第九章 相关与回归分析答案张芳
《统计分析与SPSS的应用(第五版)》课后练习答案(第9章)
![《统计分析与SPSS的应用(第五版)》课后练习答案(第9章)](https://img.taocdn.com/s3/m/1786d7ad6294dd88d0d26b9e.png)
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将fore导入Y轴,将phy导入X轴,将sex导入设置标记→确定。
接下来在SPSS输出查看器中,双击上图,打开图表编辑→点击子组拟合线→选择线性→应用。
分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。
3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。
主要包括回归方程的拟合优度检验、显著性检验、回归系数的显著性检验、残差分析等。
(整理)应用回归分析第九章部分答案
![(整理)应用回归分析第九章部分答案](https://img.taocdn.com/s3/m/77af0d83551810a6f424860f.png)
第9章 非线性回归9.1 在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。
如:(1) 乘性误差项,模型形式为e y AK L αβε=, (2) 加性误差项,模型形式为y AK L αβε=+对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。
一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。
9.2为了研究生产率与废料率之间的关系,记录了如表9.14所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。
表9.14生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%)5.26.56.88.110.2 10.3 13.0解:先画出散点图如下图:5000.004000.003000.002000.001000.00x12.0010.008.006.00y从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。
(1)二次曲线 SPSS 输出结果如下:Mode l Sum mary.981.962.942.651R R SquareAdjusted R SquareStd. E rror of the E stim ateThe independent variable is x.ANOVA42.571221.28650.160.0011.6974.42444.2696Regression Residual TotalSum of Squares dfMean SquareF Sig.The independent variable is x.Coe fficients-.001.001-.449-.891.4234.47E -007.0001.4172.812.0485.843 1.3244.414.012x x ** 2(Constant)B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficientstSig.从上表可以得到回归方程为:72ˆ 5.8430.087 4.4710yx x -=-+⨯ 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。
《统计分析与SPSS的应用(第五版)》课后练习答案(第9章)
![《统计分析与SPSS的应用(第五版)》课后练习答案(第9章)](https://img.taocdn.com/s3/m/cf25406c7cd184254b353591.png)
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将fore导入Y轴,将phy导入X轴,将sex导入设置标记→确定。
接下来在SPSS输出查看器中,双击上图,打开图表编辑在图表编辑器中,选择“元素”菜单→选择总计拟合线→选择线性→应用→再选择元素菜单→点击子组拟合线→选择线性→应用。
分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。
3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。
《统计分析与SPSS的应用(第五版)》课后练习答案(第9章)
![《统计分析与SPSS的应用(第五版)》课后练习答案(第9章)](https://img.taocdn.com/s3/m/cf25406c7cd184254b353591.png)
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将fore导入Y轴,将phy导入X轴,将sex导入设置标记→确定。
接下来在SPSS输出查看器中,双击上图,打开图表编辑在图表编辑器中,选择“元素”菜单→选择总计拟合线→选择线性→应用→再选择元素菜单→点击子组拟合线→选择线性→应用。
分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。
3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。
(完整word版)应用回归分析,第9章课后习题参考答案
![(完整word版)应用回归分析,第9章课后习题参考答案](https://img.taocdn.com/s3/m/7b08f0889b6648d7c0c746c0.png)
第9章 含定性变量的回归模型思考与练习参考答案9.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0—1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。
出现这种情况的原因是什么?答:假如这个含有季节定性自变量的回归模型为:t t t t kt k t t D D D X X Y μαααβββ++++++=332211110其中含有k 个定量变量,记为x i 。
