《化工传递过程导论》热量传递作业参考答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《化工传递过程导论》课程第九次作业解题参考

第5章 热量传递及其微分方程

1. 某不可压缩的黏性流体层流流过与其温度不同的无限宽度的平板壁面。设流动为定态,壁温及流

体的密度、黏度等物理性质恒定。试由方程(5-13a)出发,简化上述情况的能量方程,并说明简化过程的依据。

解:课本(5-13a)式如下:

222222()x y z T T T T T T T u u u t x y z x y z

α∂∂∂∂∂∂∂+++=++∂∂∂∂∂∂∂ 由题意可知,定态流动0T

t

∂⇒

=∂。在直角坐标系中,三维方向对应长、宽、高,题中“无限宽度的平板壁面”则可认为是在宽这个维度上无限,姑且设定此方向垂直于纸面且为z 方向,故可认为题意所指流动过程为二维流动,且

0z u = 且2200T T

z z

∂∂=⇒=∂∂

则(5-13a)式可简化为

2222()x y T T T T

u u x y x y

α∂∂∂∂+=+∂∂∂∂ 如果引入热边界层概念,则基于尺度和量级的考虑,可进一步简化上式为

22x y T T T u u x y y

α∂∂∂+=∂∂∂ 其中,y 方向为垂直主流方向(x )的距壁面的距离。

2. 假定人对冷热的感觉是以皮肤表面的热损失(刘辉注:换言之,是传热或散热速率)作为衡量依

据。设人体脂肪层的厚度为3mm ,其内表面温度为36℃且保持不变。在冬天的某一天气温为-15℃。无风条件下裸露皮肤表面与空气的对流传热系数为25W/(m 2·K);有风时,表面对流传热系数为65W/(m 2·K)。人体脂肪层的导热系数k =0.2W/(m ·K)。试确定:

(a) 要使无风天的感觉与有风天气温-15℃时的感觉一样(刘辉注:换言之,是传热或散热速率一样),则无风天气温是多少?

(b) 在同样是-15℃的气温下,无风和刮风天,人皮肤单位面积上的热损失(刘辉注:单位面积上的热损失就是传热通量)之比是多少?

解:(a )此处,基本为对象是:人体皮下为脂肪层,层内传热为导热;体外或体表之外暴露在流

动的空气中,紧邻表面之上为对流传热。上述导热和对流传热为串联过程,在定态下(如空气流动相对平稳且气温也相对稳定),两种过程速率相等。作为近似,取各层为平板,传热均为一维。对脂肪层内的导热,已知传热速率为

()1S kA

q T T L

=

- (6-5) 其中, L 为脂肪层的厚度,T 1为脂肪层的内表面温度,T S 为脂肪层的外表面或人体的体表温度(未知)。为计算体表温度,可利用题给条件,即有风天、气温为-15℃(此处称情形或Case 1)下的对流传热速率与脂肪层内导热速率相等,也即

()111101()S S kA T T h T T L -=-

其中,T 01为对应的气温。所以

1

13

360.265[(15)]310S S T T --⨯

=⨯--⨯

故体表温度o 110.82C S T =。由上述计算也可见,热损失相等,也即热通量相等,因之只需保证体表温度一致即可(式6-5)。所以,无风条件下(此处称情形或Case 2)的气温满足如下关系

11012202()()S S h T T h T T -=-

1

0221012

()S S h T T T T h ⇒=+

- 利用o 2110.82C S S T T ==条件可以求得0256.315o T C =-(刘辉注:这似乎是北极的温度,看来穿衣服少了不行。)

(b )由题意可知,外界温度同为-15℃,但有风和无风两种情形下对流传热系数不同,所以

相应的传热速率不同,继而体表温度也不同;基本的关系是导热和对流传热速率相等。所以两种情形下分别有,

()111101()S S kA T T h T T L -=-

()121202()S S kA T T h T T L

-=-

但此时o 010215C T T ==-,因此在情形1(有风)下,

1

13360.265[(15)]310S S T T --⨯=⨯--⨯

解得o 110.82C S T =。

同理可得情形2(无风)下o 222.09C S T =。故,无风和有风两种条件下的热损失之比为:

2202211101()()

S S h T T q q h T T -=-

2125[22.091(15)]65[18.023(15)]q q ⨯--⇒

=⨯-- 2

1

0.552q q ⇒

=

第6章 热传导

1. 用平底锅烧开水,与水相接触的锅底温度为111℃,热流通量为42400W/m 2。使用一段时间后,锅底结了一层平均厚度为3mm 的水垢,假设此时与水相接触的水垢的表面温度及热流通量分别等于原来的值,试计算水垢与金属锅底接触面的温度。水垢的导热系数取为1 W/(m ·K)。 解:由题意可以想见,原来无水垢时是对流传热;结垢后垢层中为导热,此时定态、一维平板的传热通量为

()1S q k

T T A L

⎛⎫=- ⎪⎝⎭ (6-5)

其中, L 为垢层的厚度,T 1为水垢与金属锅底接触面的温度(未知),T S 为与水相接触的垢层表面温度。因此可得

1S q L

T T A k

⎛⎫=+ ⎪⎝⎭

3

1310111424001T -⨯⇒=+⨯

1238.2o T C ⇒=

故得出水垢与金属锅底接触面的温度为238.2o C

2. 有一管道外径为150mm ,外表面温度为180℃,包覆矿渣棉保温层后外径为250mm.。已知矿渣棉的导热系数0.0640.000144k T =+W/(m ·K),T 单位为℃。保温层外表面温度为30℃,试求包有保温层后管道的热损失。

解: 本题考虑对象为保温层,其中为定态、一维筒壁、无内热源导热问题,可以有多种解法。与书中讨论不同的是,导热系数并非常数,而是随温度变化。首先,形式上,将题给导热系数写作

()0(1)0.06410.00225k k t t β=+=+

以下分别给出几种解法。

相关文档
最新文档