5放大电路的频率响应详解

合集下载

放大电路的频率响应

放大电路的频率响应
(2)增益-带宽积
BJT及电路参数一旦选定后, 增益-带宽的乘积基本上是常数。 即:通带增益要增大多少倍,其
带宽就要变窄多少倍。
共射放大电路 完整的频率响应
10
5.4 多级放大电路的频率特性
多级放大电路
总的频率特性的表达式,等于其各级频率特性 表达式的乘积; 总电压增益增大了,但通频带比其任何一级都 窄。级数越多,则fL越高、fH越低、通频带越窄。
其中:
( j ) U Au ( ) o ( j ) U i
称为幅频响应 电压增益的模与角频率
ห้องสมุดไป่ตู้之间的关系
( ) o ( ) i ( ) 称为相频响应 放大电路输出信号与输入
信号的相位差,与角频率 之间的关系
2
幅频响应的中间一段是平坦的, 增益保持为一个常数,这段区域 称为中频区。
2RC
V i
幅频响应: A VH
1
f 1 j f H
1 ( f / f H )2
相频响应: H arctg( f / f H )
注:幅频响应图中,纵坐标是20lg|AVH|,单位dB;横坐标是频率 f,单位Hz, 按对数分度。
频率每变化10倍(变化一个单 位长度),称为一个十倍频程。
注:用折线表示的近似幅频响应 与实际的幅频响应之间,存在一定 的误差。在 f = fH 处误差最大。
1 AVH 0.707 ,而20lg0.707 3dB f f H 时, 2
fH :上限截止频率
7
当 f fH 时, H 0
H 90 当 f fH 时,
当 f fH 时, H 45
因为 o i 表示输出与输入的相位差。 所以,高频时,输出信号滞后 于输入信号。