对春夏秋冬四个季节引入4个0—1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,显然,(X ,D)中的第1列可表示成后4列的线性组合,从而(X ,D)不满秩,参数无法唯一求出。
这就是所谓的“虚拟变量陷井",应避免。
当某自变量x j 对其余p —1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型.称Tol j =1—2j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0。
0001。
也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。
而在这个模型中出现了完全共线性,所以SPSS 软件计算的结果中总是自动删除了其中的一个定性自变量。
⎪⎪⎪⎪⎪⎭⎫⎝⎛=k βββ 10β⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4321ααααα9。
2对自变量中含有定性变量的问题,为什么不对同一属性分别建立回归模型,而采取设虚拟变量的方法建立回归模型?答:原因有两个,以例9.1说明。
一是因为模型假设对每类家庭具有相同的斜率和误差方差,把两类家庭放在一起可以对公共斜率做出最佳估计;二是对于其他统计推断,用一个带有虚拟变量的回归模型来进行也会更加准确,这是均方误差的自由度更多。
《统计分析和SPSS的应用(第五版)》课后练习答案与解析(第9章)
![《统计分析和SPSS的应用(第五版)》课后练习答案与解析(第9章)](https://img.taocdn.com/s3/m/bdc8a140bf1e650e52ea551810a6f524ccbfcb9a.png)
《统计分析与SPSS的应用〔第五版〕》〔薛薇〕课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以与不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将fore导入Y轴,将phy导入X轴,将sex 导入设置标记→确定。
接下来在SPSS输出查看器中,双击上图,打开图表编辑在图表编辑器中,选择"元素"菜单→选择总计拟合线→选择线性→应用→再选择元素菜单→点击子组拟合线→选择线性→应用。
分析:如上图所示,通过散点图,被解释变量y<即:fore>与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以与相关方向和程度做出正确判断之前,就进行回归分析,很容易造成"虚假回归"。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。
3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。
方差分析与回归分析习题答案精修订
![方差分析与回归分析习题答案精修订](https://img.taocdn.com/s3/m/66289cb376a20029bc642d0f.png)
方差分析与回归分析习题答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第九章 方差分析与回归分析习题参考答案1. 为研究不同品种对某种果树产量的影响,进行试验,得试验结果(产量)如下表,试分析果树品种对产量是否有显着影响.(0.05(2,9) 4.26F =,0.01(2,9)8.02F =)解:r=3,12444n n 321=++=++=n n ,T=120 ,12001212022===n T C 计算统计值?7228.53,38A A A e e SS f F SS f ==≈……方差分析表结论:由于0.018.53(2,9)8.02,A F F ≈>=故果树品种对产量有特别显着影响.2.2700=10.523.56=≈结论: 由以上方差分析知,进器对火箭的射程有特别显着影响;燃料对火箭的射程有显着影响. 3.为了研究某商品的需求量Y 与价格x 之间的关系,收集到下列10对数据:2231,58,147,112,410.5,i i i i i i x y x y x y =====∑∑∑∑∑(1)求需求量Y 与价格x 之间的线性回归方程; (2)计算样本相关系数;(3)用F 检验法作线性回归关系显着性检验. 解:引入记号10, 3.1,5.8n x y ===∴需求量Y 与价格x 之间的线性回归方程为(2)样本相关系数32.80.955634.3248l r-==≈≈- 在0H 成立的条件下,取统计量(2)~(1,2)Ren S FF n S -=-计算统计值22(32.8)15.967.66,74.167.66 6.44R xy xx e yy R S l l S l S ==-≈=-≈-=故需求量Y 与价格x 之间的线性回归关系特别显着.4. 随机调查10个城市居民的家庭平均收入(x)与电器用电支出(y)情况得数据(单位:千元)如下:(1) 求电器用电支出y 与家庭平均收入x 之间的线性回归方程; (2) 计算样本相关系数; (3) 作线性回归关系显着性检验;(4) 若线性回归关系显着,求x =25时, y 的置信度为的预测区间. 解:引入记号10,27,1.9n x y ===∴电器用电支出y 与家庭平均收入x 之间的线性回归方程为(2)样本相关系数 0.9845l r==≈在0H 成立的条件下,取统计量(2)~(1,2)Rn S FF n S -=-e计算统计值2243.6354 5.37,5.54 5.370.17xy xx yy s l l s l s ==≈=-≈-=R e R故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着. 相关系数检验法 01:0;:0H R H R =≠故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着. (4) 因为0xx =处,0y 的置信度为1α-的预测区间为其中00.025垐 1.42640.123225 1.6536,(8) 2.31,0.1458y t σ=-+⨯====代入计算得当x =25时, y 的置信度为的预测区间为。
最新九章相关与回归分析
