幂的乘方与积的乘方教案
七年级数学下册《幂的乘方与积的乘方》教案、教学设计
将学生分成若干小组,针对教师提出的问题,进行小组讨论。讨论过程中,教师巡回指导,引导学生深入探讨幂的乘方与积的乘方的运算规律。
2.教学内容:
(1)讨论幂的乘方与积的乘方的运算规律;
(2)探讨幂的乘方与积的乘方在实际问题中的应用;
(3)分享各自解题的方法和技巧。
(四)课堂练习
1.教学活动设计:
4.针对学生在积的乘方学习中可能遇到的困难,设计具有启发性的例题和练习题,帮助学生逐步突破难点,增强自信心。
三、教学重难点和教学设想
(一)教学重难点
1.重点:幂的乘方与积的乘方的概念及其运算规律。
2.难点:
(1)理解幂的乘方的意义,能够灵活运用幂的乘方进行计算;
(2)掌握积的乘方的运算规律,解决实际问题中的积的乘方问题;
(3)鼓励学生积极参与课堂讨论,培养学生的表达能力和团队合作精神;
(4)定期进行阶段性的评价,了解学生的学习进度,及时调整教学策略。
4.教学反思:
(1)在教学过程中,关注学生的反馈,根据学生的实际情况调整教学节奏和难度;
(2)注重培养学生的数学思维,提高学生分析问题和解决问题的能力;
(3)课后及时反思教学效果,总结经验教训,不断优化教学方法和策略。
1.关注学生对幂的概念的理解,引导学生从已知的幂的运算规律出发,逐步探索幂的乘方法则;
2.重视学生的个体差异,针对不同学生的学习能力和接受程度,进行分层教学,确保每个学生都能掌握基本概念和运算方法;
3.注重培养学生的逻辑思维能力和空间想象能力,通过丰富的教学活动,激发学生的学习兴趣,提高学生的课堂参与度;
讨论结束后,每组选派一名代表进行课堂分享。
5.预习作业:预习下一节课的内容——整式的乘法法则,为课堂学习做好准备。
幂的乘方与积的乘方教案:深入掌握指数和幂的运算规律
幂的乘方与积的乘方教案:深入掌握指数和幂的运算规律一、教学目标学习指数和幂的乘方、积的乘方规律,掌握指数与幂之间的互相转化方法,培养学生对指数和幂的敏感度,从而提高学生的数学思维能力和应用能力。
二、教学内容1.指数和幂的乘方、积的乘方规律2.指数与幂之间的互相转化方法3.练习与解题三、教学重难点1.指数和幂的乘方、积的乘方规律的应用2.指数与幂之间的互相转化方法的理解和运用四、教学方法1.讲述与演示相结合2.多元素启发式教学方法3.练习与解题五、教学准备1.白板、黑板、笔2.教科书、讲义、试卷3.练习和解题材料4.示范题六、教学过程1.引入从同学们最熟悉的数学公式-乘方式入手,大概介绍指数和幂之间的关系,并且让同学们自己研究一下同底数的幂的乘方有怎样的规律,再加以证明。
2.讲授指数和幂的乘方、积的乘方规律与运用。
2.1.幂的乘方同底数幂的乘方规律:$(a^{m})^{n}$ $=$ $a^{mn}$,即同一底数幂的乘方等于底数不变,指数相乘。
示范题:$(2^{3})^{2}$ $=$ $2^{6}$ $=$ $64$。
2.2.积的乘方如何化简幂的积:$a^{m}$ $\times$ $a^{n}$ $=$ $a^{m+n}$,即相同指数幂的积等于底数不变,指数相加。
示范题:$2^{4}$ $\times$ $2^{3}$ $=$ $2^{7}$。
2.3.指数与幂之间的互相转化方法(1)同底数幂之间的乘和除,可用指数相加、相减:$a^{m} \times a^{n}$ $=$ $a^{m+n}$;$\frac{a^{m}}{a^{n}}$ $=$ $a^{m-n}$。
(2)不同底数幂之间可先化为同底数再变幂:$2^{m}$ $\times$ $3^{m}$ $=$ $(2 \times 3)^{m}$;$\frac{2^{m}}{3^{n}}$ $=$ $\frac{{2^{\left(m-n\right)}}}{3^{n}}$。
8.2幂的乘方与积的乘方1(教案)