放大电路频率响应

放大电路频率响应

放大电路频率响应放大电路频率响应是指放大电路对输入信号频率的响应程度。

在实际应用中,我们通常会使用放大电路来放大特定频率范围内的信号。

因此,了解和研究放大电路的频率响应对于电子工程师来说至关重要。

1. 频率响应的定义放大电路的频率响应是指输出信号的幅度和相位与输入信号幅度和相位之间的关系。

频率响应通常以幅频特性和相频特性来描述。

幅频特性表示了放大电路在不同频率下的增益变化情况,而相频特性则表示了输出信号与输入信号之间的相位差随频率变化的情况。

2. 低频放大电路的频率响应低频放大电路通常是指对低频信号进行放大的电路,如音频放大器。

在低频范围内,放大电路的增益通常是比较高的,且相位差变化较小,可以近似认为是线性的。

因此,在低频范围内,放大电路的频率响应一般是比较平坦的。

这也是为什么音频放大器可以将输入信号的音频频率范围放大到可听的范围。

3. 高频放大电路的频率响应高频放大电路通常用于对高频信号进行放大,如射频放大器。

在高频范围内,放大电路的增益会随着频率的增加而下降,并且相位差也会随之变化。

这是因为高频信号的传输特性会受到电感、电容和电阻等因素的影响。

因此,在设计和应用高频放大电路时,需要考虑这些因素,以获得所需的频率响应。

4. 频率响应测量与分析为了准确测量和分析放大电路的频率响应,常用的方法包括频率响应曲线测量和Bode图分析。

在频率响应曲线测量中,会对放大电路输入不同频率的测试信号,然后测量输出信号的幅度和相位差。

通过将这些数据绘制成曲线,可以得到放大电路在不同频率下的频率响应特性。

而Bode图则将频率响应的幅度和相位差以对数坐标的形式绘制出来,更直观地反映了放大电路的频率响应情况。

总结:放大电路的频率响应对于实际应用具有重要意义。

了解放大电路的频率响应可以帮助我们选择适合的放大电路来满足特定的需求。

通过频率响应测量和分析,我们可以更好地研究和设计放大电路,以实现所需的频率响应特性。

放大电路中的频率响应分析

放大电路中的频率响应分析

放大电路中的频率响应分析频率响应是指电路对不同频率信号的响应程度,它描述了一个电路在不同频率下的增益和相位关系。

在放大电路中,频率响应分析十分重要,可以帮助我们了解电路的放大特性及其在不同频率下的表现。

本文将对放大电路中的频率响应进行详细的分析和探讨。

1. 引言在电子电路设计中,信号的放大是一项基本且必要的技术。

而放大电路的频率响应对信号的增益和相位有着重要的影响。

了解和分析放大电路的频率响应可以帮助我们优化电路设计,达到更好的信号放大效果。

2. 频率响应的定义与意义频率响应是指电路对不同频率信号的放大或衰减程度。

可以用增益-频率特性曲线来描述。

频率响应分析有助于我们了解电路的放大范围和频率范围内的增益情况。

3. 放大电路中的频率响应特性不同类型的放大电路,其频率响应特性存在差异。

接下来我们将讨论常见的放大电路的频率响应特性。

3.1 集成放大器的频率响应集成放大器是一种常见的放大电路。

在低频范围内,集成放大器的增益较高,但在高频范围内会出现增益下降的情况。

这是因为集成放大器的极点和零点的存在。

3.2 增强型共射放大器的频率响应增强型共射放大器的频率响应特性会受到电容的影响。

输入和输出的电容以及内部电容会对频率响应产生影响,因此在高频范围内,增强型共射放大器的增益会下降。

4. 频率响应分析方法在分析放大电路的频率响应时,我们可以使用频谱分析或者特定频率点响应分析的方法。

频谱分析可以得到整个频率范围内的响应情况,而特定频率点响应分析则可以更详细地了解某个特定频率下的放大情况。

5. 频率响应优化策略为了优化放大电路的频率响应,我们可以采取一些策略。

比如使用补偿电容来提高高频增益,调整电容和电感的数值以改变频率响应特性等。

6. 实例分析在这一节中,我们将以具体的实例来分析和展示频率响应的影响。

通过实际的测量数据,我们可以更直观地观察到频率响应曲线的变化。

7. 结论频率响应是放大电路分析中的重要内容。

通过频率响应分析,可以帮助我们深入了解电路的放大特性和响应情况。

第五章 放大电路的频率响应-new

第五章 放大电路的频率响应-new
放大电路中有电容,电感等电抗元件 放大电路中有电容 电感等电抗元件, 电感等电抗元件 阻抗随f 阻抗随 变化而变化
1 ZC = jωC
C1
& Ib I& c
& Ib
V&O
前面分析, 前面分析 隔直电容 处理为:直流开路 交流短路 处理为 直流开路,交流短路 直流开路
f 1Hz 10Hz 100Hz 1kHz 10kHz
60 40
带宽 20 0 2
2. 频率响应的分析任务
20 fL
2× 102
2× 103
2× 104 fH
f/Hz
(1)频率响应表达式 AV = AV (ω )∠ϕ (ω ) )频率响应表达式: & 下限频率f (2)带宽 )带宽BW、上限频率 f H、下限频率 L 、
继续
3. AV随 f 变化的原因
继续
(1)高通电路:频率响应 )高通电路:
fL
& Uo jωRC & = Au = & U i 1 + jωRC
1 & = j f fL 令f L = ,则Au 2 πRC 1 + j f fL
f>>fL时放大 倍数约为1 倍数约为
f fL & Au = 1 + ( f f L )2 ϕ = 90° − arctan( f f L )
由于放大电路中耦合电容、旁路电容、 由于放大电路中耦合电容、旁路电容、半导体器 耦合电容 极间电容的存在 使放大倍数为频率的函数。 的存在, 件极间电容的存在,使放大倍数为频率的函数。
继续
5.1 频率响应概述
频率响应——放大器的电压放大倍数 放大器的电压放大倍数 频率响应 与频率的关系

