第三讲矩阵的基本运算

合集下载

矩阵的基本运算

矩阵的基本运算

如果 AT A 则矩阵A称为反对称矩阵.
由此可知,反对称矩阵旳对角元必为零,即 aii = 0
0 5 4
例如
B
5
0 1 是3阶反对称矩阵.
4 1 0
例 设列矩阵 X x1, x2 , , xn T 满足 X T X 1,
E为n阶单位矩阵, H E 2XX T , 证明 H是对称矩阵, 且HH T E.
(i 1, 2, m; j 1, 2, , n)
把此乘积记作 C AB
例如
C 2 1
4 2
222 3
4
16
?
32
622 8 16 22
1 0


A
1
1
0 5
求AB.
1 3 1
2
0
4
0
B
1
3
1
3 2 1 2
4
1
1
1


A
aij
,B
34
bij
证 因为 H T (E 2 XX T )T ET 2( XX T )T E 2XX T H
所以H 是对称矩阵. HH T H 2 (E 2 XX T )2
E 4XX T 4( XX T )( XX T ) E 4XX T 4X ( X T X )X T E 4XX T 4XX T E
(3) (AB)( A)B A(B) (其中为常数)
(4) AE EA A
注 矩阵乘法不满足互换律,即 AB BA
例如

A
1
1
,
B
1
1
1 1
1 1
两个非零矩阵旳 乘积可能是零矩阵

矩阵的运算优秀课件

矩阵的运算优秀课件

且A2X=B,求X。
解:
X
=
1 2
(B
A)
=
1 2
2 0 0
2 1 5
5 1 2
2
4
5
1 1 = 0 1/ 2
5/2 1/ 2
1 2

0 5 / 2 1 5 / 2
练习
首页
上页
返回
下页
结束

三、矩阵的乘法
定义2.5 设A是一个ms矩阵,B是一个sn矩阵:
a11 a12 a1s
0 3 6 9 0 12 8 16
92 156 214 60 7 9 17 6
= 64 02 1210 914 = 2 2 2 5 。
00 312 68 916 0 9 2 7
首页
上页
返回
下页
结束

3572
1320
例4.已知 A= 2 0 4 3 , B = 2 1 5 7 ,
0 1 23
0 6 48
列式称为矩阵A的行列式,记为|A|,即
首页
上页
返回
下页
结束

2. 数乘矩阵满足的运算律
设 A, B 为同型矩阵, λ , μ为常数,则
(1) (λμ) A=λ (μ A); (2) (λ + μ)A = λ A + μ A. (3) λ(A + B) = λ A + λ B.
结合律 分配律 分配律
矩阵加法与数乘矩阵统称为矩阵的线性运算。
首页
上页
返回
下页
结束

四、方阵的幂
(1) 定义
如果 A 是 n 阶矩阵, 那么AA 有意义, 也有意义, 因此有下述定义:

矩阵运算的基本方法

矩阵运算的基本方法

矩阵运算的基本方法矩阵是线性代数中重要的概念之一,被广泛应用于科学、工程、计算机等领域。

矩阵的运算是矩阵在各种应用中的基础,下面将阐述矩阵的基本运算方法。

一、矩阵的定义矩阵是一个由m行n列元素组成的数表,常用大写字母加方括号表示:A=[a_ij]_(m×n),(i=1,2,...,m;j=1,2,...,n)其中a_ij是第i行第j列的元素,称为矩阵A的(i,j)元素。

二、矩阵的基本运算1. 矩阵加法设有两个m×n的矩阵A=[a_ij]和B=[b_ij],则它们的和C=A+B=[c_ij]也是一个m×n的矩阵,其中:c_ij=a_ij+b_ij(i=1,2,...,m;j=1,2,...,n)两个矩阵相加时,要求它们的行数和列数相同。

2. 矩阵数乘设有一个m×n的矩阵A=[a_ij]和一个常数k,则它们的积kA=[ka_ij]也是一个m×n的矩阵,其中:ka_ij=k×a_ij(i=1,2,...,m;j=1,2,...,n)3. 矩阵乘法设有一个m×n的矩阵A=[a_ij]和一个n×p的矩阵B=[b_ij],则它们的积C=A×B=[c_ij]是一个m×p的矩阵,其中:c_ij=∑(k=1)(n)a_ik×b_kj(i=1,2,...,m;j=1,2,...,p)两个矩阵相乘时,要求前一个矩阵的列数等于后一个矩阵的行数,才能进行乘法运算。

4. 矩阵转置设有一个m×n的矩阵A=[a_ij],则它的转置矩阵AT=[a_ji]是一个n×m的矩阵,其中AT的(i,j)元素是A的(j,i)元素。

三、矩阵运算的性质1. 矩阵加法和数乘具有交换律和结合律。

2. 矩阵乘法不满足交换律,但满足结合律。

3. 对于任意矩阵A和B,下列运算都是成立的:a. (A+B)T=AT+BTb. (kA)T=kATc. (AB)T=BTAT四、应用举例1. 矩阵求逆矩阵求逆是线性代数中的重要问题之一,可以用于解线性方程组等应用中。

矩阵的运算

矩阵的运算

数乘矩阵的运算满足规律: 1. λ(μA)=(λμ )A 2. (λ+μ)A= λA+μ A 3. λ( A+B)= λA+ λ B 三、 矩阵与矩阵的乘法 定义3 设 A = ( aij ) 是一个 m×s 矩阵, B = ( bij ) 是一 个 s×n矩阵,定义 A 与 B的积为一个 m×n 矩阵C = ( cij ) ,
c ij
b sj j
例3
12 3 3 0 4 1 1 2 0 2 = 4 5 1 1 4 1
例4 a 1
a2 (b1 b2 a 3
a1b1 b3 ) = a 2 b1 a b 3 1
a1b2 a 2 b2 a 3 b2
a1b3 a 2 b3 a 3 b3
其中Cij=ai1b1j+ai2b2j+…+aisbsj , (i=1,2,…,m; j=1,2, …,n .) 把A 与 B 的乘积记成 AB, 即 C = AB . A B = AB m×s s×n m×n
i行 → a i 1 ai2
注意可乘条件!
a is b1 j b2 j =
注:对矩阵A与B,若AB=0未必有 A=0或B=0。
1 0 0 a11 a12 a11 例 6 0 1 0 a21 a22 = a 21 0 0 1 a a a 31 32 31
a12 a 22 a 32
下面介绍几个特殊的n 阶方阵
1 0 En = 0 0 1 0 0 0 称为单位矩阵. 1
二、 数与矩阵的乘法 定义 2 数λ与矩阵A的乘积记成λA或Aλ,
λa11 λa 21 λA = λa m1
规定为
λa12 λa 22 λa m 2

