通信原理 第五章 数字基带传输系统
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 s
N
2
(t − nTs )]
uT (t ) = sT (t ) − vT (t ) =
n =− N
∑ u (t )
n
N
(1 − P)[ g1 (t − nTs ) − g 2 (t − nTs )], un (t ) = − P[ g1 (t − nTs ) − g 2 (t − nTs )],
∞
s (t ) =
n = −∞
∑
sn (t )
n=− N
s(t在 s(t在
sT (t ) =
∑s
N
n
(t ),
T = (2 N + 1)Ts
2 E S T (ω ) Ps (ω ) = lim N→∞ ( 2 N + 1)T s
copyright
22
s (t ) =
g 1 ( t − n T s ), sn (t ) = g 2 ( t − n T s ),
0 (a ) 1 0 1 0 0 1 1
• • •
1 0 1 0 0 1 1
+E -E
(d ) 1 1 1 0 1 0 0 1 1
+E -E
1
0
1
0
+E -E
(b )
(e ) 0 1 0 0 11 10 11 01 0 0 01
+3E
0 1 1
+E
0
wenku.baidu.com
1
0
1
0
+E -E -3E
(c )
(f)
copyright
19
f
5要2要2
、
引个少 性个少 意个少 或个少
copyright 20
.
1 ( 2 。 ) 。
copyright
21
弦 2 3
ε (ω ) = F (ω )
f
2
ϕ f (ω ) = lim
1 2 FT (ω ) T →∞ T
∞ 2 −∞
ϕ f (ω ) = 2π ∑ C n δ (ω − n ω 0 )
9
NRZ)
“1”
01000011000001010
“0”
(1) (2)
0
t
(3) (4)
copyright 10
“1” 架
1 “1” 0” ; 2 0
“0”
01000011000001010
3 4 “1” 0”
;
copyright
11
RZ
“1” → “0” → = τ/T τ=T/2
T
τ(τ<T) =1/2
v(t ) =
1 Cm = Ts
m =−∞
∑
∞
Cm e jm 2π fs t
v(t )e − jm 2π f s t dt
∫
Ts / 2
− Ts / 2
Pv ( f ) =
copyright
m =−∞
∑
∞
cm δ ( f − mf s )
28
2
vT (t ) =
n =− N
∑ [ Pg (t − nT ) + (1 − P) g
1 s
N
2
(t − nTs )]
Ts
1 Cm = Ts
∫
Ts / 2
−Ts / 2
∞
v(t )e − jm 2π f s t dt = f s [ PG1 (mf s ) + (1 − P)G2 (mf s ) ]
− j 2π mf s t
copyright 15
3 01 2 10 1 11 0
00 10 t
3 1 0 -1 -3 01
Tb
00 01
2Tb 3Tb 4 Tb 5Tb
t
Tb 2Tb 3Tb 4Tb 5Tb
10 11 “0” “1” L
n=log2L
copyright
16
Ts
个 个个个个个个个个个个个 个个个个个个个个个个个 s(t ) =
01 0 0 0 1 1 0 0 0 0 1 010
0
τ
12
t
copyright
T
0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0
t
作
copyright
13
copyright
14
“1”
“0”
0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 10 0
始
t
架
“1”
“1” “0” “0” “1”
18
5下作
g(t) Ts
g(t)
g(t) = 1 0 | t | ≤ τ /2 | t | ≥ τ /2