![最新九章相关与回归分析](https://img.taocdn.com/s3/m/845feac2a216147916112837.png)
散点图
(例题分析)
散点图
(不良贷款对其他变量的散点图)
不良贷款
14
12
10
8
6
4
2
0
0
100
200
300
400
贷款余额 不良贷款与贷款余额的散点图
14
12
10
8
6
4
2
0 0
10
20
30
40
贷款项目个数
不良贷款与贷款项目个数的散点图
不良贷款
不良贷款
14
12
10
8
6
4
2
0 0
10
20
30
累计应收贷款
1. 度量变量之间线性关系强度的一个统计量 2. 对两个变量之间线性相关强度的度量称为简单相
关系数 3. 若相关系数是根据总体全部数据计算的,称为总
体相关系数,记为
4. 若相关系数是根据样本数据计算的,则称为样本 相关系数,简称为相关系数,记为 r
– 也称为线性相关系数(linear correlation coefficient) – 或称为Pearson相关系数 (Pearson’s correlation
不良贷款与累计应收贷款的散点图
14 12 10
8 6 4 2 0
0
50
100
150
200
固定资产投资额
不良贷款与固定资产投资额的散点图
不良贷款
散点图
(5个变量的散点图矩阵)
不良贷款 贷款余额
累计应收贷款
贷款项目个数
固定自产投资
相关关系的描述与测度 (相关系数)
相关系数
(correlation coefficient)
《统计分析与SPSS的应用(第五版)》课后练习答案(第9章)
![《统计分析与SPSS的应用(第五版)》课后练习答案(第9章)](https://img.taocdn.com/s3/m/cf25406c7cd184254b353591.png)
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将fore导入Y轴,将phy导入X轴,将sex导入设置标记→确定。
接下来在SPSS输出查看器中,双击上图,打开图表编辑在图表编辑器中,选择“元素”菜单→选择总计拟合线→选择线性→应用→再选择元素菜单→点击子组拟合线→选择线性→应用。
分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。
3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。
《应用回归分析》课后题答案[整理版]
![《应用回归分析》课后题答案[整理版]](https://img.taocdn.com/s3/m/603529c1f242336c1eb95eca.png)
《应用回归分析》课后题答案[整理版] 《应用回归分析》部分课后习题答案第一章回归分析概述 1.1 变量间统计关系和函数关系的区别是什么, 答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。
1.2 回归分析与相关分析的联系与区别是什么, 答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。
区别有a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。
在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。
b.相关分析中所涉及的变量y与变量x全是随机变量。
而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。
C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。
而回归分析不仅可以揭示变量x 对变量y的影响大小,还可以由回归方程进行预测和控制。
1.3 回归模型中随机误差项ε的意义是什么, 答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么,答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2….Cov(εi,εj)=,σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.1.5 回归变量的设置理论根据是什么,在回归变量设置时应注意哪些问题,答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。
中级计量课后习题参考答案(第九章)
![中级计量课后习题参考答案(第九章)](https://img.taocdn.com/s3/m/d9b1496a1611cc7931b765ce05087632311274eb.png)
中级计量课后习题参考答案(第九章)第九章参考答案1、表⾯不相关回归的含义是,所涉及的各个回归似乎不相关,但实际上相关。
各个回归⽅程分别写出,这使得它们似乎不相关,但是它们有共同点。
在本章的例⼦中,四个回归中的每⼀个关系到⼀个不同的制造产业,但它们都会受到宏观经济条件变动(如衰退)的影响。
⼀般来说,影响⼀个回归结果的事件也很可能影响其他回归的结果,这个事实表明,表⾯不相关回归中的各回归之间存在相关。
这种相关在数学上表现为扰动项跨⽅程相关。
表⾯不相关回归的步骤是:(1)⽤ols法分别估计每个⽅程,计算和保存回归中得到的残差;(2)⽤这些残差来估计扰动项⽅差和不同回归⽅程扰动项之间的协⽅差;(3)上⼀步估计的扰动项⽅差和协⽅差被⽤于执⾏⼴义最⼩⼆乘法,得到各⽅程系数的估计值。
2、在不同的横截⾯种类的截距之间的差异被认为是固定的⽽不是随机的情况下,应采⽤固定效应模型。
如果横截⾯个体是随机地被选择出来代表⼀个较⼤的总体,则采⽤随机效应模型⽐较合适。
随机效应模型与固定效应模型⼀样,允许不同横截⾯种类的截距不同,但这种不同被认为是随机的,⽽不是固定的。
3、随机影响模型的扰动项不再满⾜普通最⼩⼆乘法各期扰动项相互独⽴的假设,扰动项的⼀个分量在各期都相同。
4、并不总是。
尽管将数据合在⼀起将增加⾃由度,但有时采⽤混合数据也是不合适的。
如果不同横截⾯种类的斜率系数不同的话,则最好是分别回归。
如果试图通过使⽤斜率虚拟变量来解决不同横截⾯种类不同斜率系数的问题,需要假定扰动项⽅差为常数。