第三讲矩阵的基本运算

第三讲矩阵的基本运算

• 矩阵特征值和特征向量 • E=eig(A) 求特征值 • [V,D]=eig(A) D是特征值构成的对角阵;V是 特征向量阵,列为特征向量。 • 对称正定阵的cholesky分解 • R=chol(A) A对称正定,R为上三角阵,R’*R=A
• • • • • 方阵的QR分解 [Q,R]=qr(A) Q为正交矩阵,R为上三角阵,Q*R=A 可逆阵的 LU分解 [L,U]=lu(A) L是下三角阵,U是上三角阵 这些对解线性方程组还是很有利的。
3.1.5 矩阵的转置和共轭转置
复矩阵的共轭转置:B=A’ or B=ctranspose(A);
复矩阵的转置:B=A.’ or B=transpose(A)
注意:共轭转置是指先每个元素求共轭,再把矩 阵转置;转置运算是点运算。 3.1.6 矩阵的函数运算 1. 常用函数见P59函数表,是对每个元素求函数 值 记住一些常用函数格式!!!
第三讲内容介绍
目标:进一步了解MATLAB,能够
熟练掌握矩阵的各种基本运算法
则。
3.1 MATLAB矩阵的代数运算
3.1.1 加法和减法运算
C=A+B或 C=plus(A,B)
C=A-B或C=minus(A,B) 注意:加减运算要求A、B同构,即大小一样 特别地,标量可以和任意大小的矩阵进行加减 例题3.1.1显然略讲 3.1.2 乘法运算 普通矩阵乘法:C=A*B或C=mtimes(A,B)
3.4.2 两个集合的并集 格式:c=union(a,b)
%返回a,b的并集,即c=a
b
C=union(A,B,’rows’) %返回矩阵A,B不同行向量构成的大矩阵, 其中相同行向量只取其一。 [c,ia,ib]=union(…) % ia,ib分别表示c中行向量在原矩阵(向量)中的位置。 >> A=[1,2,3,4]; >> B=[2,4,5,8]; >> C=union(A,B) 则结果为: C= 1 2 3 4 5 8 >> A=[1,2,3,4;1,2,4,6]; >> B=[1,2,3,8;1,1,4,6]; >> [C,IA,IB]=union(A,B,'rows') C= 1 1 4 6 1 2 3 4 1 2 3 8 1 2 4 6 IA = 1

矩阵的基本运算

矩阵的基本运算

矩阵的基本运算矩阵是数学中非常重要的一个概念,它在各个领域都有着广泛的应用。

矩阵的基本运算包括矩阵的加法、减法、数乘和矩阵的乘法等。

本文将围绕这些基本运算展开讨论。

首先,我们来讲解矩阵的加法。

如果两个矩阵A和B的维数相同,即都是m行n列的矩阵,那么它们可以相加。

矩阵的加法运算是将对应位置的元素相加得到新的矩阵。

即若A=(a_{ij}),B=(b_{ij}),则A+B=(a_{ij}+b_{ij})。

例如,给定两个矩阵A和B如下:A = [1 2 3][4 5 6]B = [7 8 9][10 11 12]则A与B的和C为:C = [1+7 2+8 3+9][4+10 5+11 6+12]简化运算后,C的结果为:C = [8 10 12][14 16 18]接下来我们讨论矩阵的减法。

矩阵的减法运算与加法类似,也是将对应位置的元素相减得到新的矩阵,即若A=(a_{ij}),B=(b_{ij}),则A-B=(a_{ij}-b_{ij})。

例如,给定两个矩阵A和B如下:A = [1 2 3][4 5 6]B = [7 8 9][10 11 12]则A与B的差D为:D = [1-7 2-8 3-9][4-10 5-11 6-12]简化运算后,D的结果为:D = [-6 -6 -6][-6 -6 -6]矩阵的数乘是指将一个矩阵的每个元素都乘以一个实数。

即若A=(a_{ij})是一个m行n列的矩阵,k是一个实数,那么kA=(ka_{ij})。

例如,给定一个矩阵A和一个实数k如下:A = [1 2 3][4 5 6]k = 2则kA的结果为:kA = [2*1 2*2 2*3][2*4 2*5 2*6]简化运算后,kA的结果为:kA = [2 4 6][8 10 12]最后我们来讨论矩阵的乘法。

矩阵的乘法运算是指矩阵与矩阵之间进行乘法运算,得到一个新的矩阵。

矩阵的乘法有一定的规则,即若A是一个m行n列的矩阵,B是一个n行p列的矩阵,那么它们可以相乘,得到一个m行p列的矩阵C。

矩阵的基本运算法则

矩阵的基本运算法则

矩阵的基本运算法则矩阵是线性代数中的重要概念,广泛应用于多个学科领域。

矩阵的基本运算法则包括矩阵加法、矩阵乘法、矩阵转置和矩阵求逆等。

下面将详细介绍这些基本运算法则。

一、矩阵加法矩阵加法是指将两个具有相同维度的矩阵相加的运算。

设有两个m行n列的矩阵A和B,它们的和记作C,那么矩阵C的第i行第j列元素等于矩阵A和B对应位置的元素之和,即:C(i,j)=A(i,j)+B(i,j)其中,1≤i≤m,1≤j≤n。

矩阵加法满足以下性质:1.交换律:A+B=B+A,对任意矩阵A和B都成立。

2.结合律:(A+B)+C=A+(B+C),对任意矩阵A、B和C都成立。

3.零元素:存在一个全0矩阵,记作O,满足A+O=A,对任意矩阵A 都成立。

4.负元素:对于任意矩阵A,存在一个矩阵-B,使得A+B=O,其中O 为全0矩阵。

二、矩阵乘法矩阵乘法是指将两个矩阵相乘的运算。

设有两个m行n列的矩阵A和n行k列的矩阵B,它们的乘积记作C,那么矩阵C的第i行第j列元素等于矩阵A的第i行与矩阵B的第j列对应元素相乘再求和,即:C(i,j)=Σ(A(i,k)*B(k,j))其中,1≤i≤m,1≤j≤k,1≤k≤n。

矩阵乘法满足以下性质:1.结合律:(A*B)*C=A*(B*C),对任意矩阵A、B和C都成立。

2.分配律:A*(B+C)=A*B+A*C,并且(A+B)*C=A*C+B*C,对任意矩阵A、B和C都成立。

3.乘法单位元素:对于任意矩阵A,存在一个m行m列的单位矩阵I,使得A*I=I*A=A,其中单位矩阵I的主对角线上的元素全为1,其他元素全为0。

4.矩阵的乘法不满足交换律,即A*B≠B*A,对一些情况下,AB和BA的结果甚至可能维度不匹配。

三、矩阵转置矩阵转置是指将矩阵的行和列互换的运算。

设有一个m行n列的矩阵A,它的转置记作A^T,那么矩阵A^T的第i行第j列元素等于矩阵A的第j行第i列元素,即:A^T(i,j)=A(j,i)其中,1≤i≤n,1≤j≤m。

《矩阵运算基础》课件

《矩阵运算基础》课件
矩阵加法和减法的运算规则是线性代数的基础,是解决线性方程组、矩阵分解、矩阵 求逆等问题的重要工具。
矩阵的数乘
数乘的定义与性质
定义:矩阵的数乘是指将矩阵的每 个元素乘以一个常数,得到一个新 的矩阵
性质2:矩阵的数乘满足交换律
添加标题
添加标题
添加标题
添加标题
性质1:矩阵的数乘满足结合律和 分配律
性质3:矩阵的数乘满足可逆性, 即如果矩阵A的数乘为k,那么矩阵 A的逆矩阵的数乘也为k
感谢您的观看
汇报人:
加法运算: 矩阵加法的 运算规则是 行与行、列 与列对应元 素相加
加法结果:矩 阵加法的结果 是一个新的矩 阵,其元素是 原矩阵对应元 素的和
应用:矩阵加 法在求解线性 方程组、矩阵 分解、矩阵变 换等领域有广 泛应用
矩阵减法的定义与性质
性质:矩阵减法满足交换律、 结合律和分配律
定义:矩阵减法是将两个矩阵 对应元素相减,得到一个新的 矩阵
伴随矩阵的定义与性质
定义:伴随矩阵是矩阵A的转置乘以A的行列 式
性质:伴随矩阵的行列式等于A的行列式的绝 对值
性质:伴随矩阵的秩等于A的秩
性质:伴随矩阵的迹等于A的迹的相反数
性质:伴随矩阵的逆矩阵等于A的行列式分之 一乘以A的转置
性质:伴随矩阵的伴随矩阵等于A
逆矩阵与伴随矩阵的运算规则
逆矩阵:对于n 阶方阵A,如果 存在n阶方阵B, 使得AB=BA=I, 则称B为A的逆矩 阵,记为A^(-1)
矩阵的转置
矩阵转置的定义与性质
矩阵转置的定 义:将矩阵的 行和列互换, 得到新的矩阵
性质1:转置 矩阵的行列式 等于原矩阵的
行列式
性质2:转置 矩阵的秩等于
原矩阵的秩

