激光测距系统方案设计书
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
摘要
引言31.1国内外研究现状3
1.1.1国外研究现状41.1.2国内研究现状5
2.1课题主要研究内容5
2.2相位法测距原理7
3.1ΔΦ的测定113.1.1 差频法测多普勒频移11
4.1影响测量精度的因素及处理办法15
5.1大气折射率误差18
优点19参考文献
激光测距系统设计
摘要
本文主要介绍相位法激光测距基本原理, 详细论述了相位差的自动数字测量方法及其引起的误差.对单次检相的精度、频率漂移、大气折射率等对测距误差的影响进行了分析并提出了具体解决方法. 实现结果表明, 采用相位法测距-6)。D10×
精度可以达到±(5mm+5
。精度激光测距。相位关键词:
Abstract The authors introduce the basic principle of laser
range finding technology based on phase, propound
in detail the automatic digital measurement technique of phase difference and its
errors,analyze the effect of single phase-picking precision frequency drift and atmosphere refractive etc.on laser ranging errors and put forward index,some special improvement methods The result of
laser ranging realization show that adopting phase ±laser ranging can achieve the precision of
-6.
)D10×5mm+5(.
Keywords:laser range finding。phase。accuracy
1.1引言
激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域。
激光多普勒测速仪是利用激光多普勒效应来测量
流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率,快速动态响应及较宽的测量范围,由于采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。正因为该技术有如此多的优点,因此近些年得到了人们的广发关注。
1.2国内外研究现状
1.2.1国外研究现状
20世纪中期,激光测距机是激光器在军事上最早应用的工程。世界上第一台激光测距机于1961年诞生在美国休斯飞机公司,称为柯利达I型.经过30年的发展,军用激光测距机已更新了两代,研制发展了三代。第一代激光测距机采用发射0. 6943,cun红外红宝石激光器和光电倍增管探测器,是最早问世的激光测距机.20世纪70年代初期少式,因其隐蔽70、日本的AN/GVS-3量装备部队,如美国的.
性差、效率低、体积大、重量重、耗电多,很快便被第二代激光测距机取代。第二代激光测距机采用发射1. 06,tnn近红外钦激光器(主要是Nd:YAG激光器,少数为钦玻璃激光器)
和硅光电二极管或硅雪崩光电二极管探测器。第二代比第一
代隐蔽性好、效率高、小巧、耗电少,因此第二代激光测距机的小型化研制进展迅速。第三代激光测距机,即人眼安全的激光测距机。目前已研制成工作波长为10. 6μm和1. 54
μm的三种不同类型的各种型号的人眼安全激光测距机,己进入生产和应用阶段。与此同时,激光测距技术也逐渐应用到民事领域。从20世纪70年代初至今的近30年,国外许多大学、研究机构和公司也开展了这方面的研究工作。
1.2.2国内研究现状
我国激光测距仪的研究始于20世纪50年代,是在原固体、气体激光测距机基础上,发展起来的。目前,基础技术已具备,主要是解决工程应用的问题,开发各种应用产品。1972年,北京光学仪器厂与武汉地震大队等联合研制成国内首台JCY-1型精密气体激光测距仪,1974年研制出了JCY-2型激光测距仪,测程为15-20 km,测距精度±(10mm
+ 1 ppm x D) 。He-Ne激光管,2. 5 mW,调制方式为石英超种调制频率,测相采用手动方式,速5声外调制,采用了.度慢。1973-1976年,北京测绘仪器厂与北京大学、北京光学仪器厂、清华大学、国家测绘总局测绘科学研究所和北京市地质地形勘测处分别合作,先后研制成HGC-1型及DCH-1型红外测距仪,精度分别为±1. 5 mm和±5mm,测程分别为l km和1. 5 km。它们采用半导体激光器作为光源,直接内调制方式,2种调制频率。测量时间分别为6.6s和10s。
2.1课题主要研究内容
本文主要任务是完成相位式激光测距技术的研究、设计。整个研究过程,理论分析与实验工作相结合,采取的研究方法为:查阅并收集资料、选择合适的器件,测距理论总体设计和各个部分电路的研究设计,从而给出了整个相位式半导体激光测距系统的电路系统实现方案。整个电路系统包括了四大部分,它们分别是:
(1)半导体激光器的调制驱动电路,这部分采用高频正弦信号对激光器的注入电流进行调制,使得激光器光强随注入电流而变化。
(2)光电检测放大滤波电路,这部分采用P-I-N光电二极管对激光信号进行探测。.
(3)锁相环频率综合电路,这部分先对锁相环原理作了简单介绍,然后应用高精度的频率计作频率校准,自动调节本机振
荡频率, 确保用作检相的低频信号的频率稳定不变.
(4)利用数字测相系统进行测相,最后通过屏幕显示出来。
相位式激光测距是通过测量连续的幅度调制信号在待测距
离上往返传播所产生的相位延迟,间接地测定信号传播时间,从而得到被测距离的。这种方法测量精度高,通常在毫M量级。相位式激光测距的原理框图如图2-5所示。它由激光发射系统、频率调制系统、回波接收系统、混频鉴相系统和计数显示系统等组成。激光信号由调制系统调制后,经被测物