第五章 放大电路的频率响应

第五章 放大电路的频率响应

1 fH 2 RC
1 fL 2 RC
当信号频率等于上(下)限频率时,放大电路的 增益下降3dB,且产生±45°相移
近似分析时,可用折线化的波特图表示电路的频 率特性
一个电容对应的渐进线斜率为20dB/十倍频
简单 RC 电路的频率特性
Ui

R C
Uo

Ui

C R
Uo

RC 低通电路
RC 高通电路
Au
• |Au |
1 0.707
1 f 1 j fH
1 0.707
Au
1 fL 1 j f
|Au |
fL
f

O

fH f
f
O
O –45° –90°
90° 45° O
f
研究频率响应的方法 (1) 三个频段的划分 1) 中频区(段) 特点:Aus与f无关
与f无关
5.4 单管放大电路的频率响应
本节以单管共射电路为例,介绍频率响应的一般 分析方法。
5.4.1 单管共射放大电路的频率响应
1、画出全频段的微变等效电路
+VCC RB C1 + . Ui VT RL . Uo RC C2 + + . Ui _ RB rb′e
C1
rbb′ . gmUb'e Cπ′
C2 + RC . RL U o _
R
fL
L 1 1 下限截止频率 2 2 2 RC
Au பைடு நூலகம்
1
L 1 j

1 fL 1 jf

f j fL f 1 j fL
1、RC高通电路的频率响应

放大电路的频率响应

放大电路的频率响应

20 lg A V (dB)
0dB ; 称之为波特图。 ①当 f 0.1 f H 时, 20 lg A V 3dB ; ②当 f f 时, 20 lg A
H V
20 dB ; ③当 f 10 f H 时, 20 lg A V
0.01fH
低通电路的相频特性曲线 fH 称之为上 f arctan 限截止频率 f H (上限频率) ①当f 0.1 f H 时, 0o; ②当f f H 时, 45o; ③当f 10 f L时, 90o
极间电容的存在,
耦合电容的存在,对
对信号构成了低通电
路,即对频率足够低
信号构成了高通电路,
即对频率足够高的信号
的信号相当于开路,
对电路不产生影响。
相当于短路,信号几乎
无损耗地通过。
U i
U o
U i
U o
一. 频率响应的基本概念
1.RC高通电路的频率响应 图中:
V i V o
1 AV ( ) 2 f 1 f H f ( ) arctan f H
幅频特性
相频特性
( ) A V
1 f 1 f H
2
幅频特性
f ( ) arctan f H
gm U be rbe UT 将 rbe 1 代 入 g m, 有 : IE I b

IE gm UT
3.确定混合π 模型的主要参数: 混合π模型
Cbc I Cbc
h参数模型 b
U ce
ib
ic βib

第五章 放大电路频率响应

第五章 放大电路频率响应

ωH 2π

1 2 ππ o C o
fH为RoC’o低通电路的上限频率。 那么
Au

1 j 1 ( f
f fH )
2
1 1 j ω ωH

1 1 j f fH

(2)频率特性
fH
①幅频特性分析
Au

1 1 ( f fH )
2
当f<<fH时(即中频及以下): A u 1; 当f=fH时:
R rbe //rbb ( Rs // Rb )
Ausm Uo rbe Ri gm Rc Rs Ri rbe Us
二、单管共源放大电路及其等效电路
单管共源放大电路及其等效电路
在中频段 C 开路,C短路,中频电压放大倍数为
gs

A um

Uo


gm U
gs
( R d // R L )
gs
g m RL
Ui
U
在高频段,C短路,考虑 C gs 的影响,Rg和 C 组成 低通电路,上限频率为:
其近似波特图自行画出。
四、高频段的频率特性
1.高频段交流通路
2.电路的输出电阻Ro与管子的结电容Ccb、Cbe以及输出电 路元件分布电容Co组成低通电路
C o 为Ccb、Cbe以及Co的等效电容。考虑
它们的影响后,uce中不同频率成分在 等效电容上的分压不同。利用相量分压 法讨论分压,进而得频率特性。
和低频段下降的主要原因分别是什么。
本章讨论的问题:
1.为什么要讨论频率响应?如何讨论一个RC网络的频 率响应?如何画出频率响应曲线?
2.晶体管与场效应管的h参数等效模型在高频下还适应吗? 为什么? 3.什么是放大电路的通频带?哪些因素影响通频带?如何 确定放大电路的通频带? 4.如果放大电路的频率响应窄,应该怎么办? 5.对于放大电路,通频带愈宽愈好吗? 6.为什么集成运放的通频带很窄?有办法展宽吗?

