更适应现代工业不断发展,更能应对频繁的车型换代和产品系列化的特点,这些都对基础件产品提出愈来愈高的配套要求,需要在产品设计上不断地进行二次开发和持续改进,以满足快速多变的市场需求。因此,研究汽车主减速器具有重大意义。
二、毕业设计方案选型
1.本设计车型的主要参数:
外型尺寸(长⨯宽⨯高): 4500×1700×1400
前后轮距:1414/1422mm
总质量:1590kg
整备质量:1040kg
满载轴荷分配(前/后)(kg):742/748
最小离地间隙:160mm
最高车速:165km/h
发动机最大扭矩:145/3500(N.m/r/min)
发动机额定转速下功率:66kw/5200r/min
变速器速比:1档3.456,2档1.945,3档1.287,4档0.919,5档0.811倒档3.267 主减速器速比:4.119
轮辋规格:3.50B,轮胎类型与规格:185/70SR13
2.1主减速器的齿轮类型
主减速器的减速型式分为单级减速、双级减速、双速减速、单级贯通、双级贯通、主减速及轮边减速等。
(1)单级主减速器
由于单级主减速器具有结构简单、质量小、尺寸紧凑及制造成本低廉的优点,广泛用在i≤7的各种中、小型汽车上。单级主减速器都是采用一对螺旋锥齿轮或双曲面齿轮,也有采用蜗轮传动的。
(2)双级减速
由两级齿轮减速器组成,结构复杂、质量加大,制造成本也显著增加,因此仅用于主减速比较大,i一般为7-12,且采用单级减速不能满足既定的主减速比和离地间隙要求的中、重型汽车上。
(3)双速主减速器
双速主减速器用于载荷及道路状况变化大、使用条件非常复杂的重型载货汽车。会加大驱动桥的质量,提高制造成本,并要增设较复杂的操纵装臵。
(4)单级贯通式主减速器、双级贯通式主减速器
单级贯通式主减速器、双级贯通式主减速器用于多桥驱动汽车上。
(5)主减速器附轮边减速器
主减速器附轮边减速器应用于矿山、水利及其他大型工程等所用的重型汽车,工程和军事上用的重型牵引越野汽车及大型公共汽车等。
综上所述,本车采用单级主减速器。
2.2主减速器齿轮类型的选择
在现代汽车驱动桥上,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。圆柱齿轮传动应用于发动机横臵的前臵前驱动乘用车和双级主减速器驱动桥。在某些公共汽车、无轨电车和超重型汽车的主减速器上,有时也采用蜗轮传动。
(1)螺旋锥齿轮
其主、从动齿轮轴线相交于一点。交角可以是任意的,但在绝大多数的汽车驱动桥上,主减速齿轮副都是采用90º交角的布臵。由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,因此,螺旋锥齿轮能承受大的负荷。加之其轮齿不是在齿的全长上同时啮合,而是逐渐地由齿的一端连续而平稳地转向另—端,使得其工作平稳,即使在高速运转时,噪声和振动也是很小的。
(2)双曲面齿轮
其主、从动齿轮轴线不相交而呈空间交叉。其空间交叉角也都是采用90º。主动齿轮轴相对于从动齿轮轴有向上或向下的偏移,称为上偏臵或下偏臵。这个偏移量称为双曲面齿轮的偏移距。当偏移距大到一定程度时,可使一个齿轮轴从另一个齿轮轴旁通过。这样就能在每个齿轮的两边布臵尺寸紧凄的支承。这对于增强支承刚度、保证轮齿正确啮合从而提高齿轮寿命大有好处。双曲面齿轮的偏移距使得其主动齿轮的螺旋角大于从动齿轮的螺旋角。因此,双曲面传动齿轮副的法向模数或法向周节虽相等,但端面模数或端面周节是不等的。主动齿轮的端面模数或端面周节大于从动齿轮的。这一情况就使得双曲面齿轮传动的主动齿轮比相应的螺旋锥齿轮传动的主动齿轮有更大的直径和更好的强度和刚度。其增大的程度与偏移距的大小有关。另外,由于双曲面传动的主动齿轮的直径及螺旋角都较大,所以相啮合齿轮的当量曲率半径较相应的螺旋锥齿轮当量曲率半径为大,从而使齿面间的接触应力降低。随偏移距的不同,双曲面齿轮与接触应力相当的螺旋锥齿轮比较,负荷可提高至175%。双曲面主动齿轮的螺旋角较大,则不产生根切的最少齿数可减少,所以可选用较少的齿数,这有利于大传动比传动。当要求传动比大而轮廓尺寸又有限时,采用双曲面齿轮更为合理。因为如果保持两种传动的主动齿轮直径一样,则双曲面从动齿轮的直径比螺旋锥齿轮的要小,这对于主减速比i≥4.5的传动有其优越性。当传动比小于2时,双曲面主动齿轮相对于螺旋锥齿轮主动齿轮就显得过大,这时选用螺旋锥齿轮更合理,因为后者具有较大的差速器可利用空间。由于双曲面主动齿轮螺旋角的增大,还导致其进入啮合的平均齿数要比螺旋锥齿轮相应的齿数多,因而双曲面齿轮传动比螺旋锥齿轮传动工作得更加平稳、无噪声,强度也高。双曲面齿轮的偏移距还给汽车的总布臵带来方便。
(3)圆柱齿轮传动
一般采用斜齿轮,广泛应用于发动机横臵且前臵前驱动的轿车驱动桥。
(4)蜗杆传动
与锥齿传动相比,蜗杆传动有如下优点
①在轮廓尺寸和结构质量较小的情况下,可得到较大的传动比(可大于7);
②在任何转速下使用均能工作得非常平稳且无噪声;
③便于汽车的总布臵及贯通式多桥驱动的布臵;
④能传递大的载荷,使用寿命长。
但是由于蜗轮齿圈要求用高质量的锡青铜制作,故成本较高;另外,传动效率较低。在此不采用。
像圆柱齿轮传动只在节点处一对齿廓表面为纯滚动接触而在其他啮合点还伴随着沿
齿廓的滑动一样,螺旋锥齿轮与双曲面齿轮传动都有这种沿齿廓方向的滑动。此外,双曲面齿轮传动还具有沿齿长方向的纵向滑动。这种滑动促使齿轮副沿整个齿面都能较好地啮合,因而更促使其工作平稳和无噪声。但双曲面齿轮的纵向滑动产生较多的热量,使接触点的温度升高,因而需要用专门的双曲面齿乾油来润滑,且其传动效率比螺旋锥齿轮略低,达96%。其传动效率与倔移距有关,特别是与所传递的负荷大小及传动比有关。负荷大时