基于ABAQUS的碳纤维复合材料板热冲压成形仿真

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究与开发
合成纤维工业ꎬ2019ꎬ42(2):16CHINA㊀SYNTHETIC㊀FIBER㊀INDUSTRY
㊀㊀
收稿日期:2018 ̄10 ̄02ꎻ修改稿收到日期:2019 ̄01 ̄25ꎮ作者简介:张华伟(1983 )ꎬ男ꎬ讲师ꎬ主要从事纤维增强复合材料的研究与教学工作ꎮE ̄mail:zhanghw@neuq.edu.cnꎮ
基金项目:国家自然科学基金项目(51475086)ꎻ河北省自然科学基金项目(E2016501118)ꎻ中央高校基本科研业务费专项资金资助项目(N172304036)ꎻ河北省高等学校科学技术研究重点项目(ZD2017315)ꎮ㊀
∗通信联系人ꎮE ̄mail:247328210@qq.comꎮ
基于ABAQUS的碳纤维复合材料
板热冲压成形仿真
张华伟ꎬ李博宏∗
(东北大学秦皇岛分校控制工程学院ꎬ河北秦皇岛066000)
摘㊀要:基于ABAQUS有限元分析软件对碳纤维增强聚醚醚酮(PEEK)复合材料板的热冲压成形工艺进行
模拟ꎬ分析了复合材料在热冲压过程中的受力及变形特性ꎬ探讨了纤维铺层夹角㊁复合材料板层数和复合层类型对其成形性能的影响ꎮ结果表明:可以利用复合材料的工程常数建立材料的本构模型ꎻ在复合层类型的选择中ꎬ 三维实体 ̄连续壳 更符合实际情况ꎬ仿真效果更好ꎻ复合材料的纤维铺层夹角是其热冲压成形的主要影响因素ꎬ而且同其他的纤维铺层夹角(0ʎꎬ30ʎꎬ45ʎ)相比ꎬ复合材料在铺层夹角为90ʎ时热冲压受力较好ꎬ但应变也较大ꎬ容易发生破坏ꎻ当总厚度一定时ꎬ复合材料板层数对材料的受力无明显影响ꎻ选择复合层类型为连续壳㊁90ʎ夹角的复合材料板建立热冲压模型ꎬ仿真效果最好ꎮ
关键词:碳纤维㊀复合材料㊀热冲压成形㊀有限元模型㊀模拟仿真
中图分类号:TQ342+.74㊀㊀文献标识码:A㊀㊀文章编号:1001 ̄0042(2019)02 ̄0016 ̄05
㊀㊀复合材料是由两种或多种不同性质的材料用物理和化学方法在宏观尺度上组成的具有新性能的材料ꎮ通常来说ꎬ复合材料除了具有其组合材料的原始性能之外ꎬ还会产生一些原来组分材料所没有的新的性能ꎬ从而使得复合材料在强度㊁刚度㊁热力学等性能上有了一定幅度的改善[1]ꎮ
碳纤维增强树脂基复合材料具有较高的强
度ꎬ相对比金属材料来说ꎬ更加耐腐蚀㊁绝缘性好㊁制作方式简单ꎮ而且ꎬ碳纤维复合材料的密度小㊁比强度高ꎬ具有较好的轻量化效果和抗冲击性能ꎮ但这种材料也有其不足之处:材料各向异性严重㊁常温下成形性能差㊁生产成本较高等ꎮ张琦等[2]研究了碳纤维复合材料板的非等温模具热冲压ꎬ并以实验与有限元仿真结合的方式对纤维编织复合材料进行了分析ꎮ堵同亮等
[3]
建立了碳纤维
编织复合材料的超弹性本构模型ꎬ研究了碳纤维编织复合材料在冲压成形带有双曲率曲面的结构件时的纤维重新排布和重新取向ꎮ但这些研究多数是以细观力学的分析方法来对复合材料冲压工艺仿真建模ꎬ对于从宏观的角度利用工程常数建模仿真的研究还相对较少
[4-8]

ABAQUS软件是一款功能强大的有限元分析
软件ꎮ在工程应用方面ꎬABAQUS基于丰富的单元库ꎬ可以用于模拟绝大多数的常见工程材料ꎬ如金属㊁聚合物㊁复合材料㊁橡胶等ꎮ
作者利用ABAQUS软件对碳纤维复合材料