5章 放大电路的频率响应题解

5章 放大电路的频率响应题解

第五章 放大电路的频率响应5.1 某放大电路中VA 的对数幅频特性如图题5.1所示。

(1)试求该电路的中频电压增益VMA ,上限频率Hf ,下限频率L f ;(2)当输入信号的频率L f f =或Hff =时,该电路实际的电压增益是多少分贝?图题5.1解:(1)由图题5.1可知,60lg 20=VM A ,3lg =VM A 。

310=VM A 即为中频增益。

上、下限频率分别为Hz f H 810=和Hz f L 210=。

(2)实际上L f f =或Hf时,电压增益降低dB 3(半功率点),即实际电压增益为dB 57360=-。

5.2 已知某电路的波特图如图题5.2所示,试写出uA 的表达式。

图题 5.2解: 设电路为基本共射放大电路或基本共源放大电路。

)10j 1)(10j 1( 3.2j )10j 1)(j 101(3255f f f A f f A uu++-≈++-≈ 或 5.3 已知某放大电路电压增益的频率特性表达式为)101)(101(101005f j f j fjA V ++=(式中f 的单位为Hz )试求:该电路的上、下限频率,中频电压增益的分贝数,输出电压与输入电压在中频区的相位差。

解:上下限频率分别为Hz f H 510=和Hz f L 10=,中频增益100=VM A ,转化为分贝数:dB A VM 40220100lg 20lg 20=⨯==,VM A 为实数,故i V ,0V 相位差为0。

5.4 一放大电路的增益函数 )102(1110210)(6⨯+⋅⨯+=ππs s ss A试绘出它的幅频响应的波特图,并求出中频增益,下限频率L f 和上限频率Hf 以及增益下降到1时的频率。

解:由拉氏变换可知,f j S π2=故电压增益:21022111022210)(⨯+⋅⨯+=πππππf j f j f j f A V6101110110f j f j +⋅-=于是,Hz f L 10=,Hz f H 610=,10=VM A ,波特图如图解5.4所示。

放大电路的频率响应解读

放大电路的频率响应解读
RC

1 Av 1 ( f
f0 fH
fH
)2
1 2RC
• 由以上公式可做出如图所示的RC低通电路的近似频 |Au | 1 率特性曲线: 0.707
Av 1 1 ( f fH )
2
f arctg(
) fH
O O –45 –90

fH f
f
f 0 时, Au 1 ; 0
U be
(b)混合 模型
混合 模型的简化 (a)简化的混合 模型
Cμ 跨接在输入与输出回路之间,电路分析变得相当复杂。 常将Cμ 等效在输入回路和输出回路,称为单向化。单向 化靠等效变换实现。
因为Cπ >> Cu ,且一般情况下。 Cu 的容抗远大于集电 // 极总负载电阻R/L,Cu 中的电流可忽略不计,得简化模 型图(C)。
当 f =fH 时,相频特性将滞后45°,并具有 -45/dec的斜率。在0.1 fH 和10 fH处与实际的相频 特性有最大的误差,其值分别为+5.7°和-5.7°。 这种折线化画出的频率特性曲线称为波特图,是 分析放大电路频率响应的重要手段。
RC高通电路
RC高通电路如图所示。 & 为: 其电压放大倍数 A v • • Uo R 1 Au • U i R 1 / j C 1 1/j RC 式中
U be
混合π模型
(a)晶体管的结构示意图
I b0 ,这是因为β本身 这一模型中用 g m V b'代替 e 就与频率有关,而gm与频率无关。
.
.
2、简化的混合 模型 通常情况下, rce远大于 c--e 间所接的负载 电阻,而 rb/c也远大于Cμ 的容抗,因而可 认为rce和rb/c开路。