矩阵的基本运算与特征值特征向量

矩阵的基本运算与特征值特征向量

矩阵的基本运算与特征值特征向量矩阵是现代线性代数中的重要概念,广泛应用于各个领域。

本文将介绍矩阵的基本运算,包括加法、乘法和转置,并详细解释特征值与特征向量的概念及其在矩阵分析中的应用。

一、矩阵的基本运算矩阵加法是指将两个矩阵的相应元素进行相加,得到一个新的矩阵。

例如,对于两个m行n列的矩阵A和B,它们的和记作C=A+B,其中C的第i行第j列元素等于A的第i行第j列元素与B的第i行第j列元素之和。

矩阵乘法是指将两个矩阵相乘得到一个新的矩阵。

对于一个m行n列的矩阵A和一个n行p列的矩阵B,它们的乘积记作C=AB,其中C 的第i行第j列元素等于A的第i行元素与B的第j列元素依次相乘再求和。

矩阵的转置是指将矩阵的行和列进行互换得到的新矩阵。

例如,对于一个m行n列的矩阵A,它的转置记作AT,其中AT的第i行第j列元素等于A的第j行第i列元素。

二、特征值与特征向量在矩阵分析中,特征值与特征向量是矩阵的重要性质,能够揭示矩阵的结构和性质。

对于一个n阶方阵A,如果存在一个非零向量x使得Ax=kx,其中k为常数,那么k就是A的一个特征值,x就是对应于特征值k的特征向量。

特征值和特征向量的求解过程可以通过方程(A-kI)x=0来实现,其中I为单位矩阵。

通过求解这个齐次线性方程组,可以得到特征值k以及对应的特征向量x。

特征值和特征向量在矩阵的应用中有着广泛的应用,例如在图像处理、信号处理和机器学习等领域中,它们被用于降维、数据压缩、特征提取等任务上。

三、矩阵的应用举例1. 线性变换矩阵可以用于描述线性变换,例如平移、旋转和缩放等操作。

通过将变换矩阵作用于向量,可以实现对向量的变换。

2. 矩阵的逆对于一个可逆矩阵A,它存在一个逆矩阵A-1,满足A-1A=AA-1=I,其中I为单位矩阵。

逆矩阵的求解可以通过行列式和伴随矩阵的方法来实现。

3. 特征值分解对于一个对称矩阵A,可以进行特征值分解,即将A表示为特征值和特征向量的形式,A=PΛP-1,其中P为特征向量的矩阵,Λ为特征值的对角矩阵。

矩阵的基本运算与应用知识点总结

矩阵的基本运算与应用知识点总结

矩阵的基本运算与应用知识点总结矩阵是线性代数中的重要概念,具有广泛的应用。

它不仅在数学领域有重要作用,还在物理学、统计学、计算机科学等领域得到广泛应用。

本文将对矩阵的基本运算和应用进行总结。

一、矩阵的定义与表示矩阵是一个由m行和n列元素排列成的矩形数组。

一个m×n矩阵的大小通常表示为m×n。

矩阵中的元素可以是实数、复数或其他数域中的元素。

矩阵常用大写字母表示,如A、B。

二、矩阵的基本运算1. 矩阵的加法矩阵的加法规则是对应元素相加,要求两个矩阵的行数和列数相等。

设A、B是同型矩阵,则它们的和A+B也是同型矩阵,其定义为:(A+B)ij = Aij + Bij。

2. 矩阵的减法矩阵的减法与加法类似,也是对应元素相减。

两个矩阵相减要求行数和列数相等。

设A、B是同型矩阵,则它们的差A-B也是同型矩阵,其定义为:(A-B)ij = Aij - Bij。

3. 矩阵的数乘矩阵的数乘是将矩阵的每个元素都乘以一个实数或复数称为数乘。

设A为一个矩阵,k为实数或复数,则数乘后的矩阵kA,其中矩阵kA 的每个元素均为k乘以A相应元素的积。

4. 矩阵的乘法矩阵的乘法不同于数乘,它是指矩阵之间的乘法运算。

设A为m×n 矩阵,B为n×p矩阵,那么它们的乘积AB为m×p矩阵,其定义为:(AB)ij = ΣAikBkj,其中k的范围是1到n。

三、矩阵的应用1. 线性方程组的求解矩阵在线性方程组的求解中发挥着重要作用。

通过矩阵的系数矩阵和常数矩阵,可以将线性方程组转化为矩阵乘法的形式,进而用矩阵运算求解方程组的解。

2. 特征值与特征向量矩阵的特征值与特征向量是矩阵在线性代数中的重要概念。

特征值表示了矩阵的某个线性变换的影响程度,而特征向量表示了在该变换下不变的方向。

3. 矩阵的转置矩阵的转置是指将矩阵的行与列对换得到的新矩阵。

转置后的矩阵在一些应用中具有特殊的性质,并且在计算中常常用到。

三矩阵的基本运算

三矩阵的基本运算

第三节矩阵的基本运算§3.1 加和减§3.2矩阵乘法§3.2.1 矩阵的普通乘法§3.2.2 矩阵的Kronecker乘法§3.3 矩阵除法§3.4矩阵乘方§3.5 矩阵的超越函数§3.6数组运算§3.6.1数组的加和减§3.6.2数组的乘和除§3.6.3 数组乘方§3.7 矩阵函数§3.7.1三角分解§3.7.2正交变换§3.7.3奇异值分解§3.7.4 特征值分解§3.7.5秩§3.1 加和减如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差.如果矩阵A和B的维数不匹配,Matlab会给出相应的错误提示信息.如:A= B=1 2 3 1 4 74 5 6 2 5 87 8 0 3 6 0C =A+B返回:C =2 6 106 10 1410 14 0如果运算对象是个标量(即1×1矩阵),可和其它矩阵进行加减运算.例如:x= -1 y=x-1= -20 -12 1§3.2矩阵乘法Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍.§3.2.1 矩阵的普通乘法矩阵乘法用“ * ”符号表示,当A 矩阵列数与B 矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同.如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B ,结果为C=×==即Matlab 返回:C =19 2243 50如果A 或B 是标量,则A*B 返回标量A (或B )乘上矩阵B (或A )的每一个元素所得的矩阵.§3.2.2 矩阵的Kronecker 乘法对n ×m 阶矩阵A 和p ×q 阶矩阵B ,A 和B 的Kronecher 乘法运算可定义为:由上面的式子可以看出,Kronecker 乘积A B 表示矩阵A 的所有元素与B 之间的乘积组合而成的较大的矩阵,B A 则完全类似.A B 和B A 均为np ×mq 矩阵,但一般情况下A B B A .和普通矩阵的乘法不同,Kronecker 乘法并不要求两个被乘矩阵满足任何维数匹配方面的要求.Kronecker 乘法的Matlab 命令为C=kron(A,B),例如给定两个矩阵A 和B :A= B=则由以下命令可以求出A 和B 的Kronecker 乘积C :A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; C=kron(A,B)C =1 32 2 6 42 4 6 4 8 123 9 64 12 86 12 18 8 16 24作为比较,可以计算B 和A 的Kronecker 乘积D ,可以看出C 、D 是不同的:A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; D=kron(B,A)D =1 2 3 6 2 43 4 9 12 6 82 4 4 8 6 126 8 12 16 18 24§3.3 矩阵除法在Matlab 中有两种矩阵除法符号:“\”即左除和“/”即右除.如果A 矩阵是非奇异方阵,则A\B 是A 的逆矩阵乘B ,即inv(A)*B ;而B/A 是B 乘A 的逆矩阵,即B*inv(A).具体计算时可不用逆矩阵而直接计算.通常:⎪⎪⎭⎫ ⎝⎛4321⎪⎪⎭⎫ ⎝⎛8765⎪⎪⎭⎫ ⎝⎛⨯+⨯⨯+⨯⨯+⨯⨯+⨯8463745382617251⎪⎪⎭⎫ ⎝⎛50432219⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⊗=B a B a B a B a B a B a B a B a B a B A C nm n n m m (2122221)11211 ⊗⊗⊗⊗⊗≠⊗1234⎛⎝ ⎫⎭⎪132246⎛⎝ ⎫⎭⎪x=A\B就是A*x=B的解;x=B/A就是x*A=B的解.当B与A矩阵行数相等可进行左除.如果A是方阵,用高斯消元法分解因数.解方程:A*x(:, j)=B(:, j),式中的(:, j)表示B矩阵的第j列,返回的结果x具有与B矩阵相同的阶数,如果A是奇异矩阵将给出警告信息.