8.2幂的乘方与积的乘方(1)(教案)班级_________ 姓名__________学号__________【学习目标】1.掌握幂的乘方的运算性质,并理解用符号表示的幂的乘方的运算性质的意义;2.会运用幂的乘方的运算性质进行运算,并知道每一步运算的依据;3.在探索幂的运算性质的过程中,培养有条理的思考和表达的能力.【学习重点】掌握幂的乘方的运算性质,并会用它熟练进行运算.【学习难点】会双向应用幂的乘方公式,会区分幂的乘方和同底数幂乘法.【学习过程】【问题导学 预学清单】(1)根据乘方的意义,请你说说3233⨯的代数意义; (2)请你描述nm a )(的代数意义是什么? (3)n m a )(是如何计算的? 【教学过程】一、问题情境:1、同学们,你们知道2个104 相乘的结果是多少吗?3个104相乘的结果又是多少?......那么100个104相乘的结果又是多少?如何用幂的形式来表示?今天我们就和大家一起来探讨这个问题。
2、计算下列各式: (1)232)(=___________;62=_____________; (2)42])10[(-=____________;810-)(=______________; (3)32]31[)(=_____________;631)(=______________.【学生活动】分组活动,每组分配一道题,看哪一组答得又快又准。
【教师活动】教师在下面巡视,引导学生发现其中的规律。
【设计意图】通过以上几道简单的小练习,让学生发现它们之间的规律,从而探索出幂的乘方的运算法则,体现了从特殊到一般的思考问题的方法。
通过以上三组小题,教师可以让学生先说说前者的代数意义是什么?它跟后者有什么关系?教师引导,学生补充整理出幂的乘方的运算法则:同底数幂的乘方,底数不变,指数相乘。
也可以表示为:(a m )n =a m n (m ,n 都是正整数).二、典型例题:例1、你能来算一算下列题目吗?(1) (106)2 (2) (a m )4 (m 为正整数) (3)-(3y )2 (4) [n y x )(-]2 (n 为正整数)【设计意图】进一步巩固和运用幂的乘方运算法则,注意符号和含有多项式的幂的乘方的计算。
人教版八年级上册-第十四章:同底数幂的除法、积的乘方、幂的乘方教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“幂运算在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《同底数幂的除法、积的乘方、幂的乘方》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要比较大小的情形?”比如,比较两个相同底数的幂的大小。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索幂运算的奥秘。
(2)乘方的应用:在实际问题中运用乘方运算,解决面积、体积等计算问题。
难点举例:计算一个边长为2的正方体的体积,即(2^3)^3,学生需要理解乘方的层次和顺序。
(3)混合运算中的乘方:在包含乘方和其它运算(如加、减、乘、除)的混合运算中正确应用乘方运算。
难点举例:解决如2^3 × (3^2)^(-1) + 4^2这样的表达式,学生需要掌握运算的优先级和顺序。
人教版八年级上册-第十四章:同底数幂的除法、积的乘方、幂的乘方教案
。
一、教学内容
人教版八年级上册第十四章主要围绕同底数幂的除法、积的乘方和幂的乘方进行教学。本章节内容包括以下三个方面:
1.如:a^m / a^n = a^(m-n)。
2.积的乘方:理解并掌握积的乘方法则,能正确应用于计算,例如:(ab)^n = a^n * b^n。
3.数学运算:使学生掌握同底数幂运算、积的乘方和幂的乘方的计算方法,提高运算速度和准确度,培养数学运算素养。
北师大版七下数学1.2幂的乘方与积的乘方教案
北师大版七下数学1.2幂的乘方与积的乘方教案一. 教材分析北师大版七下数学1.2幂的乘方与积的乘方教案主要介绍了幂的乘方和积的乘方的概念、性质和运算法则。
本节内容是初等数学中的一个重要部分,为后续的代数运算和解决问题奠定了基础。
通过本节课的学习,学生能够掌握幂的乘方和积的乘方的基本概念,了解其运算法则,并能够灵活运用到实际问题中。
二. 学情分析学生在学习本节内容前,已经掌握了幂的基本概念和运算法则,具备一定的代数基础。