第5章放大电路的频率响应

第5章放大电路的频率响应
+ Ui C + Uo


(b) 高频段极间电容的影响
结束
第 5章
放大电路的频率响应
一、高通电路
图5.1.1 高通电路及频率响应
结束
第 5章
放大电路的频率响应
RC高通电路的电压增益: ( s) U R 1 o Au ( s ) 1 1 U i ( s) R 1 j C jRC 1 1 1 fL L 令 2RC RC
A ush
R rbe //(rbb Rs // Rb ) U U U U 0 s be 0 U U U U
s s s be
1 Ri rbe jRC ( g m R L) 1 Rs Ri rbe 1 jRC
f fL f 2 1 ( ) fL
f 180 (90 arctg ) fL f 90 arctg fL
结束
第 5章
放大电路的频率响应
三、高频电压放大倍数
图5.4.4 单管共射放大电路的高频等效电路
结束
第 5章
放大电路的频率响应
rbe rbe Ri Us Ui U s rbe rbe Rs Ri
'


U b'e (1
U ce U b 'e


(c)
)
1 j C m


U ce U b'e


K ,则
U b'e (1 K ) U b 'e I 1 1 j C m j (1 K )C m
'

结束
第 5章
放大电路的频率响应

模拟电路第05章 放大电路的频率响应图

模拟电路第05章 放大电路的频率响应图
返回
图5.1.1 高通电路及频率响应
返回
图5.1.2 低频电路及其频率响应
返回
图5.1.3 高通电路与低通电路的波特图
返回
5.2 晶体管的高频等效模型
• 图5.2.1 晶体管结构示意图及混合π模型 • 图5.2.2 混合π模型的简化 • 图5.2.3 的分析 • 图5.2.4 的波特图
返回
C1
RS +
VS -
VCC
大 RB
RC
C2 + RL VO -
b rbb b’cBiblioteka RS+ VS
-
e
rbe gmvbe
RL Vo
e
中频增益:
Am
VO VS
Vbe VS
VO Vbe
rbe
gm Vbe RL
RS rbb rbe
Vbe
RS
rbe rbb
rbe
gm RL
O RL rbe O RL
5、查手册得:rbb、cbc、fT (已知条件);
6、
e
结电容:cbe
gm
2 fT
cbc
Miller 定理
I1
Z
Z in + V1 ~ -
Ii I +
ri AV1 -
I2
单向化
Z in
+
+ I1
V2 -
V1 ~ -
Z1
Ii II +
ri AV1 -
I2
+ Z2 V2
-
加 V1 产生 V2 :
Z1 IIV 1 I
返回
图5.6.1 未加频率补偿的集成运放的频率响应

第5章放大电路的频率响应

第5章放大电路的频率响应

f L(H)
1 = 2 πτ
4、频率响应有幅频特性和相频特性两条曲线。 、频率响应有幅频特性和相频特性两条曲线。
5.2、ቤተ መጻሕፍቲ ባይዱ大电路的频率参数 5.2、放大电路的频率参数
高通 电路 低通 电路 下限频率
f bw = f H f L
上限频率
在低频段,随着信号频率逐渐降低,耦合电容、 在低频段,随着信号频率逐渐降低,耦合电容、旁路电 容等的容抗增大,使动态信号损失,放大能力下降。 容等的容抗增大,使动态信号损失,放大能力下降。 在高频段,随着信号频率逐渐升高, 在高频段,随着信号频率逐渐升高,晶体管极间电容和 分布电容、寄生电容等杂散电容的容抗减小, 分布电容、寄生电容等杂散电容的容抗减小,使动态信号 损失,放大能力下降。 损失,放大能力下降。
f << fβ 时,& ≈ β0; β
& β βo
β f = fβ 时 β = 0 ≈ 0.707β0 , = -45°; ,& 2 & ≈ fβ β ;f →∞时 β →0, →-90° f >> fβ 时 β , ,& 0 f
电流放大倍数的波特图: 电流放大倍数的波特图: 采用对数坐标系
折线化近似画法
晶体管的高频等效电路
1、混合π模型:形状像Π,参数量纲各不相同 混合π模型:形状像Π
结构:由体电阻、结电阻、结电容组成。 结构:由体电阻、结电阻、结电容组成。 因面积大而 阻值小
因多子浓度 高而阻值小
rbb’:基区体电阻 rb’e’:发射结电阻 Cπ:发射结电容 re:发射区体电阻 rb’c’:集电结电阻 C:集电结电容 rc:集电区体电阻
C连接了输入回路 和输出回路, 和输出回路,引入 了反馈, 了反馈,信号传递 有两个方向, 有两个方向,使电 路的分析复杂化。 路的分析复杂化。