如果A矩阵不是方阵,可由以列为基准的Householder正交分解法分解,这种分解法可以解决在最小二乘法中的欠定方程或超定方程,结果是m×n的x矩阵.m是A矩阵的列数,n是B矩阵的列数.每个矩阵的列向量最多有k个非零元素,k 是A的有效秩.右除B/A可由B/A=(A'\B')'左除来实现.§3.4矩阵乘方A^P意思是A的P次方.如果A是一个方阵,P是一个大于1的整数,则A^P表示A 的P次幂,即A自乘P次.如果P不是整数,计算涉及到特征值和特征向量的问题,如已经求得:[V,D]=eig(A),则:A^P=V*D.^P/V(注:这里的.^表示数组乘方,或点乘方,参见后面的有关介绍)如果B是方阵,a是标量,a^B就是一个按特征值与特征向量的升幂排列的B次方程阵.如果a和B都是矩阵,则a^B是错误的.§3.5 矩阵的超越函数在Matlab中解释exp(A)和sqrt(A)时曾涉及到级数运算,此运算定义在A的单个元素上.Matlab可以计算矩阵的超越函数,如矩阵指数、矩阵对数等.一个超越函数可以作为矩阵函数来解释,例如将“m”加在函数名的后边而成expm(A)和sqrtm(A),当Matlab运行时,有下列三种函数定义:expm 矩阵指数logm 矩阵对数sqrtm 矩阵开方所列各项可以加在多种m文件中或使用funm.请见应用库中sqrtm.m,1ogm.m,funm.m 文件和命令手册.§3.6数组运算数组运算由线性代数的矩阵运算符“*”、“/”、“\”、“^”前加一点来表示,即为“.*”、“./”、“.\”、“.^”.注意没有“.+”、“.-”运算.§3.6.1数组的加和减对于数组的加和减运算与矩阵运算相同,所以“+”、“-”既可被矩阵接受又可被数组接受.§3.6.2数组的乘和除数组的乘用符号.*表示,如果A与B矩阵具有相同阶数,则A.*B表示A和B单个元素之间的对应相乘.例如x=[1 2 3]; y=[ 4 5 6];计算z=x.*y结果z=4 10 18数组的左除(.\)与数组的右除(./),由读者自行举例加以体会.§3.6.3 数组乘方数组乘方用符号.^表示.例如:键入:x=[ 1 2 3]y=[ 4 5 6]则z=x.^y=[1^4 2^5 3^6]=[1 32 729](1) 如指数是个标量,例如x.^2,x同上,则:z=x.^2=[1^2 2^2 3^2]=[ 1 4 9](2) 如底是标量,例如2 .^[x y] ,x、y同上,则:z=2 .^[x y]=[2^1 2^2 2^3 2^4 2^5 2^6]=[2 4 8 16 32 64] 从此例可以看出Matlab算法的微妙特性,虽然看上去与其它乘方没什么不同,但在2和“.”之间的空格很重要,如果不这样做,解释程序会把“.”看成是2的小数点.Matlab 看到符号“^”时,就会当做矩阵的幂来运算,这种情况就会出错,因为指数矩阵不是方阵.§3.7 矩阵函数Matlab的数学能力大部分是从它的矩阵函数派生出来的,其中一部分装入Matlab本身处理中,它从外部的Matlab建立的M文件库中得到,还有一些由个别的用户为其自己的特殊的用途加进去的.其它功能函数在求助程序或命令手册中都可找到.手册中备有为Matlab 提供数学基础的LINPACK和EISPACK软件包,提供了下面四种情况的分解函数或变换函数:(1)三角分解;(2)正交变换;(3) 特征值变换;(4)奇异值分解.§3.7.1三角分解最基本的分解为“LU”分解,矩阵分解为两个基本三角矩阵形成的方阵,三角矩阵有上三角矩阵和下三角矩阵.计算算法用高斯变量消去法.从lu函数中可以得到分解出的上三角与下三角矩阵,函数inv得到矩阵的逆矩阵,det 得到矩阵的行列式.解线性方程组的结果由方阵的“\”和“/”矩阵除法来得到.例如:A=[ 1 2 34 5 67 8 0]LU分解,用Matlab的多重赋值语句[L,U]=lu(A)得出注:L结果只需计算L*U即可.求逆由下式给出:x=inv(A)x =从LU的值可由下式给出:d=det(A)d =27直接由三角分解计算行列式:d=det(L)*det(U)d =27.0000为什么两种d的显示格式不一样呢? 当Matlab做det(A)运算时,所有A的元素都是整数,所以结果为整数.但是用LU分解计算d时,L、U的元素是实数,所以Matlab产生的d也是实数.例如:线性联立方程取b=[ 135]解Ax=b方程,用Matlab矩阵除得到x=A\b结果x=0.33330.33330.0000由于A=L*U,所以x也可以有以下两个式子计算:y=L\b,x=U\y.得到相同的x值,中间值y为:y =5.00000.28570.0000Matlab中与此相关的函数还有rcond、chol和rref.其基本算法与LU分解密切相关.chol 函数对正定矩阵进行Cholesky分解,产生一个上三角矩阵,以使R'*R=X.rref用具有部分主元的高斯-约当消去法产生矩阵A的化简梯形形式.虽然计算量很少,但它是很有趣的理论线性代数.为了教学的要求,也包括在Matlab中.§3.7.2正交变换“QR”分解用于矩阵的正交-三角分解.它将矩阵分解为实正交矩阵或复酉矩阵与上三角矩阵的积,对方阵和长方阵都很有用.例如A=[ 1 2 34 5 67 8 910 11 12]是一个降秩矩阵,中间列是其它二列的平均,我们对它进行QR分解:[Q,R]=qr(A)R的下三角都给出0,并且R(3,3)=0.0000,说明矩阵R与原来矩阵A都不是满秩的.下面尝试利用QR分解来求超定和降秩的线性方程组的解.例如:b=[ 1357]讨论线性方程组Ax=b,我们可以知道方程组是超定的,采用最小二乘法的最好结果是计算x=A\b.结果为:Warning: Rank deficient, rank = 2 tol = 1.4594e-014x =0.50000.1667我们得到了缺秩的警告.用QR分解法计算此方程组分二个步骤:y=Q'*bx=R\y求出的y值为xWarning: Rank deficient, rank = 2 tol = 1.4594e-014x =0.50000.1667用A*x来验证计算结果,我们会发现在允许的误差范围内结果等于b.这告诉我们虽然联立方程Ax=b是超定和降秩的,但两种求解方法的结果是一致的.显然x向量的解有无穷多个,而“QR”分解仅仅找出了其中之一.§3.7.3奇异值分解在Matlab中三重赋值语句[U,S,V]=svd(A)在奇异值分解中产生三个因数:A=U*S*V 'U矩阵和V矩阵是正交矩阵,S矩阵是对角矩阵,svd(A)函数恰好返回S的对角元素,而且就是A的奇异值(其定义为:矩阵A'*A的特征值的算术平方根).注意到A矩阵可以不是方的矩阵.奇异值分解可被其它几种函数使用,包括广义逆矩阵pinv(A)、秩rank(A)、欧几里德矩阵范数norm(A,2)和条件数cond(A).§3.7.4 特征值分解如果A是n×n矩阵,若λ满足Ax=λx,则称λ为A的特征值,x为相应的特征向量.函数eig(A)返回特征值列向量,如果A是实对称的,特征值为实数.特征值也可能为复数,例如:A=[ 0 1-1 0]eig(A)产生结果ans =0 + 1.0000i0 - 1.0000i如果还要求求出特征向量,则可以用eig(A)函数的第二个返回值得到:[x,D]=eig(A)D的对角元素是特征值.x的列是相应的特征向量,以使A*x=x*D.计算特征值的中间结果有两种形式:Hessenberg形式为hess(A),Schur形式为schur(A).schur形式用来计算矩阵的超越函数,诸如sqrtm(A)和logm(A).如果A和B是方阵,函数eig(A,B)返回一个包含一般特征值的向量来解方程Ax= Bx双赋值获得特征向量[X,D]=eig(A,B)产生特征值为对角矩阵D.满秩矩阵X的列相应于特征向量,使A*X=B*X*D,中间结果由qz(A,B)提供.§3.7.5秩Matlab计算矩阵A的秩的函数为rank(A),与秩的计算相关的函数还有:rref(A)、orth(A)、null(A)和广义逆矩阵pinv(A)等.利用rref(A),A的秩为非0行的个数.rref方法是几个定秩算法中最快的一个,但结果上并不可靠和完善.pinv(A)是基于奇异值的算法.该算法消耗时间多,但比较可靠.其它函数的详细用法可利用Help求助.上一页回目录下一页。