板的宏观力学行为进行了研究ꎬ建立了碳纤维复合材料板在高温状态下的本构模型ꎬ在此基础上构建了碳纤维复合材料热冲压成形的有限元模型ꎬ完成了成形过程的有限元仿真ꎬ对比了不同的复合层类型㊁铺层角度㊁铺层层数对碳纤维复合材料板热冲压成形的影响ꎬ研究结果对于碳纤维复合材料零件在汽车轻量化上的应用[9]具有一定的指导意义ꎮ1㊀实验
1.1㊀原材料
连续碳纤维:牌号为T1100Gꎬ日本东丽公司生产ꎻ聚醚醚酮(PEEK)树脂:牌号为KT ̄820NLꎬ熔点340ħꎬ索尔维集团产ꎮ
1.2㊀碳纤维增强PEEK复合材料的制备
对于碳纤维增强PEEK复合材料ꎬ工业上常采用热压法进行制备ꎮ其主要工艺流程为:首先将碳纤维和预处理过的PEEK薄膜交替铺层在清洗干净的模具中ꎬ然后将模具放入已经预热一段
时间的平板硫化机内ꎬ将温度提升到一特定温度ꎬ同时加压至设定的压力ꎬ保压一段时间ꎮ待到温度自然冷却至PEEK树脂的玻璃化转变温度以下ꎬ完成脱模ꎬ则可以得到碳纤维增强PEEK复合材料板[10-11]ꎮ设置参数:热压温度395ħꎬ热压压力2.5MPaꎮ
1.3㊀复合材料板工程常数的拟定
对于仿真建模来说ꎬ此处可以利用复合材料的工程常数来建立碳纤维复合材料板的本构模型ꎬ即从细观力学入手设置参数ꎬ最后结合宏观力学的方法来进行仿真模拟分析ꎮ
复合材料工程弹性常数共有9个ꎬ即该材料的三个方向上的弹性模量(E1ꎬE2ꎬE3)㊁三个方向上的泊松比(v12ꎬv13ꎬv23)和三个方向上的剪切模量(G12ꎬG13ꎬG23)ꎮ其中E1为主方向上的弹性模量ꎬ即本材料中的连续纤维方向ꎮ
通过相关文献可以查得常温下碳纤维复合材料的E1为150~450GPa[12]ꎮ横截面积为Aꎬ连续纤维与基体的横截面积分别为AfꎬAmꎬ于是有:
σ1A=σfAf+σmAm(1)式中:σ1为主方向上的应力ꎻσf为连续纤维截面应力ꎻσm为基体的应力ꎮ
考虑到应力与模量的关系ꎬ则有:
E1=EfAfA+EmAmA(2)式中:Ef为连续纤维截面的弹性模量ꎻEm为基体的弹性模量ꎮ
其他工程常数可选用PEEK材料的基本参数[13-15]ꎮ因此ꎬ拟定采用的复合材料工程常数如表1所示ꎮ
表1㊀碳纤维增强复合板材工程常数
Tab.1㊀Engineeringconstantofcarbonfiber
reinforcedcompositeplate
项目参数
E1/MPa32800.0
E2/MPa48.3
E3/MPa48.3
v120.4
v130.4
v230.4
G12/MPa11.4
G13/MPa11.4
G23/MPa11.4
1.4㊀基于ABAQUS的冲压成形仿真建模方案在ABAQUS中进行几何建模ꎬ建立半球冲压仿真的模型ꎬ设定Z方向为冲压方向ꎮ将冲头㊁压边框以及下模视为刚体ꎮ进行网格划分时ꎬ对于碳纤维复合材料板ꎬ选择了常规壳和连续壳两种复合层类型ꎬ其网格单元选择Shell中的S4R
(常规壳)和ContinuumShel1中的SC8R(连续壳)单元类型[16-19]ꎬ其余部件如冲头等采取仿真分析中常用的C3D10M单元类型ꎮ为了保证精度ꎬ板材采用细化网格ꎬ同时为了提高运算效率ꎬ对冲头㊁压边框和下模采用粗网格划分ꎬ如图
1ꎮ
图1㊀热冲压模型示意
Fig.1㊀Sketchofstampingmodel
㊀㊀设定碳纤维增强PEEK复合材料板处于200ħ适宜冲压的状态ꎬ选用实验试件为厚度0.3mmꎬ边长为500mm的正方形材料板ꎬ用于成形热冲压深度为100mm的半球形拉伸件ꎮ