模拟电子技术5

模拟电子技术5

1
(
2
π
C
' π
)
A u A u m ( 1 jffL )(1 1 j j 3 ff3 fL f) L (2 f L 1 1 j f f L 2fL 3)(3 1 jffH )
n个放大管
m
fL 1.1
f
2 Lk
k1
1 1.1
fH
n1 f2
k1 Hk
1.1为修正 系数
结论:1. 放大电路的级数越多,频带越窄; 2. 若 fLk 远高于其它各级,则 fL≈fLk; 3. 若fHk远低于其它各级,则 fH≈fHk;
例5-2:某电路各级均为共射电路,求:fL, fH, Au。
例5-1:
Au
(1j
10jf f )(1j
f
)
10 105
试求解:
(1)Aum=?fL=?fH =?
(2)画出波特图。
100 j f
A u
(1
j
f
10 )( 1 j
f
)
10
10 5
A u m 100
f L 10 Hz
f H 10 5 Hz
5.4.3 放大电路频率响应的改善 和增益带宽积
若R : brbe Ri Rb//rberbe RbRs Rb//Rs Rs C' (1gmRL ' )CC,gmRL ' 1 C' CC' gmRL ' C
| Ausmfbw|2r1bb'C
| Ausmfbw|2r1bb'C
因 rbb’ 和 Cμ由晶体管决定,故管子选定后, 放大电路增益带宽积就大体确定。即:增益 增大多少倍,带宽几乎就变窄多少倍。

放大电路的频率响应

放大电路的频率响应

第五章放大电路的频率响应在实际应用中,电子电路所处理的信号,如语音信号、电视信号等都不是简单的单一频率信号,它们都是由幅度及相位都有固定比例关系的多频率分量组合而成的复杂信号,即具有一定的频谱。

如音频信号的频率范围从20Hz到20Hz,而视频信号从直流到几十兆赫。

由于放大电路中存在电抗元件(如管子的极间电容,电路的负载电容、分布电容、耦合电容、射极旁路电容等),使得放大器可能对不同频率信号分量的放大倍数和相移不同。

如放大电路对不同频率信号的幅值放大不同,就会引起幅度失真。

如放大电路对不同频率信号产生的相移不同就会引起相位失真。

幅度失真和相位失真总称为频率失真,由于此失真是由电路的线性电抗元件(电阻、电容、电感等)引起的,故不称为线性失真。

为实现信号不失真放大所以要需研究放大器的频率响应。

5.1频率失真与非线性失真频率失真和非线性同样都是使输出信号产生畸变,但两者在实质上是不同的。

具体体现以下两点:1. 起因不同:频率失真是由电路中的线性电抗元件对不同信号频率的响应不同而引起,非线性失真由电路的非线性元件(如BJT、FET的特性曲线性等)引起的。