线性代数矩阵论——矩阵的基本运算——加、减、取负、乘、数乘、转置 - 6DAN - 博客园

线性代数矩阵论——矩阵的基本运算——加、减、取负、乘、数乘、转置 - 6DAN - 博客园

线性代数矩阵论——矩阵的基本运算——加、减、取负、乘、数乘、转置- 6DAN - 博客园线性代数矩阵论——矩阵的基本运算——加、减、取负、乘、数乘、转置1. 矩阵加法前提条件:同型矩阵操作数:两个m*n矩阵A=[aij],B=[bij]基本动作:元素对应相加2. 矩阵减法前提条件:同型矩阵操作数:两个m*n矩阵A=[aij],B=[bij]基本动作:元素对应相减3. 矩阵取负前提条件:无操作数:任意一个m*n矩阵A=[aij]基本动作:元素对应取负4. 矩阵乘法前提条件:左矩阵A的列数与右矩阵B的行数相等操作数:m*n矩阵A=[aij],n*m矩阵B=[bij],A是具有m行的行矩阵,,B是具有n列的列矩阵,基本动作:行列积5. 矩阵数乘前提条件:无操作数:任意一个m*n矩阵A=[aij],数k基本动作:数k乘以每一个元素6. 矩阵转置前提条件:无,任意一个m*n矩阵A=[aij]基本动作:行列互换,第i行第j列的元素换为第j行第i列的元素,m*n的矩阵转置后为n*m矩阵,矩阵运算不满足交换律和消去率Matlab实现<table class="MsoNormalTable"style="border-collapse:collapse;border:none;mso-border-a lt:solid black .5pt;mso-yfti-tbllook:1184;mso-padding-alt:0cm 5.4pt 0cm 5.4pt;mso-border-insideh:.5pt solid black;mso-border-insidev:.5pt solid black" border="1" cellpadding="0" cellspacing="0">矩阵运算<td style="width:40.9pt;border:solid black 1.0pt;border-left:none;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">算符<td style="width:71.75pt;border:solid black 1.0pt;border-left:none;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">形式<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵加法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">+<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A+B<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵减法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">-<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm5.4pt 0cm 5.4pt" valign="top" width="96">A-B<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵取负<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">-<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">-A<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵乘法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">*<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A*B<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵数乘<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">*<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A*k或k*A<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵转置<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">’<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A’<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵乘方<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">^<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A^N<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组加法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">+<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X+Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组减法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">-<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X-Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组乘法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55"><td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X.*Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组除法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top"width="55">./或.\<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X./Y或X.\Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组乘方<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">.^<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X.^N。

矩阵的基本运算

矩阵的基本运算

矩阵的基本运算矩阵在数学中扮演着重要的角色,常用于解决各种实际问题。

矩阵的基本运算是我们在学习矩阵时必须掌握的内容。

本文将介绍矩阵的加法、减法、数乘运算以及矩阵乘法等基本运算方式。

一、矩阵的加法矩阵的加法是指两个同型矩阵相互对应元素相加的运算。

假设有两个m×n的矩阵A和B,它们的和记作A + B,其中A = [a_{ij}],B = [b_{ij}]。

若令C = A + B,则C的元素c_{ij}可以通过以下方式计算:c_{ij} = a_{ij} + b_{ij}要注意的是,两个矩阵相加的前提是两个矩阵必须具有相同的行数和列数。

二、矩阵的减法与矩阵的加法类似,矩阵的减法也是指两个同型矩阵相互对应元素相减的运算。

仍以矩阵A和B为例,它们的差记作A - B,其中A = [a_{ij}],B = [b_{ij}]。

若令C = A - B,则C的元素c_{ij}可以通过以下方式计算:c_{ij} = a_{ij} - b_{ij}同样的,两个矩阵相减的前提是两个矩阵必须具有相同的行数和列数。

三、矩阵的数乘运算矩阵的数乘运算指的是将一个矩阵的每个元素都乘以同一个数。

假设有一个矩阵A = [a_{ij}],要将其乘以一个实数k,得到的结果记作kA。

对于乘积矩阵kA的元素c_{ij},可以通过以下方式计算:c_{ij} = ka_{ij}其中k为实数。

四、矩阵的乘法矩阵的乘法是指两个矩阵按照一定规则相乘得到一个新的矩阵的运算。

假设我们有两个矩阵A和B,A的行数为m,列数为p,B的行数为p,列数为n。

它们的乘积记作C = A · B,其中C为一个新的矩阵,它的行数与A 相同,列数与B相同。

C = [c_{ij}],其中c_{ij}的计算方式如下:c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{ip}b_{pj}即C矩阵中的每个元素是A的第i行和B的第j列对应元素的乘积之和。

3--1,2矩阵的基本运算、逆矩阵

3--1,2矩阵的基本运算、逆矩阵

1 1 1 1 0 0 BA 1 1 1 1 0 0
即使同型,也未必相等
1 1 2 0 2 2 AC 1 1 0 2 2 2
Note : (1)矩阵乘法不满足交换律,一般 AB BA ; AB 0 A 0 or B 0 ; ( 2)
2015-5-24
( 3)
12 AB AC B C 即消去律不成立 . 12
Note : 矩阵乘法满足如下性质: (假设以下性质中的运算均可行) (1) 结合律 (2)分配律 (AB)C = A(BC) ; A(B+C) = AB+AC Proof (B+C)A = BA+CA ; (k 是数)
Example 4
1 1 设 A 1 1
1 1 2 0 B C 1 1 0 2 该例得到什么结论?
求 AB、BA、AC . Solution :
1 1 1 1 2 2 AB 1 1 1 1 2 2
(3)数乘结合律 k ( AB) (kA) B A(kB)
对于单位矩阵 E 容易验证: Em Amn Amn,Amn En Amn 简写成 EA = AE = A ( E) A ( EA) A A( E) ( AE) A 数量矩阵与矩阵的乘积等于数与矩阵的乘积 如果方阵 A 与 B 的乘积满足交换律,即 则称 A 与 B 是可交换的.
(A ) A
k l
kl
( k、l 为正整)
( AB)k Ak Bk
AB
右边 A
ABB
B)

