一次函数在生活中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数在生活中的应用
雪河中学宋欣
一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。函数的基本概念:在一个变化过程中,有两个变量x和y,并且对于x每一个确定的值,在y中都有唯一确定的值与其对应,那么我们就说y是x的函数,也可以说x
是自变量,y是因变量。表示为y=kx+b(k≠0,k、b均为常数),当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。可表示为y=kx。
一次函数在我们的日常生活中应用十分广泛。在现实生活中,人们的生活越来越趋向于经济化,合理化.很多事情都可以利用一次函数来解决。如:1.当时间t一定,距离s是速度v的一次函数,s=vt。2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S,g=S-ft。3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)
当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题.比如2011年陕西中考第21题: 2011年4月28日,以“天人长安,创意自然一一城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,
某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票的张数是A种票张数的3倍还多8张,设购买A种票张数为x,C种票张数为y
(1)写出y与x之间的函数关系式;
(2)设购票总费用为W元,求出W(元)与X(张)之间的函数关系式;
(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.
考点:一次函数的应用;一元一次不等式组的应用。
分析:(1)根据A、B、C三种票的数量关系列出y与x的函数关系式;
(2)根据三种票的张数、价格分别算出每种票的费用,再算出总数w,即可求出W(元)与X(张)之间的函数关系式;
(3)根据题意求出x的取值范围,根据取值可以确定有三种方案购票,再从函数关系式分析w随x的增大而减小从而求出最值,即购票的费用最少.解答:解(1)B中票数为:3x+8
则y=100﹣x﹣3x﹣8化简得,
y=﹣4x+92
即y与x之间的函数关系式为:y=﹣4x+92
(2)w=60x+100(3x+8)+150(﹣4x+92)化简得,
w=﹣240x+14600
即购票总费用W与X(张)之间的函数关系式为:w=﹣240x+14600
(3)由题意得,解得,
20≤x<23
∵x是正整数,∴x可取20、21、22
那么共有3种购票方案.
从函数关系式w=﹣240x+14600可以看出w随x的增大而减小,
当x=22时,w的最值最小,即当A票购买22张时,购票的总费用最少.
购票总费用最少时,购买A、B、C三种票的张数分别为22、74、4.
点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x 的变化,结合自变量的取值范围确定最值.
像这样的问题,我们在日常生活中随处可见。
例如,有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相
同.为了争取更多的用户,两站分别推出优惠政策.甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售。两站的优惠期限都是一年.你作为用户,应该选哪家好?
这个问题与前面的问题有很大相同之处。只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了。
随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率。运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”。
作为跨世纪的中学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题。这样才能更好地适应社会的发展和需要。