2. 结果不同:频率失真只会使各频率分量信号的比例关系和时间关系发生变化,或滤掉某些频率分量信号。

但非线失真,会将正弦波变为非正弦波,它不仅包含输入信号的频率成分(基波),而且还产生许多新的谐波成分。

5.1.1 时间常数RC电路的频率响应放大电路频率响应的基本概念1. 放大电路的频率响应频率响应表达式表示电压放大倍数的模与频率的关系,称为幅频响应。

表示放大器输出电压与输入电压之间的相位差与频率的关系,称为相频响应。

2. RC耦合放大器的幅频特性RC耦合放大器的幅频特性曲线如图所示。

中频区:在一个较宽的频率范围内,曲线是平坦的。

即放大倍数不随信号频率而变。

(在此频率范围内,耦合电容、射极旁路电容视为短路,极间电容视为开路)。

高频区(高于f H的频率范围):当信号频率升高时,放大倍数随频率的升高而减少。

第5章 放大电路的频率响应(1)

第5章 放大电路的频率响应(1)
5 - 1 - 25
例1: 已知某电路的波特图如图所示。 (1)电路的中频电压增益 = -32 。 = 30 dB, A um
(2)电路的下限频率fL≈ 10 Hz,上限频率fH≈ 100 kHz。
(3)电路的电压放大倍数 = 的表达式 A u
A u 32 (1 10 f )( 1 j 5 ) jf 10 或A u 3.2 jf f f ( 1 j )( 1 j 5 ) 10 10
5 - 1 - 34
例3(p243 自测题一)选择正确答案填入空内。
( 3)当信号频率等于放大电路的fL 或 fH时,放大倍数 的值约下降到中频时的 B 。 A.0.5倍 B.0.7倍 C.0.9倍 即增益下降 A 。 A.3dB B.4dB C.5dB (4)对于单管共射放大电路,当f = fL时,输出与输 入相位关系是 C 。 A.+45˚ B.-90˚ C.-135˚ 当f = fH时,输出与输入的相位关系是 C 。 A.-45˚ B.-135˚ C.-225˚
模拟电子技术基础
第十七次课
河北科技大学信息学院
基础电子教研室
5-1-1
第五章 放大电路的频率响应
. 频率响应概述
. 晶体管的高频等效模型 . 放大电路的频率响应
5-1-2
5.1 频率响应概述
一、 频率响应的概念: 在放大电路中,放大倍数与信号频率的函数关系, 称为频率响应或频率特性。
放大电路中由于C,L及晶体管极间电容的存在,电路对不 同频率的信号具有不同的放大能力。 在第二章中2.1介绍电路性能时,简单说明了通频带的概念。 指出放大电路对某一频率范围的信号能正常放大,这个频率范围 称为通频带。 了解电路对不同频率信号的放大能力,在使用电路前应查阅 资料,了解通频带,确定电路的适用范围。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章放大电路的频率响应
5.1
频率响应概述
5.1.1 研究放大电路频率响应的必要性
由于放大电路中存在电抗性元件(电解电容) 及晶体管极间电容,所以电路的放大倍数为频率 的函数,随着频率的变化,容抗随之变化,放大 倍数的大小和相位均会发生变化。 放大倍数与频率的关系称为频率响应或频率特性。 频率响应的表达式常用相量来表示 。
童 诗 白 第 四 版
3、集成放大电路频率响应的表达式及波特图绘 制 、分析。
本章教学时数: 6学时
第五章放大电路的频率响应
5.1
频率响应概述
本节讨论的问题:
1.什么是频率响应?如何研究RC放大电路的频率响应? 2.放大电路频率响应好坏由什么性能指标决定?
本节学习方法:
1.解析式分析法 (相量表达式) 2.图解分析法-波特图法
第五章放大电路的频率响应
5.2 晶体管的高频等效模型
复习:晶体管的h参数等效模型
rce
问题: 晶体管的h参数等效模型在高频下还适应吗?
第五章放大电路的频率响应
5.2 晶体管的高频等效模型
5.2.1 晶体管的混合 模 型
一、完整的混合模型
U be
(a)晶体管的结构示意图
(b)混合模型
的值愈小, 且频率愈低,A u
最大误差为 3 dB, 发生在 f = fL处
低频信号不能通过。
第五章放大电路的频率响应
对数相频特性
f 相角: 90 arctan ( ) fL