矩阵的基本运算

矩阵的基本运算

矩阵的基本运算矩阵是线性代数中的重要概念之一,被广泛应用于数学、工程、物理等领域。

矩阵的基本运算包括矩阵的加法、减法、乘法以及数量乘法等,本文将从这四个方面分析并论述矩阵的基本运算。

1. 矩阵的加法矩阵的加法是指两个矩阵进行逐元素相加的运算。

假设有两个矩阵A和B,它们的维度相同(即行数和列数相等),那么它们的加法定义如下:C = A + B,其中矩阵C的第(i, j)个元素等于矩阵A和B对应元素的和。

2. 矩阵的减法矩阵的减法与加法类似,也是逐元素进行运算。

与加法不同的是,减法是将第二个矩阵的每个元素从第一个矩阵的对应元素中减去。

设两个矩阵A和B,它们的维度相同,那么它们的减法定义如下:C = A - B,其中矩阵C的第(i, j)个元素等于矩阵A和B对应元素的差。

3. 矩阵的乘法矩阵的乘法是指两个矩阵按照一定规则进行运算,得到一个新的矩阵。

设两个矩阵A和B,它们的乘法定义如下:C = A * B,其中矩阵C的第(i, j)个元素等于矩阵A的第i行与矩阵B的第j列的乘积之和。

矩阵A的列数必须与矩阵B的行数相等,否则乘法无法进行。

4. 矩阵的数量乘法矩阵的数量乘法是指将矩阵的每个元素与一个常数相乘得到的新矩阵。

设矩阵A和一个常数k,那么矩阵A的数量乘法定义如下:B = kA,其中矩阵B的第(i, j)个元素等于矩阵A的第(i, j)个元素与常数k的乘积。

综上所述,矩阵的基本运算包括加法、减法、乘法和数量乘法。

通过这些运算,我们可以进行复杂的矩阵计算,如求解线性方程组、矩阵的逆运算等。

熟练掌握矩阵的基本运算对于理解线性代数及其应用至关重要。

通过学习矩阵的基本运算,我们可以更好地理解矩阵的性质及其在实际问题中的应用。

矩阵运算在计算机科学、人工智能等领域也发挥着重要作用,如图像处理、模式识别等。

因此,对于矩阵的基本运算的深入理解和掌握对于我们的学习和工作都具有重要意义。

总而言之,矩阵的基本运算包括加法、减法、乘法和数量乘法,这些运算为我们应用线性代数解决实际问题提供了有力工具。

第一章-矩阵的运算与初等变换(第三讲)

第一章-矩阵的运算与初等变换(第三讲)

0 0 0 1
( A1 , A2 , kA1 A3 , A4 ).
经总结可得入下定理:
定理5.3 用初等矩阵左乘A,相当于对A进行相应的初 等行变换;用初等矩阵右乘A,相当于对A进行相应的初等 列变换.
机动 目录 上页 下页 返回 结束
按列分块得 A ( , , , ). A1 A2 A3 A4
机动 目录 上页 下页 返回 结束
由矩阵的分块乘法运算有
0 0 1 A1 A3 0 1 0 A A , P (1,3) A 2 2 1 0 0 A3 A1
1 4 1 3 c . 1 0 0 3
把上面方法加以数学抽象
2 1 1 1 1 1 2 1 B =(A b) = 4 6 2 2 3 6 9 7
称为方程组(1)的增广矩阵.
2 4 4 9
教学难点:用初等变换将矩阵化为行阶梯形、行最简 形、标准形矩阵的方法. 矩阵初等变换和初等方阵的关系. 教学时间:2学时.
机动 目录 上页 下页 返回 结束
第三讲
§4 矩阵的初等变换
5.1 引例
求解线性方程组
第一章
ì 2 x1 - x2 - x3 + x4 = 2, ① ï ï ï ï x1 + x2 - 2 x3 + x4 = 4, ② ï í ï 4 x1 - 6 x2 + 2 x3 - 2 x4 = 4,③ ï ï ï 3 x + 6 x - 9 x + 7 x = 9,④ ï 1 2 3 4 î
定理5.2 设A为m×n矩阵,则A必可用初等行变换化为 行阶梯形矩阵.

初中数学知识归纳矩阵的基本运算

初中数学知识归纳矩阵的基本运算

初中数学知识归纳矩阵的基本运算矩阵的基本运算是初中数学中的重要知识点之一。

通过矩阵的加法、减法、数乘、矩阵乘法以及转置运算等基本运算,我们可以对矩阵进行各种操作和变换。

本文将对矩阵的基本运算进行详细的归纳和解析。

一、矩阵的定义矩阵是由m行n列的数排成的一个m×n的矩形阵列,通常用大写字母表示。

矩阵中的数称为元素,每个元素用小写字母加上矩阵的行号和列号来表示。

例如,矩阵A中的第i行j列的元素表示为a_ij。

二、矩阵的加法矩阵的加法是指将两个具有相同行数和列数的矩阵按元素进行相加。

设有矩阵A=[a_ij]和矩阵B=[b_ij],则矩阵A与矩阵B的和记作A+B。

对应元素相加的法则如下:A+B = [a_ij + b_ij]三、矩阵的减法矩阵的减法是指将两个具有相同行数和列数的矩阵按元素进行相减。

设有矩阵A=[a_ij]和矩阵B=[b_ij],则矩阵A与矩阵B的差记作A-B。

对应元素相减的法则如下:A-B = [a_ij - b_ij]四、矩阵的数乘矩阵的数乘是指用一个实数或复数乘以矩阵的每一个元素。

设有矩阵A=[a_ij]和实数(复数)k,则矩阵A与k的乘积记作kA。

数乘的法则如下:kA = [ka_ij]五、矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A与一个n行p列的矩阵B相乘,得到一个m行p列的矩阵C。

设有矩阵A=[a_ij],矩阵B=[b_ij],则矩阵C=[c_ij]的元素c_ij的计算法则如下:c_ij = a_i1 * b_1j + a_i2 * b_2j + ... + a_in * b_nj六、矩阵的转置矩阵的转置是指将矩阵的行与列进行互换得到的新矩阵。

设有矩阵A=[a_ij],其转置矩阵记作A^T。

转置的法则如下:如果A的第i行第j列元素为a_ij,则A^T的第j行第i列元素为a_ji。

综上所述,矩阵的基本运算包括加法、减法、数乘、矩阵乘法以及转置运算。

这些基本运算在数学中有着广泛的应用,尤其在线性代数、几何学以及物理学等领域具有重要意义。

矩阵的基本运算和应用

矩阵的基本运算和应用

矩阵的乘法
两个矩阵相乘,需要满足第一个矩阵的列数等于第二个矩阵的行数,结
果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。乘
法运算遵循特定的运算法则。
特殊类型矩阵
方阵
01 行数和列数相等的矩阵称为方
阵。
零矩阵
02 所有元素都为零的矩阵称为零
矩阵。
对角矩阵
03 除主对角线外,其他元素都为
零的方阵称为对角矩阵。
矩阵乘法运算
乘法定义
设A为m×n矩阵,B为n×s矩阵,那么称m×s矩阵C为矩阵A 与B的乘积,记作C=AB。
运算步骤
矩阵乘法运算时,先将第一个矩阵的每一行分别与第二个 矩阵的每一列相乘,再将得到的积相加,得到结果矩阵的 对应元素。
运算性质
矩阵乘法一般不满足交换律,但满足结合律和分配律,且 单位矩阵作为乘法的单位元。
特征选择
基于矩阵分解等方法,选取对模型训练有重要贡 献的特征。
主成分分析(PCA)原理及实现
主成分分析(PCA)原理及实现
计算协方差矩阵。
对原始数据进行标准化处 理。
实现步骤
01
03 02
主成分分析(PCA)原理及实现
01
对协方差矩阵进行特征值分解,得到特征值和特征 向量。
02
选择前k个最大特征值对应的特征向量组成矩阵W。
• 克拉默法则:如果线性方程组的系数矩阵A的行列式|A|不等 于零,则该线性方程组有唯一解,且解可以通过系数矩阵A 和常数项向量b的行列式计算得到。
克拉默法则求解线性方程组
具体步骤 构造系数矩阵A和常数项向量b。 计算系数矩阵A的行列式|A|。
克拉默法则求解线性方程组
对于每一个未知数,将系数矩阵A中对应列替换为常数项向量b,得到新的矩阵B,并计算其行列式|B| 。

