122高中数学排列组合问题的几种基本方法汇编

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴甲总站在乙的右侧的有站法总数为
A55 A22
543
A53
解法2:先让甲乙之外的三人从5个位置选出3个站好,
有 A53 种站法,留下的两个位置自然给甲乙有1种站法
∴甲总站在乙的右侧的有站法总数为 A53 1 A53
2020/2/28
新疆奎屯市第一高级中学
6
特级教师王新敞
5.插板法(剪截法):
2020年2月28日星期五
2020/2/28
新疆奎屯市第一高级中学
1
特级教师王新敞
1. 分组(堆)问题 分组(堆)问题的六个模型:①无序不等分;
②无序等分;③无序局部等分;(④有序不等分; ⑤有序等分;⑥有序局部等分.)
①若干个不同的元素“等分”为 m个堆,要将
选取出每一个堆的组合数的乘积除以m! ②若干个不同的处理问题的原则:
例6. 编号为1至6的6个小球放入编号为1至6的6个 盒子里,每个盒子放一个小球,其中恰有2个小球与盒 子的编号相同的放法有____种.
解: 选取编号相同的两组球和盒子的方法有 C62 15
种,其余4组球与盒子需错位排列有9种放法.
故所求方法有15×9=135种.
2020/2/28
新疆奎屯市第一高级中学
解:要完成发包这件事,可以分为两个步骤:
⑴先将四项工程分为三“堆”,有
C42C21C11 6 A22
种分法;
⑵再将分好的三“堆”依次给三个工程队,
有3!=6种给法.
∴共有6×6=36种不同的发包方式.
2020/2/28
新疆奎屯市第一高级中学
3
特级教师王新敞
2.插空法: 解决一些不相邻问题时,可以先排“一
变式: 某校准备参加今年高中数学联赛,把16个选 手名额分配到高三年级的1-4 个教学班,每班的名额 不少于该班的序号数,则不同的分配方案共有___种.
解: 问题等价于先给2班1个,3班2个,4班3个, 再把余下的10个相同小球放入4个盒子里,每个盒子 至少有一个小球的放法种数问题.
将10个小球串成一串,截为4段有 C93 84
般”元素然后插入“特殊”元素,使问题得以
解决.
♀ ♀ ♀ ♀ ♀♀ ♀
↑ ↑ ↑ ↑↑ ↑
例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法?
解:分两步进行:
第1步,把除甲乙外的一般人排列: 有A55 =120种排法
第2步,将甲乙分别插入到不同的间隙或两端中(插孔):
有A62 =30种插入法
9
特级教师王新敞
7.剔除法 从总体中排除不符合条件的方法数,这是一
种间接解题的方法.
排列组合应用题往往和代数、三角、立体几何、平面 解析几何的某些知识联系,从而增加了问题的综合性,解 答这类应用题时,要注意使用相关知识对答案进行取舍.
例7. 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直 线方程Ax+By+C=0中的A、B、C,所得的经过坐标 原点的直线有_________条.
元素局部“等分”有 m个均等堆,要将选取出每
一③个非堆均的分组堆合问数题的,乘只积要除按以比m例!取出分完再用乘
法原理作积.
④要明确堆的顺序时,必须先分堆后再把堆数当
作元素个数作全排列.
2020/2/28
新疆奎屯市第一高级中学
2
特级教师王新敞
1. 分组(堆)问题
例1.有四项不同的工程,要发包给三个工程队,要 求每个工程队至少要得到一项工程. 共有多少种不同 的发包方式?
解:所有这样的直线共有 A73 210 条, 其中不过原点的直线有 A61 A62 180 条,
∴所得的经过坐标原点的直线有210-180=30条.
2020/2/28
新疆奎屯市第一高级中学
10
特级教师王新敞
巩固练习
1.将 3 封不同的信投入 4 个不同的邮筒,则不同的投法 的种数是( B )
共有120 30=3600种排法
几个元素不能相邻 时,先排一般元素, 再让特殊元素插孔.
2020/2/28
新疆奎屯市第一高级中学
4
特级教师王新敞
3.捆绑法
相邻元素的排列,可以采用“局部到整体”的 排法,即将相邻的元素局部排列当成“一个”元素, 然后再进行整体排列.
例3 . 6人排成一排.甲、乙两人必须相邻,有多少种不的排法?
种截断法,对应放到4个盒子里.
因此,不同的分配方案共有84种 .
2020/2/28
新疆奎屯市第一高级中学
8
特级教师王新敞
6.错位法: 编号为1至n的n个小球放入编号为1到 n的n个盒 子里,每个盒子放一个小球.要求小球与盒子的编 号都不同,这种排列称为错位排列. 特别当n=2,3,4,5时的错位数各为1,2,9,44.
4.消序法(留空法)
几个元素顺序一定的排列问题,一般是先排列,再 消去这几个元素的顺序.或者,先让其它元素选取位置 排列,留下来的空位置自然就是顺序一定的了.
例4. 5个人站成一排,甲总站在乙的右侧的有多少 种站法?
解法1:将5个人依次站成一排,有 A55 种站法,
然后再消去甲乙之间的顺序数 A22
将16个小球串成一串,截为4段有 C135 455
种截断法,对应放到4个盒子里.
因此,不同的分配方案共有455种 .
2020/2/28
新疆奎屯市第一高级中学
7
特级教师王新敞
5.剪截法:
n个 相同小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段.
A. 34
B. 43
C. A43
D.
C
3 4
2.从黄瓜、白菜、油菜、扁豆 4 种蔬菜品种中选出
解:(1)分两步进行:
♀♀♀♀♀♀
第一步,把甲乙排列(捆绑): 有A22=2种捆法甲 乙
第二步,甲乙两个人的梱看作一个元素与其它的排队:
有A55=120种排法
共有2 120=240种排法
几个元素必须相邻时,先 捆绑成一个元素,再与 其它的进行排列.
2020/2/28
新疆小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段. 例5. 某校准备参加今年高中数学联赛,把16个选手 名额分配到高三年级的1-4 个教学班,每班至少一个 名额,则不同的分配方案共有___种.
解: 问题等价于把16个相同小球放入4个盒子里, 每个盒子至少有一个小球的放法种数问题.
相关文档
最新文档