⽽采⽤分别回归,每个回归的扰动项⽅差可以不同,也就是每个产业或每个横截⾯种类的扰动项⽅差不同。
5、随机系数模型即每个横截⾯个体的解释变量对被解释变量的影响在横截⾯个体之间的差异的变动时随机的。
有滞后因变量做⾃变量的动态模型就是动态⾯板数据模型。
6、(1)对钢铁产业⽤OLS法估计的结果如下:Dependent Variable: Y1Method: Least SquaresDate: 12/02/10 Time: 10:39Sample: 1980 2000Included observations: 21Variable Coefficient Std. Error t-Statistic Prob.C 3919.180 1702.691 2.301756 0.0335EMP1 31.99998 5.305756 6.031181 0.0000OTM1 722.7758 348.2873 2.075229 0.0526R-squared 0.674135 Mean dependent var 10339.75Adjusted R-squared 0.637928 S.D. dependent var 1653.825S.E. of regression 995.1473 Akaike info criterion 16.77522Sum squared resid 17825726 Schwarz criterion 16.92444Log likelihood -173.1398 Hannan-Quinn criter. 16.80761F-statistic 18.61879 Durbin-Watson stat 0.436339Prob(F-statistic) 0.000041橡胶和塑料产业:Dependent Variable: Y2Method: Least SquaresDate: 12/02/10 Time: 10:40Sample: 1980 2000Included observations: 21Variable Coefficient Std. Error t-Statistic Prob.C -49122.54 3331.606 -14.74440 0.0000EMP2 135.4948 6.703255 20.21328 0.0000OTM2 2646.557 1087.284 2.434099 0.0256R-squared 0.989264 Mean dependent var 80662.43Adjusted R-squared 0.988071 S.D. dependent var 13744.48S.E. of regression 1501.188 Akaike info criterion 17.59746Sum squared resid 40564183 Schwarz criterion 17.74668Log likelihood -181.7734 Hannan-Quinn criter. 17.62985F-statistic 829.2748 Durbin-Watson stat 1.590448Prob(F-statistic) 0.000000SUR的估计:在主菜单选择Object->New Object,在弹出的对话框中选择System,点击OK。
统计学原理第九章(相关与回归)习题答案
![统计学原理第九章(相关与回归)习题答案](https://img.taocdn.com/s3/m/cf67c5c2f90f76c661371ae6.png)
第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。
()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。
()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。
()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。
()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。
()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。
()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。
()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。
()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()答案:×题目11:完全相关即是函数关系,其相关系数为±1。
()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。
()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。
A.相关关系和函数关系B.相关关系和因果关系第 3 页共27页C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。
A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。
《统计分析和SPSS的应用(第五版)》课后练习答案与解析(第9章)
![《统计分析和SPSS的应用(第五版)》课后练习答案与解析(第9章)](https://img.taocdn.com/s3/m/bdc8a140bf1e650e52ea551810a6f524ccbfcb9a.png)
《统计分析与SPSS的应用〔第五版〕》〔薛薇〕课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以与不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将fore导入Y轴,将phy导入X轴,将sex 导入设置标记→确定。
接下来在SPSS输出查看器中,双击上图,打开图表编辑在图表编辑器中,选择"元素"菜单→选择总计拟合线→选择线性→应用→再选择元素菜单→点击子组拟合线→选择线性→应用。