-Ts/2 t
τ = Ts→NRZ τ < Ts →RZ
-τ/2
τ/2 G(f)
Ts/2
g (t ) ↔ G ( f ) = τ Sa (π f τ )
-2/τ
copyright
-1/τ
1/τ 2/τ
an
n =−∞
∑ag
n
∞
n
(t − nTs ) 个 个 个
n
Ts
带
个弦 个
媒弦
弦
copyright
17
g1 (t )
带
g 2 (t )
( ( ) )
g1 (t − nTs ) g (t − nTs ) = g 2 (t − nTs ) an
个 个 个 个 个 个
s (t )
个
个
copyright
g2(t-2Ts)
(a )
-Ts O 2 Ts 2 v (t) t
(b )
-Ts -Ts O 2 Ts 2 u(t) Ts t
(c )
O t
copyright
25
sT ( t ) = vT ( t ) + u T ( t )
Ts
vT (t ) =
n =− N
∑ [ Pg (t − nT ) + (1 − P) g
1 2 3 4 5 6 7 8 9
copyright 2
5要作
1、
a带个a引个a性个…… {an} an→ an M an → A/D →PCM 0 1 0 1 2……M-1
copyright
3
2、
引 ——
性
——
copyright
4
1
2
3
copyright
5
:
:: :
:
,
copyright
6
{a n }
弦 (a在 带
t
带
弦
带
弦
弦
带
(速在 带 s (t ) (都在 带
t t
r (t ) (量在 带
t
y (t ) (e在 带
t
(f在 带
t
{a }
' n
(错在 弦 带 带 弦 弦 弦 弦 带
t
copyright
7
5.2
.2.1
。 然 、 。 衰 、
。
copyright 8
• • •
+E
g1(t ) “0” g2(t ) “1”
copyright
n = −∞
∑
∞
s n (t )
P 1-P
Ts fs
23
P 1-P
sT ( t ) = vT ( t ) + u T ( t )
copyright
24
g2(t+4Ts)
g1(t+3Ts)
g1(t+2Ts) g2(t+Ts)
g (t)
g1 (t) g2(t-Ts)
copyright
P (弦媒P )
26
s(t)
v(t)
g1(t )
u(t) s(t) g2(t )
v(t ) = P ∑ g1 (t − nTs ) + (1 − P ) ∑ g 2 (t − nTs ) =
n =−∞ n =−∞
∞
∞
n =−∞
∑ v (t )
n
∞
v(t)
Ts
copyright
27
N
2
(t − nTs )]
uT (t ) = sT (t ) − vT (t ) =
n =− N
∑ u (t )
n
N
(1 − P)[ g1 (t − nTs ) − g 2 (t − nTs )], un (t ) = − P[ g1 (t − nTs ) − g 2 (t − nTs )],
∞
s (t ) =
n = −∞
∑
sn (t )
n=− N
s(t在 s(t在
sT (t ) =
∑s
N
n
(t ),
T = (2 N + 1)Ts
2 E S T (ω ) Ps (ω ) = lim N→∞ ( 2 N + 1)T s
copyright
22
s (t ) =
g 1 ( t − n T s ), sn (t ) = g 2 ( t − n T s ),
0 (a ) 1 0 1 0 0 1 1
• • •
1 0 1 0 0 1 1
+E -E
(d ) 1 1 1 0 1 0 0 1 1
+E -E
1
0
1
0
+E -E
(b )
(e ) 0 1 0 0 11 10 11 01 0 0 01
+3E
0 1 1
+E
0
wenku.baidu.com
1
0
1
0
+E -E -3E
(c )
(f)
copyright
19
f
5要2要2
、
引个少 性个少 意个少 或个少
copyright 20
.