第三讲矩阵的基本运算

第三讲矩阵的基本运算

• 矩阵特征值和特征向量 • E=eig(A) 求特征值 • [V,D]=eig(A) D是特征值构成的对角阵;V是 特征向量阵,列为特征向量。 • 对称正定阵的cholesky分解 • R=chol(A) A对称正定,R为上三角阵,R’*R=A
• • • • • 方阵的QR分解 [Q,R]=qr(A) Q为正交矩阵,R为上三角阵,Q*R=A 可逆阵的 LU分解 [L,U]=lu(A) L是下三角阵,U是上三角阵 这些对解线性方程组还是很有利的。
3.2 矩阵的关系运算
所有关系表达式, 值输出为“ ; 所有关系表达式,matlab把“真”值输出为“1”; 把 值输出为“ 。 把“假”值输出为“0”。 关系运算符有: 、 、 、 、 、 关系运算符有:<、<=、>、>=、==、~= 注意:在关系运算中 、 结构相同 结构相同, 注意:在关系运算中A、B结构相同,当然可以其中 一个为标量。 一个为标量。 3.2.1 小于:C=(A<B) or C=A<B or C=lt(A,B) 小于: 3.2.2 小于等于:C=(A<=B) or C=A<=B or C=le(A,B) 小于等于: 3.2.3 大于 :C=(A>B) or C=A>B or C=gt(A,B) 3.2.4 大于等于 :C=(A>=B) or C=A>=B or C=ge(A,B)
5.快速运算符 快速运算符
• (1)快速逻辑与运算:C=(A&&B) or C=A&&B )快速逻辑与运算: • 若A的元素为 ,则C的相应元素直接为 ;若A的元素为 ,再去计算 的 的元素为0, 的相应元素直接为0; 的元素为1,再去计算B的 的元素为 的相应元素直接为 的元素为 元素的值。 元素的值。 • (2)快速逻辑或运算: C=(A||B) or C=A||B )快速逻辑或运算: • 若A的元素为 ,则C的相应元素直接为 ;若A的元素为 ,再去计算 的 的元素为1, 的相应元素直接为1; 的元素为0,再去计算B的 的元素为 的相应元素直接为 的元素为 元素的值。 元素的值。 • 3.3.2 逻辑运算函数(以此方便查找矩阵中满足条件的部分或所有元素) 逻辑运算函数(以此方便查找矩阵中满足条件的部分或所有元素) • 1.all函数 函数 • (1)all(x):x为向量,若向量中所有元素均非零,则函数值为“1”,否则 为向量, ) 为向量 若向量中所有元素均非零,则函数值为“ , 为“0”。 。 • (2)all(A):若某列所有元素均非零,则函数值为“1”,否则为“0”。 若某列所有元素均非零, ) 若某列所有元素均非零 则函数值为“ ,否则为“ 。 • (3)all(A,dim):A是多维数组,在dim维上进行 是多维数组, 维上进行all(A)计算。 计算。 ) 是多维数组 维上进行 计算 • 2. any函数 函数 • (1)any(x):x为向量,若向量中有非零数,则函数值为“1”,否则为 为向量, ) 为向量 若向量中有非零数,则函数值为“ , “0”。 。 • (2)any(A):若某列有非零数,则函数值为“1”,否则为“0”。结果是一 若某列有非零数, ) 若某列有非零数 则函数值为“ ,否则为“ 。 行向量。 行向量。 • (3)any(A,dim):在dim维上进行 维上进行any(A)计算。 计算。 ) 在 维上进行 计算 • 3.3.3 测试函数的介绍

第3讲 矩阵的运算

第3讲 矩阵的运算

矩阵乘与矩阵点乘的区别: 例3-1 矩阵乘与矩阵点乘的区别: (1) 矩阵乘: 矩阵乘: A=[1 2 3;0 3 4; 2 0 1], B=[1 0 2;0 1 1; 2 1 0], A*B (2) 矩阵点乘: 矩阵点乘: A=[1 2 3;0 3 4; 2 0 1], B=[1 0 2;0 1 1; 2 1 0], A.*B
3.1.3 逻辑运算
MATLAB提供了 种逻辑运算符:&(与)、 提供了3种逻辑运算符 提供了 种逻辑运算符: 与 、 |(或)和~(非)。 或和 非。 逻辑运算的运算法则为: 逻辑运算的运算法则为: (1) 在逻辑运算中,确认非零元素为真, 在逻辑运算中,确认非零元素为真, 表示, 表示。 用1表示,零元素为假,用0表示。 表示 零元素为假, 表示
关系运算符的运算法则为: 关系运算符的运算法则为: (1) 当两个比较量是标量时,直接比较两 当两个比较量是标量时, 数的大小。若关系成立,关系表达式结果为1, 数的大小。若关系成立,关系表达式结果为 , 否则为0。 否则为 。 (2) 当参与比较的量是两个维数相同的矩 阵时, 阵时,比较是对两矩阵相同位置的元素按标 量关系运算规则逐个进行,并给出元素比较 量关系运算规则逐个进行, 结果。 结果。最终的关系运算的结果是一个维数与 原矩阵相同的矩阵,它的元素由0或 组成 组成。 原矩阵相同的矩阵,它的元素由 或1组成。
3.2.2 矩阵的转置与旋转
(5) 逻辑非是单目运算符,也服从矩阵运 逻辑非是单目运算符, 算规则。 算规则。 (6) 在算术、关系、逻辑运算中,算术运 在算术、关系、逻辑运算中, 算优先级最高,逻辑运算优先级最低。 算优先级最高,逻辑运算优先级最低。 建立矩阵A,然后找出大于4的元素的 例3-3 建立矩阵A,然后找出大于4的元素的 位置。 位置。 (1) 建立矩阵 : 建立矩阵A: A=[4,-65,-54,0,6;56,0,67,-45,0] (2) 找出大于 的元素的位置: 找出大于4的元素的位置 的元素的位置: find(A>4)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V,则A^B=V*(D.^B)/V,其中D为对角阵,D.^B为数值的乘 方。 ➢ 对于数值乘方而言:A和B大小相等,针对元素来运算。
➢ 3.1.5 矩阵的转置和共轭转置 ➢ 复矩阵的共轭转置:B=A’ or B=ctranspose(A); ➢ 复矩阵的转置:B=A.’ or B=transpose(A) ➢ 注意:共轭转置是指先每个元素求共轭,再把矩
• C=