90º
45º 0 误差 5.71º 45º /十倍频
f f L 时, 0; f f L 时, 90; f f L 时, 45
为什么说该电路是低通电路?0
0.1 fH 3dB
fH
10 fH
f
对数幅频特性:
f 20lg Au 20lg 1 fH
2
20 40
20dB/十倍频
对数相频特性:
f arctan f H

0 45º 90º
0.1 fH
fH 10 fH 45º /十倍频 5.71º
L u
f 当 f f L 时, 20lg Au 20lg fL
20 lg 2 3dB 当 f f L 时, 20 lg A u
第五章放大电路的频率响应
对数幅频特性:波特图
/ dB 20lg A u
0 dB 当 f f L 时, 20lg A u
图 5.2.1晶体管结构示意图及混合 模型
第五章放大电路的频率响应
二、简化的混合模型 通常情况下, rce远大于 c--e 间所接的负载 电阻,而 rb/c也远大于Cμ 的容抗,因而可 认为rce和rb/c开路。
fL 称为下限截止频率
A u
1 fL 1 f f L 1 1 1 j j L jf fL
1
j
f
第五章放大电路的频率响应
A u
1 fL 1 f f L 1 1 1 j j L jf fL
f fL f 1 f L
2
1
j
电压增益的幅值与频率的函数关系称为幅频特性 电压增益的相位差与频率的函数关系称为相频特性。
第五章放大电路的频率响应
5.1.2 频率响应的基本概念
一、 高通电路
U R Au O 1 Ui R jC 1 1 1 jRC
C
+
U i
+
R
U O
_
_
令:
1 1 fL 2RC 2 L
f
在高频段,低通 电路产生 0~ 90° 的滞后相移。
5.71º
图 5.1.3(b)
低通(1)电路中若考虑电容效应,电压增益的大小和 相角会随频率的变化而变化。 (2)电路的截止频率决定于电容所在回路的时间 常数τ ,即决定了fL和fH。 (3)当信号频率等于fL或fH放大电路的增益下降 3dB,且产生+450或-450相移。 (4)近似分析中,可以用折线化的近似波特图 表示放大电路的频率特性。
R
+
U i
+
C
U O
_
_
图 5.1.2
RC 低通电路图
fH 称为上限截止频率
A u
1 1 1 j H 1 j f fH
f 1 fH f arctan fH
u A
1
2
第五章放大电路的频率响应
问题:
/ dB 20lg A u
第五章
放大电路的频率响应
5.1 频率响应概述
5.2 晶体管的高频等效模型 5.3 场效应管的高频等效模型
童 诗 白 第 四 版
5.4 5.5 5.6
单管放大电路的频率响应 多级放大电路的频率响应 集成运放的频率响应和频率补偿
本章重点和考点:
1、晶体管、场效应管的混合π(高频)模型的建 立。 2、单管共射放大电路混合π模型等效电路图、 频率响应的表达式及波特图绘制 、分析。
20lg f 当 f f L 时, 20lg A u fL
0.1 fL fL 10 fL f
0 3dB 20
实际幅频特性曲线: 幅频特性曲线常用画法:
20dB/十倍频 高通特性:
40
图 5.1.3(a)
幅频特性
1 A u 1 当 f < fL (低频), A u
当 f ≥ fL(高频),
5.71º 0.1 fL fL 10 fL f
图 5.1.3(a)
相频特性
在低频段,高通电路产生 0 ~ 90° 的超前相移。
第五章放大电路的频率响应
二、 RC 低通电路的波特图
1 1 jC Au 1 1 j RC R jC
令 :f H
1 1 2 H 2RC
f
幅值: A u
幅频特性
f 相角: 90 arctan ( ) fL
相频特性
第五章放大电路的频率响应
问题:为什么说该电路是高通电路?
以放大电路的 对数频率特性进行分析: 对数幅频特性:
u A
f fL f 1 f L
2
2
则有:
f f 20 lg Au 20 lg 20 lg 1 fL f L 0 dB 当 f f 时, 20lg A
相关文档
最新文档