蒙特卡罗方法及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机处理之蒙特卡罗方
法及其应用
【标题】蒙特卡罗方法及其应用
【摘要】
蒙特卡罗方法是一种随即抽样方法,建立一个与求解有关的概率模型或随即现象来求得所要研究的问题的解。这种利用计算机进行模拟的抽样方法以其精度高,受限少等优点广泛应用于数理计算,工程技术,医药卫生等领域。本文介绍蒙特卡罗方法的简要内容,起源,基本思路及应用优点,并简要介绍了一些蒙塔卡罗方法在相关医学方面的应用,并提出了一些今后发展与应用上的展望。
【关键词】
蒙特卡罗方法基本内容应用
【正文】
一蒙特卡罗方法简介
1 概述
蒙特卡罗(Monte Carlo) 方法, 又称随机抽样法,统计试验法或随机模拟法。是一种用计算机模拟随机现象,通过仿真试验,得到实验数据,再进行分析推断,得到某些现象的规律或某些问题的求解的方法。蒙特卡罗方法的基本思想是,为了求解数学、物理、工程技术或生产管理等方面的问题,首先建立一个与求解有关的概率模型或随机
过程,使它的参数等于所求问题的解,然后通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,最后给出所求解的近似值。
概率统计是蒙特卡罗方法的理论基础,其手段是随机抽样或随机变量抽样。对于那些难以进行的或条件不满足的试验而言,是一种极好的替代方法。蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,很少受几何条件限制,收敛速度与问题的维数无关。
例如在许多工程、通讯、金融等技术问题中,所研究的控制过程往往不可避免地伴有随机因素,若要从理论上很好地揭示实际规律,必须把这些因素考虑进去。理想化的方法是在相同条件下进行大量重复试验,采集试验数据,再对数据进行统计分析,得出其规律。但是这样需要耗费大量的人力、物力、财力,尤其当一个试验周期很长,或是一个破坏性的试验时,通过试验采集数据几乎无法进行,此时蒙特卡罗方法就是最简单、经济、实用的方法。因此它广泛应用在粒子输运问题,统计物理,典型数学问题,真空技术,激光技术以及医学,生物,探矿等方面。
蒙特卡罗方法研究的问题大致可分为两种类型,一种是问题本身是随机的;另一种本身属于确定性问题,但可以建立它的解与特定随机变量或随机过程的数字特征或分布函数之间的联系,因而也可用随机模拟方法解决,如计算多重积分,求解积分方程、微分方程、非线性方程组,求矩阵的逆等。
2 起源
蒙特卡罗方法的起源可以追溯到18世纪著名的蒲丰问题, 1777年,法国科学家蒲丰(Buffon)提出用投针试验计算圆周率π值的问题。
2.1蒲丰问题