复合层纤维铺层夹角选取4种方式ꎬ即0ʎ㊁间隔30ʎ㊁间隔45ʎ( 米 字型铺层)与90ʎ( 十 字型铺层)排布ꎮ复合层的层数与每层厚度由被冲压材料板的总厚度确定ꎬ即总厚度不变ꎬ单层材料厚度与层数成反比ꎮ冲压板总厚度为0.3mmꎬ复合层层数设置为6ꎬ8ꎬ12ꎬ20ꎬ30层5个等级ꎮ2㊀结果与讨论
2.1㊀复合层的类型选择对仿真结果的影响针对复合层类型ꎬ进行了两种建模方式ꎬ即常规壳 ̄三维壳单元建模和连续壳 ̄三维实体单元建模ꎬ其应力云图分别见图2㊁图
3ꎮ
图2㊀45ʎ复合层类型的应力云图对比
Fig.2㊀Stressnephogramscomparisonofthe
typeof45ʎcompositelayer
71
第2期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀张华伟等.基于ABAQUS的碳纤维复合材料板热冲压成形仿真
图3㊀90ʎ复合层类型的应力云图对比
Fig.3㊀Stressnephogramscomparisonofthe
typeof90ʎcompositelayer
㊀㊀从两种建模方式的应力云图对比分析可以看出来ꎬ使用常规壳 ̄三维壳单元来进行建模的时候ꎬ与连续壳 ̄三维实体单元的应力数据几乎没有区别ꎬ但显示效果并没有连续壳 ̄三维实体单元的显示效果好ꎮ
由此可知ꎬ在进行复合层建模的时候ꎬ常规壳对于碳纤维增强复合材料的连续性的因素影响没有连续壳好ꎬ应力分析是按照常规材料的应力计算方式进行的ꎬ所以在某些位置会出现没有任何过度的应力突变的情况ꎮ当改成连续壳 ̄三维实体单元建模的时候ꎬ由于考虑到了碳纤维复合材料的特性ꎬ在ABAQUS中有不同的计算方式ꎬ使得对于材料板的应力计算过度更加平滑ꎬ因此也不会出现类似于常规壳的那种应力突变点ꎮ因此ꎬ后文中复合层板间铺层夹角与板间层数的讨论均在建模类型为 连续壳 ̄三维实体单元 的基础上进行ꎮ
2.2㊀复合材料的铺层夹角对冲压受力的影响碳纤维复合材料的主要受力元素是碳纤维ꎬ基体在受力过程中起到传递载荷的作用ꎮ碳纤维复合材料板冲压工艺主要受材料拉应力性能指标的影响ꎬ即可以通过分析比较最大拉应力来判断碳纤维受力情况ꎮ同时为了进一步探究复合材料层间夹角排布对其热冲压性能的影响ꎬ还设置了一组不同复合材料板层间夹角的真实应变对比ꎮ实验中以12层复合材料板为例ꎬ其应力云图见图4ꎬ其应变云图见图5ꎮ结合图4ꎬ图5和表2ꎬ表3可分析出ꎬ当其他条件相同ꎬ当碳纤维复合材料板层间夹角不同的时候ꎬ其受到的冲压应力与应变是不同的ꎮ当层间夹角为90ʎ叠层时ꎬ其碳纤维排列结构简单ꎬ层间滑移大ꎬ剪切柔度高ꎬ所以纤维夹角的可转角度也很大ꎻ当层间夹角为30ʎ间隔与45ʎ间隔分布时ꎬ由于纤维排布较为复杂ꎬ多个方向角都有限制截面剪切的纤维阻力ꎬ所以剪切柔度小ꎬ导致冲压深度相同的情况下ꎬ其纤维转
角较小ꎬ即产生较大的应力ꎮ同时可观察得到ꎬ在
层间夹角为30ʎ或45ʎ排布的时候ꎬ由于碳纤维材
料在板材的几何中心排布最为密集ꎬ理论上在几
何中心的受力应该是最大的ꎬ其次才是下模与板
材接触的区域ꎬ即云图显示其主要受力区域在板
材与冲头接触的中心位置ꎻ而间隔90ʎ排布则不
同ꎬ碳纤维在几何分布上是均匀的ꎬ不会出现某一
区域的受力性能明显高于其他区域的情况ꎬ所以
其主要受力区域为下模与板材的接触位置[20-22]ꎮ不难看出ꎬ无论对复合板中的纤维层夹角如何排
布ꎬ都无法消除复合板冲压过程中的各向异性