分析:如上图所示,通过散点图,被解释变量y<即:fore>与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以与相关方向和程度做出正确判断之前,就进行回归分析,很容易造成"虚假回归"。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。
3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。
统计学第九章相关与回归分析教学指导与习题解答
![统计学第九章相关与回归分析教学指导与习题解答](https://img.taocdn.com/s3/m/dd57f8f948649b6648d7c1c708a1284ac85005aa.png)
统计学第九章相关与回归分析教学指导与习题解答第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。
具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。
Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。
当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。
这种关系,称为具有不确定性的相关关系。
变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。
116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。
按相关的方向可分为正相关和负相关。
按相关的形式可分为线性相关和非线性相关。
按所研究的变量多少可分为单相关、复相关和偏相关。
三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。
回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。
只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。
四、相关图相关图又称散点图。
它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。
【VIP专享】091 第九章线性相关与回归
![【VIP专享】091 第九章线性相关与回归](https://img.taocdn.com/s3/m/449c698d08a1284ac8504390.png)
340
396
455
2332
i1 i1 8 2332-34 557 - 282 -1.8077
n
n
i 1
Xi
a i1 -b i1 557 -(1.8077) 34 77.3077
n
n8
单位成本(元/件)
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关分析与回归分析
一、填空题
1.单复
2.正正
3.相关方向相关程度
4.程度方向
5.函数关系 1
6.随机变量 -1至1
7.1或者-1 0
8.无线性相关低度相关
9. 中度相关高度相关10.随机确定
11.估计标准误差
e s=
12.2 2.83 13.60 252
14.普通最小二乘法误差平方和最小15.线性关系线性关系
16.方向形态 17.平均减少1.9元 78
二、单选题
1、C
2、A
3、C
4、C
5、C
6、D
7、C
8、C
9、B 10、B
11、B 12、B 13、C 14、B 15、A
16、B 17、D 18、B 19、B 20、AB
二、多选题
1、BD
2、ABD
3、BCDE
4、DE
5、AD
6、AC
7、AD
8、DE
9、ABCD 10、ABD
三、判断题
1、×
2、×
3、×
4、√
5、√
6、√
7、×
8、√
9、√ 10、×
简答题
1. 答:(1)区别:具有相关关系的变量之间的数量关系不确定,而具有函数关系的变量之间的数量关系是确定的。
(2)联系:函数关系往往通过相关关系表现出来,相关关系也常常借助函数关系的方式进行研究。
由于认识局限和测量误差等原因,确定性的函数关系在实际中往往表现为相关关系;反之,当人们对事物的内部规律了解得更深刻的时候,相关关系又可能转化为确定的函数关系。
2.答:(1)联系。
①相关分析是回归分析的基础和前提;②回归分析是相关分析的深入和继续。
(2)区别。
①相关分析所研究的变量是对等的关系,回归分析所研究的变量不是对等关系。
②对两个变量来说,相关分析只能计算出一个相关系数,而回归分析可分别建立两个不同的回归方程。
③相关分析要求两个变量都必须是随机的,而回归分析则要求自变量是给定的,因变量是随机的。
3.回归估计标准误差是因变量的实际值与估计值的标准差,即以回归直线为中心反映各实际值与估计值之间的平均误差程度,其定义式为
ˆY
S=
其中,n为样本点个数,k为自变量个数。
回归估计标准误差可以衡量回归方程的代表性大小。
回归估计标准误差越小,表明回归方程的代表性越大;反之,则越小。
4.答:①在定性分析的基础上进行定量分析;②要注意现象质的界限及相前关系作用的范围;③要具体问题具体分析;④要考虑社会经济现象的复杂性;⑤对回归模型中计算出来
的参数的有效性应进行检验。
四、计算题
1、解答:
(1)
从散点图中可以看出,随着销售利润的增加,可比产品成本降低率呈上升趋势,因而二者大致表现为一种线性相关关系。
(2)根据相关系数的简捷公式:
列表计算相关系数,并将结果代入上式,
即:
计算结果表明销售利润与可比产品成本降低率之间存在着高度正相关关系。
2
(元)
)(元。
下降千件时,单位成本平均产量每增加)
()(40.06
1479
)55.1(42526.7630119355.1155.126.76ˆ55
.126
.767921147921642529411
.0893351
425301196217964252114796)()(12ˆ2
2
22222=⨯--⨯-=
--=
∴-=∴-==+=+=+=+=-=-=
-⨯-⨯⨯-⨯=
---=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑N
XY
b Y a Y S X Y
b a b a b a X
b X a XY X
b Na Y Y Y N X X N Y
X XY N r Y
3.