79
【例】 >> A=[1,2,3,4;1,2,4,6;6,7,1,4]; >> B=[1,2,3,8;1,1,4,6;6,7,1,4];
>> C=setdiff(A,B,'rows') C=
1234 1246
3.4.4 异或集
• 格式:c=setxor(a,b)
%返回集合a,b交集的非。
➢ 3.1.4 矩阵的乘方运算 ➢ 分为普通乘方和数值乘方两种,分别为:
➢ C=A^B or C=mpower(A,B)
➢ C=A.^B or C=power(A,B) ➢ 注意:普通乘方要求A是方阵,B是标量:若B是正整数,
显然;若B是负整数,则A^B=(inv(A))^abs(B); ➢ 若B不是整数,并且A的特征值矩阵为D,特征向量矩阵为
3.2 矩阵的关系运算
所有关系表达式,matlab把“真”值输出为“1”; 把“假”值输出为“0”。 关系运算符有:<、<=、>、>=、==、~= 注意:在关系运算中A、B结构相同,当然可以其中 一个为标量。 3.2.1 小于:C=(A<B) or C=A<B or C=lt(A,B) 3.2.2 小于等于:C=(A<=B) or C=A<=B or C=le(A,B)
• 格式:C=dot(A,B) %A,B为向量且长 度相等,则返回向量A与B的点积。若为 矩阵,则它们必须有相同的维数。
• C=dot(A,B,dim) %在dim维数中给出A与 B的点积。
• 【例】
• >>A=[1,2,3]; B=[3,4,5];
• >>dot(A,B);
%计算向量A,B的
点积,结果为26
见例题3.1.2
➢ 3.1.3 矩阵的除法 ➢ 1. 方阵的求逆: B=inv(A) ➢ 2. 除法运算(分左除和右除) ➢ 1)普通除法 ➢ 左除:C=A\B或C=mldivide(A,B) ➢ 右除: C=A/B或C=mrdivide(A,B) ➢ 一般地,左除不等于右除;显然,若A可逆,则C=A\B=inv(A)*B;若B可
• C=
• 1358
【例】 >> A=[1,2,3,4;1,2,4,6;6,7,1,4]; >> B=[1,2,3,8;1,1,4,6;6,7,1,4]; >> [C,IA,IB]=setxor(A,B,'rows')
C= 1146 1234 1238 1246
IA = 1 2
IB= 2 1
• 向量的点积
C=intersect(A,B,’rows’) % A,B为相同列数的矩阵,返回元素 相同的行。
[c,ia,ib]= intersect(a,b) % c为的a,b公共元素,ia表示公共元素 在a中的位置,ib表示公共元素在b中的位置。【例】
I
>> A=[1,2,3,4;1,2,4,6;6,7,1,4]; >> B=[1,2,3,8;1,1,4,6;6,7,1,4]; >> C=intersect(A,B,'rows') C= 6714 >> a=[1,9,6,20];b=[1,2,3,4,6,10,20]; >> [c,ia,ib]=intersect(a,b) c=
“0”。 • (2)any(A):若某列有非零数,则函数值为“1”,否则为“0”。结果是一
行向量。
• (3)any(A,dim):在dim维上进行any(A)计算。 • 3.3.3 测试函数的介绍
主要用于测试特殊值的存在或某些条件,返回的是逻辑
值”0”或“1”。
(1)isempty(A) :若A为空,则返回“1”; (2)ischar(S):若S是字符串,则返回“1”; (3)isreal(A):若A为实数数组,则返回“1”; (4)isinf(A):返回与A大小一样的数组,只在无穷大量inf处
a=A*B,b=inv(B),c=B-A’,d=det(A)
a = 9 7 8 b = -1/4 1/4 -3/4 c = 0 -2 -6
21 19 20 3/4 -1/4 -1/4 -1 -4 -6
15 22 23 -1/4 3/4 -1/4 -1 -5 1 det(A)=27
2. 数据分析函数 设A为m n矩阵, 则有:
• C=setxor(A,B,’rows’) %返回矩阵A,B交集的非, A,B有相同列数。
• [x,ia,ib]=setxor(….) %ia,ib表示其中元素分别在a (或A),b(或B)中的位置。
• 【例】
• >> A=[1,2,3,4];
• >> B=[2,4,5,8];
• >> C=setxor(A,B)
第三讲内容介绍
目标:进一步了解MATLAB, 能够熟练掌握矩阵的各种基本运 算法则。
3.1 MATLAB矩阵的代数运算
3.1.1 加法和减法运算 C=A+B或 C=plus(A,B) C=A-B或C=minus(A,B)
注意:加减运算要求A、B同构,即大小一样 特别地,标量可以和任意大小的矩阵பைடு நூலகம்行加减 例题3.1.1显然略讲 3.1.2 乘法运算 普通矩阵乘法:C=A*B或C=mtimes(A,B) 矩阵的数值乘法:C=A.*B或C=times(A,B) 数值乘法也叫点乘,要求A、B同构。 标量可以和任意大小的矩阵相乘(此时,普乘和点乘结果一样)。
征向量阵,列为特征向量。
• 对称正定阵的cholesky分解 • R=chol(A) A对称正定,R为上三角阵,R’*R=A
• 方阵的QR分解 • [Q,R]=qr(A) Q为正交矩阵,R为上三角阵,Q*R=A • 可逆阵的 LU分解 • [L,U]=lu(A) L是下三角阵,U是上三角阵 • 这些对解线性方程组还是很有利的。
•C=xor(A,B)
5.快速运算符
• (1)快速逻辑与运算:C=(A&&B) or C=A&&B • 若A的元素为0,则C的相应元素直接为0;若A的元素为1,再去计算B的
元素的值。
• (2)快速逻辑或运算: C=(A||B) or C=A||B • 若A的元素为1,则C的相应元素直接为1;若A的元素为0,再去计算B的
• mean(A) — A中各列向量的均值 • var(A) — A中各列向量的方差 • std(A) — A中各列向量的标准差 • cov(A) — A中各列向量的协方差矩阵 • corrcoef(A) — A中各列向量的相关矩阵 • 其它的函数如prod(求积)、max、sum、min等
均按列进行运算。
3.3 MATLAB矩阵的逻辑运算:
•3.3.1 运 算 符 有 四 种 : & ( 与 ) 、 | ( 或 ) 、 ~ (非)、xor(异或)。 •逻辑运算的结果是由0或1组成的矩阵;逻辑运算 符按元素进行比较,运算对象可以都是矩阵(此时 大小一样),也可以是其它情况。 •1.与:C=(A&B) or C=A&B or C=and(A,B) •2.或: C=(A|B) or C=A|B or C=or(A,B) •3.非: C=(~A) or C=~A or C=not(A) •4.异或:当参加运算的两个元素有一个为“0”,另 一个是非零时,结果为“1”,其它结果均为“0”。
返回“1”;
(5)isnan(A):返回与A大小一样的数组,只在非数值量nan
处返回“1”;
(6)isstruct(A):若A是结构体,则返回“1”; (7)isfield(A):若A是某结构体的域,则返回“1”; (8) ishandle(A):若A是图形句柄,则返回“1”; (9)ishold(A):若当前绘图状态保持为on,则返回“1”;
(10)isglobal(A):若A是全局变量,则返回“1”; (11)isletter(A):若A是字母,则返回“1”; (12)isspace(A):若A是空格,则返回“1”; 3.4 集合的运算 对向量或矩阵进行集合交、并、差、异或等运算。
3.4.1 两个集合的交集 格式:c=intersect(a,b) % 返回向量a,b的公共部分,即c=a∩b
• 还可用另一种算法:sum(A.*B).
向量的叉积
两向量叉积是一个过相交向量的交点且垂直两向量的平
面的向量,在MATLAB中,
用函数cross实现。
%返回属于a但不属于b的不同元素
• C=setdiff(A,B,’rows’) %返回属于A但不属于B的不同行。
• [C,I]=setdiff(….) 中的位置。
%C与前面一致,I表示C中元素在A
• 【例】
• >> A=[1,7,9,6,20];B=[1,2,3,4,6,10,20];
• >> C=setdiff(A,B)
逆,则C=A/B=A*inv(B); ➢ 显然,(1)对于线性方程组AX=B,若A为可逆,则X=A\B=inv(A)*B; ➢ (2)对于线性方程组XA=B,若A为可逆,则X=B/A=B*inv(A);
2) 数值除法
数值左除:C=A.\B或ldivide(A,B)
数值右除:C=A./B或rdivide(A,B)
相关文档
最新文档