图4㊀不同层间夹角的12层复合材料板
应力云图示意
Fig.4㊀Stressnephogramsof12 ̄layercompositesheet
withdifferentinterlayerangles
图5㊀不同层间夹角的12层复合材料板
应变云图示意
Fig.5㊀Strainnephogramsof12 ̄layercompositesheet
withdifferentinterlayerangles
81㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年第42卷
表2㊀不同层间夹角及层数的复合材料板的冲压应力Tab.2㊀Stampingstressofcompositematerialplates
withdifferentinterlayerangles
层间夹角/(ʎ)
冲击应力/MPa
6层8层12层20层30层
0103.7106.1110.389.489.130872.4874.8920.2998.9923.645908.1949.0934.9982.9967.390170.3101.1108.5115.7114.6表3㊀不同层间夹角及层数的复合材料板的冲压应变Tab.3㊀Stampingstrainofcompositematerialplateswithdifferentinterlayeranglesandlayernumbers
层间夹角/(ʎ)
冲压应变
6层8层12层20层30层
00.09920.10020.10120.09990.0994300.06420.03590.03000.03190.0293450.04250.03040.02990.03010.0299900.10090.10020.10150.10250.1034㊀㊀对比0ʎꎬ30ʎꎬ45ʎꎬ90ʎ层间夹角的4种不同纤维排布方式的应变云图可以看出ꎬ 十 字型排布方式的应变与 米 字形排布方式的应变有着本质的区别ꎬ即其发生应变的区域完全不同ꎬ而其应变的大小也是差别很大ꎬ90ʎ铺层的复合材料应变较大ꎬ达到了10%的形变程度ꎻ而45ʎ与30ʎ铺层的复合材料应变较小ꎬ仅有3%的形变ꎮ
这些现象都说明了复合材料板的不同板间夹角排布会给冲压工艺带来不同的受力情况ꎬ随着其层间夹角排布的不同ꎬ其纤维层之间剪切转动方式㊁复合材料板的宏观力学性能等均会产生较大的差异[22]ꎮ一般说来ꎬ90ʎ夹角的排布方式时其冲压受力与成形性能要好于另外两种ꎮ但这种排布方式伴随而来的是较大的应变幅度ꎬ这也意味着这种排布方式较另外两种来说更容易产生受力破坏[23]ꎮ这个结论符合碳纤维复合材料的力学成形原理ꎮ除了这四种为工程上常用的铺层方式以外ꎬ本文还进行了单层0ʎ夹角的复合材料板的热冲压仿真ꎮ最后的现象也合理地解释了复合材料板冲压成形的原理ꎬ即当碳纤维受力后ꎬ其纤维方向上几乎没有拉伸形变ꎬ而是产生位移ꎮ所以在宏观上ꎬ板材显示出来的就是纤维方向上的板材的 收束 形变ꎮ
2.3㊀复合材料的板间层数对冲压工艺的影响本研究设置了5组铺层层数ꎬ设定总厚度一定ꎬ即铺层层数越多ꎬ每一铺层就越薄ꎮ此处拟定最大铺层数为30ꎬ当铺层数超过30的时候ꎬ每一层的厚度均降至0.01mm以下ꎬ已经不符合常规的生产要求ꎮ同时ꎬ由于本研究主要讨论的是碳纤维复合材料的纤维排布方向与复合材料板间层数对热冲压的影响ꎬ所以对各方向纤维占比受力的影响并未给予考虑ꎮ