1 ( 2 。 ) 。
copyright
21
弦 2 3
ε (ω ) = F (ω )
f
2
ϕ f (ω ) = lim
1 2 FT (ω ) T →∞ T
∞ 2 −∞
ϕ f (ω ) = 2π ∑ C n δ (ω − n ω 0 )
9
NRZ)
“1”
01000011000001010
“0”
(1) (2)
0
t
(3) (4)
copyright 10
“1” 架
1 “1” 0” ; 2 0
“0”
01000011000001010
3 4 “1” 0”
;
copyright
11
RZ
“1” → “0” → = τ/T τ=T/2
T
τ(τ<T) =1/2
v(t ) =
1 Cm = Ts
m =−∞
∑
∞
Cm e jm 2π fs t
v(t )e − jm 2π f s t dt
∫
Ts / 2
− Ts / 2
Pv ( f ) =
copyright
m =−∞
∑
∞
cm δ ( f − mf s )
28
2
vT (t ) =
n =− N
∑ [ Pg (t − nT ) + (1 − P) g
1 s
N
2
(t − nTs )]
Ts
1 Cm = Ts
∫
Ts / 2
−Ts / 2
∞
v(t )e − jm 2π f s t dt = f s [ PG1 (mf s ) + (1 − P)G2 (mf s ) ]
− j 2π mf s t
copyright 15
3 01 2 10 1 11 0
00 10 t
3 1 0 -1 -3 01
Tb
00 01
2Tb 3Tb 4 Tb 5Tb
t
Tb 2Tb 3Tb 4Tb 5Tb
10 11 “0” “1” L
n=log2L
copyright
16
Ts
个 个个个个个个个个个个个 个个个个个个个个个个个 s(t ) =
01 0 0 0 1 1 0 0 0 0 1 010
0
τ
12
t
copyright
T
0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0
t
作
copyright
13
copyright
14
“1”
“0”
0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 10 0
始
t
架
“1”
“1” “0” “0” “1”
18
5下作
g(t) Ts
g(t)
g(t) = 1 0 | t | ≤ τ /2 | t | ≥ τ /2
-Ts/2 t
τ = Ts→NRZ τ < Ts →RZ
-τ/2
τ/2 G(f)
Ts/2
g (t ) ↔ G ( f ) = τ Sa (π f τ )
-2/τ
copyright
-1/τ
1/τ 2/τ
an
n =−∞
∑ag
n
∞
n
(t − nTs ) 个 个 个
n
Ts
带
个弦 个
媒弦
弦
copyright
17
g1 (t )
带
g 2 (t )
( ( ) )
g1 (t − nTs ) g (t − nTs ) = g 2 (t − nTs ) an
个 个 个 个 个 个
s (t )
个
个
copyright
g2(t-2Ts)
(a )
-Ts O 2 Ts 2 v (t) t
(b )
-Ts -Ts O 2 Ts 2 u(t) Ts t
(c )
O t
copyright
25
sT ( t ) = vT ( t ) + u T ( t )
Ts
vT (t ) =
n =− N
∑ [ Pg (t − nT ) + (1 − P) g
1 2 3 4 5 6 7 8 9
copyright 2
5要作
1、
a带个a引个a性个…… {an} an→ an M an → A/D →PCM 0 1 0 1 2……M-1
copyright
3
2、
引 ——
性
——
copyright
4
1
2
3
copyright
5
:
:: :
:
,
copyright
6
{a n }
弦 (a在 带
t
带
弦
带
弦
弦
带
(速在 带 s (t ) (都在 带
t t
r (t ) (量在 带
t
y (t ) (e在 带
t
(f在 带
t
{a }
' n
(错在 弦 带 带 弦 弦 弦 弦 带
t
copyright
7
5.2
.2.1
。 然 、 。 衰 、
。
copyright 8
• • •
+E
g1(t ) “0” g2(t ) “1”
copyright
n = −∞
∑
∞
s n (t )
P 1-P
Ts fs
23
P 1-P
sT ( t ) = vT ( t ) + u T ( t )
copyright
24
g2(t+4Ts)
g1(t+3Ts)
g1(t+2Ts) g2(t+Ts)
g (t)
g1 (t) g2(t-Ts)
copyright
P (弦媒P )
26
s(t)
v(t)
g1(t )
u(t) s(t) g2(t )
v(t ) = P ∑ g1 (t − nTs ) + (1 − P ) ∑ g 2 (t − nTs ) =
n =−∞ n =−∞
∞
∞
n =−∞
∑ v (t )
n
∞
v(t)
Ts
copyright
27