(元)
元时,)
((元)元时,)
((元)
)(元。
加元时,人均支出平均增人均收入每增加)
()(88.121022.168.0ˆ1022.168.0ˆ22
.168
.02303030130540520.91280.040.0ˆ12449.05
301
80.030)40.0(230380.0180.040.0ˆ80
.04
.0396403014053029896
.025*******
30230540396530403015)()(12
2
ˆ2
2
22222=⨯+==∴+=∴==+=+=+=+==⨯+-===⨯-⨯--=
--=∴+-=∴=-=+=+=+=+===
-⨯-⨯⨯-⨯=
---=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑X Y Y X
d c d c d c Y
d Y c XY Y d Nc X Y X N
XY
b Y a Y
S X Y
b a b a b a X
b X a XY X
b Na Y Y Y N X X N Y
X XY N r Y
4.
42
204.0504
.08
.022=⨯-=-=∴+==∴====∑∑X b Y a X
b Na Y b b b
b
r y
y
y
x 又σσσσ
X Y
4.042ˆ+=∴
5.
93
.515.016115
.065
.16.06
.0155141514550ˆ151422ˆ=-⨯=-=∴=⨯==∴=-=-=∴==⨯+=+=+=r S b r a b a b a bX a Y
b
a Y Y y x σσσ即又
6.
36
.49.011011005026002
2
ˆ2222
=-⨯=-=∴=-=-=r S Y Y Y Y Y σσ
7.
06
.55
2740
2.53104.202070032.54.20ˆ2
.54.2037040274040531029558
.074002501300
3102070054037053104027405)()(12
ˆ2
2
22
222=⨯-⨯-=
--=
+=∴==+=+=+=+===
-⨯-⨯⨯-⨯=
---=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑n
xy
b y a y
S x y b a b a b a x
b x a xy x b na y y y n x x n y
x xy n r y )()()(
8.
b
a b
a X
b X a XY X b a Y 17330124011440124088012
+=+=+=+=)(
(元)元时,)(2
.204891800017.18.570ˆ18000217.18.570ˆ17
.18.570=⨯+-==+-=∴=-=Y X X Y
b a
9.
4330.02
8660.022228660
.0)
2(1112
ˆ2ˆ
2
2ˆ
===
∴====-
=-=r b b b b r S S S r y
y y x
y y y
y σσσσσ )()(
10.
94.57633.012.9127633
.02
.91.99
.63122
ˆ2=-⨯=-==⨯==r
S r y y y x xy σσσσ)()(
11.
9596160006.04ˆ1600026.04ˆ60
.000.418420144011560144086012=⨯+-==+-=∴=-=+=+=+=+=Y
X X Y
b a b a b
a X
b X a XY X b a Y 时,)()(
12.(1)
df SS
MS
F
Significance F
回归分析 1 223.1403 223.1403 30.93318 2.79889E-05
残差 18 129.8452 7.213622 总计
19
352.9855
(2)r 2
=223.1403/352.9855=63.2151%
(3)r=0.79508
(4)y=49.31768+0.249233*x ,每平方米月租金每增加1元,出租率平均增加0.249233% (5)p=2.8E-05≤0.05,回归系数显著
13.(1)
df SS MS F Significance F 回归分析 1 735.4902 735.4902 29.08085
残差8 25.29122
总计
(2)r2=735.4902/937.82=78.4255%
(3)r=0.885582
(4)y=4.0685+0.1958*x,广告费用每增加1万元,销售量平均增加0.1958万箱(5)p=0.000651698≤0.05,线性关系显著
14.
而
0.025(1021) 2.3646
t--=
所以推销人员数(x1)不显著,所支出的广告费用(x2)显著。