由12层复合材料板冲压应力云图(图4)及表2㊁表3分析可知ꎬ当总厚度一定时ꎬ板间层数相对于铺层方式来说ꎬ对冲压性能的影响不大ꎮ其中细微差别可以通过纵向对比来发现:冲压过程中的应力一般随着板间铺层的层数上升而上升ꎮ其主要原理是由于铺层层数变多ꎬ板料的稳定性也会越来越好ꎬ而且由于层数增多ꎬ使得其总层间摩擦力增大ꎬ这也会对冲压受力的情况带来一定的影响ꎮ所以在相同的冲压位移的情况下ꎬ其受力变得更高ꎮ
因此也可以认为板间层数对碳纤维增强复合材料板的冲压性能影响较小ꎬ与板间连续纤维排布角度相比ꎬ板间层数的影响可以忽略不记ꎮ同时ꎬ因为复合材料板板件的厚度对板材的力学性能有很大的影响ꎬ所以相比于复合材料板间的复合层层数ꎬ复合材料板的厚度对于热冲压的性能影响更大ꎮ
3㊀结论
a.以ABAQUS为建模工具ꎬ利用工程常数建模同宏观力学结合的方法构建了碳纤维复合材料高温本构模型ꎮ
b.在选择复合层类型的时候ꎬ 连续壳 类型的仿真效果要明显好于常规壳ꎬ更加符合实际的受力情况ꎮ
c.碳纤维增强复合材料的热冲压性能主要取决于复合板层间的夹角排布ꎬ当夹角排布的方式越松散ꎬ纤维之间剪切柔度越高ꎬ则其在高温状态下冲压受力情况就越好ꎻ反之ꎬ当夹角排布的方式越稳定ꎬ则其在高温状态下的冲压受力情况就越差ꎮ其中综合看来是90ʎ夹角排布时冲压受力较好ꎮ
d.在同样的温度和夹角排布的情况下ꎬ碳纤维增强复合材料板的板间层数对于冲压受力性能的影响不大ꎮ
参㊀考㊀文㊀献
[1]㊀沈观林ꎬ胡更开ꎬ刘彬.复合材料力学[M].北京:清华大学出版社ꎬ2013:4-20.
91
第2期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀张华伟等.基于ABAQUS的碳纤维复合材料板热冲压成形仿真
[2]㊀张琦ꎬ高强ꎬ赵升吨.碳纤维复合材料板热冲压成形试验研究[J].机械工程学报ꎬ2012ꎬ48(18):72-74. [3]㊀堵同亮ꎬ彭雄奇ꎬ郭早阳ꎬ等.碳纤维编织复合材料冲压成形实验与仿真分析[J].功能材料ꎬ2012ꎬ16(44):2401-
2404.
[4]㊀代少俊.高性能纤维复合材料[M].上海:华东理工大学出版社ꎬ2013:4-9.
[5]㊀罗益锋.碳纤维复合材料的研发方向和市场开发动向[J].
高科技纤维与应用ꎬ2011ꎬ22(11):38-41. [6]㊀ZhangQiꎬCaiJinꎬGaoQiang.Simulationandexperimentalstudyonthermaldeepdrawingofcarbonfiberwovencomposites[J].
JMaterProcTechꎬ2014ꎬ214(4):802-810. [7]㊀ZhangQiꎬCaiJinꎬGaoQiang.Experimentalandsimulationre ̄searchonthermalstampingofcarbonfibercompositesheet[J].TransNonferrousMetSocChinꎬ2014ꎬ24(1):217-
223.
[8]㊀庄靖东.聚醚醚酮板材热成型性能研究[D].武汉:华中科技大学ꎬ2015.
[9]㊀彭孟娜ꎬ马建伟.碳纤维及其在汽车轻量化中的应用[J].
合成纤维工业ꎬ2018ꎬ41(1):53-57.
[10]支建海ꎬ钱鑫ꎬ张永刚ꎬ等.国产碳纤维增强树脂基复合材料的界面结合性能研究[J].合成纤维工业ꎬ2018ꎬ41(4):14-17.
[11]张照.碳纤维织物增强聚醚醚酮基(CFF/PEEK)航空复合材料的制备及其界面改性[D].上海:东华大学ꎬ2017. [12]唐见茂.高性能纤维及复合材料[M].北京:化学工业出版社ꎬ2012:12-19.[13]张少实ꎬ庄茁.复合材料与粘弹性力学[M].北京:机械工业出版社ꎬ2011:53-55.
[14]庄靖东ꎬ黄志高ꎬ周华民.热成型条件下PEEK力学行为研究与建模[J].塑料工业ꎬ2015ꎬ43(7):73-77.
[15]黄发荣ꎬ周燕.先进树脂基复合材料[M].北京:化学工业出版社ꎬ2008:168-169.
[16]庄茁ꎬ由小川ꎬ廖剑晖ꎬ等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社ꎬ2009:17-24. [17]刘展.ABAQUS有限元分析从入门到精通[M].北京:人民邮电出版社ꎬ2015:194-206.
[18]齐威.ABAQUS6.14超级学习手册[M].北京:人民邮电出版社ꎬ2016:492-498.
[19]张建伟.ABAQUS有限元分析 ̄从入门到精通[M].北京:机械工业出版社ꎬ2015:22-79.
[20]ChenQianqianꎬBoissePꎬParkCHꎬetal.Intra/inter ̄plyshearbehaviorsofcontinuousfiberreinforcedthermoplasticcompos ̄itesinthermoformingprocesses[J].CompStructꎬ2011ꎬ93(7):1692-1703.
[21]㊀张衡ꎬ严飙ꎬ龚友坤ꎬ等.碳纤维机织物增强热塑性树脂复合材料热冲压叠层模型[J].复合材料学报ꎬ2017ꎬ34(12):2741-2746.
[22]丁纺纺ꎬ彭雄奇.复合材料用机织物非正交本构模型的半球形冲压成型验证[J].复合材料学报ꎬ2011ꎬ28(1):156-160.
[23]韩宾ꎬ王宏ꎬ于杨惠文ꎬ等.碳纤维增强热塑性复合材料盒形件热冲压成型研究[J].航空制造技术ꎬ2017(16):40-
45.
Simulationofthermalstampingformationprocessofcarbonfiber
compositesheetbasedonABAQUS
ZhangHuaweiꎬLiBohong
(SchoolofControlEngineeringꎬNortheasternUniversityatQinhuangdaoꎬQinghuangdao066000)
Abstract:Thethermalstampingprocessofcarbonfiberreinforcedpolyetheretherketone(PEEK)compositesheetwassimula ̄tedbasedonABAQUSfiniteelementanalysissoftware.Themechanicalanddeformationcharacteristicsofcompositematerialswereanalyzedduringthermalstamping.Theeffectsofthefiberinterlayerangleandthenumberandthetypeofcompositelayersontheformabilitywerediscussed.Theresultsshowedthattheconstitutivemodelofcompositescouldbeestablishedbasedonen ̄gineeringconstantsofcompositesꎻthree ̄dimensionalsolid ̄continuousshellwasamorereasonablecompositesheettypeinlinewiththeactualsituationꎬprovidingabettersimulationeffectthanothercompositesheettypesꎻthefiberinterlayerangleofcom ̄positeswasthemainfactoraffectingthethermalstampingprocessꎻcomparedwithothercompositematerialswiththefiberinter ̄layeranglesof0ʎꎬ30ʎand45ʎꎬthecompositematerialwiththeinterlayerangleof90ʎshowedbetterstressperformancewhilethermalstampingandwaspronetobeingdamagedduetohigherstrainꎻthelayernumberofcompositematerialhadnoobviouseffectonthestressatafixedtotalthicknessofthecompositeꎻandthesimulationeffectwasoptimizedwhenthethermalstampingmodelofcompositematerialwasestablishedwithcontinuousshellandinterlayerangleof90ʎ.
Keywords:carbonfiberꎻcompositematerialꎻthermalstampingformationꎻfiniteelementmodelꎻsimulation
02㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年第42卷。

相关文档
最新文档