然而,对于幂的乘方和积的乘方的理解和运用仍有一定的困难。
因此,在教学过程中,教师需要通过具体例子和实际问题,引导学生理解和掌握幂的乘方和积的乘方的概念和运算法则,提高学生的数学思维能力和解决问题的能力。
三. 教学目标1.理解幂的乘方的概念和运算法则;2.理解积的乘方的概念和运算法则;3.能够灵活运用幂的乘方和积的乘方的概念和运算法则解决问题;4.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.幂的乘方的概念和运算法则;2.积的乘方的概念和运算法则;3.灵活运用幂的乘方和积的乘方的概念和运算法则解决问题。
五. 教学方法1.讲授法:教师通过讲解幂的乘方和积的乘方的概念和运算法则,引导学生理解和掌握相关知识;2.实例法:教师通过具体例子,让学生理解和掌握幂的乘方和积的乘方的概念和运算法则;3.问题驱动法:教师提出实际问题,引导学生运用幂的乘方和积的乘方的概念和运算法则解决问题;4.小组讨论法:学生分组讨论,共同解决问题,培养学生的合作能力和解决问题的能力。
六. 教学准备1.教学PPT:教师准备PPT,展示幂的乘方和积的乘方的概念和运算法则;2.实例:教师准备具体例子,用于讲解幂的乘方和积的乘方的概念和运算法则;3.问题:教师准备实际问题,用于引导学生运用幂的乘方和积的乘方的概念和运算法则解决问题;4.小组讨论:教师准备分组讨论的问题和任务,用于培养学生的合作能力和解决问题的能力。
幂的乘方与积的乘方教案_说课稿
幂的乘方与积的乘方教案_说课稿以下是查字典数学网为您推荐的幂的乘方与积的乘方教案,希望本篇文章对您学习有所帮助。
幂的乘方与积的乘方学案一、教学要求、1. 体会幂的意义,会用同底数幂的乘法性质进行计算,并能解决一些实际问题。
2. 会用幂的乘方、积的乘方性质进行计算,并能解决一些实际问题。
二、重点、难点:1. 重点:(1)同底数幂的乘法性质及其运算。
(2)幂的乘方与积的乘方性质的正确、灵活运用。
2. 难点:(1)同底数幂的乘法性质的灵活运用。
(2)探索幂的乘方、积的乘方两个性质过程中发展推理能力和有条理的表达能力。
三. 知识要点:1. 同底数幂的意义几个相同因式a相乘,即,记作,读作a的n次幂,其中a叫做底数,n叫做指数。
同底数幂是指底数相同的幂,如:与,与a,与,与等等。
注意:底数a可以是任意有理数,也可以是单项式、多项式。
2. 同底数幂的乘法性质(m,n都是正整数)这就是说,同底数幂相乘,底数不变,指数相加。
当三个或三个以上同底数幂相乘时,也具有这一性质,例如:(m,n,p都是正整数)3. 幂的乘方的意义幂的乘方是指几个相同的幂相乘,如是三个相乘读作a的五次幂的三次方,是n个相乘,读作a的m次幂的n次方4. 幂的乘方性质(m,n都是正整数)这就是说,幂的乘方,底数不变,指数相乘。
注意:(1)不要把幂的乘方性质与同底数幂的乘法性质混淆,幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变)。
(2)此性质可逆用:。
5. 积的乘方的意义积的乘方是指底数是乘积形式的乘方,如等。
(积的乘方的意义)(乘法交换律,结合律)6. 积的乘方的性质(n为正整数)这就是说,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
注意:(1)三个或三个以上的乘方,也具有这一性质,例如:(2)此性质可以逆用:四、典型例题例1. 计算:(1) (2)(3) (4)解:(1)(2)(3)(4)例2. 已知,求下列各式的值。
幂的乘方与积的乘方教案
幂的乘方与积的乘方教案教学目标:1.理解幂的乘方。
2.能够计算幂的乘方。
3.理解积的乘方。
4.能够计算积的乘方。
教学重点:1.幂的乘方的概念与计算。
2.积的乘方的概念与计算。
教学准备:1.黑板、粉笔和擦子。
2.计算器。
教学过程:一、导入(5分钟)1.教师通过一个简单的问题导入新知识:“假如我现在有3个苹果,每个苹果有4个橘子,你能说出总共有多少个橘子吗?”2.学生回答后,教师引导学生思考如何计算橘子的总数。
二、幂的乘方(20分钟)1.教师写出问题:“如果有3个苹果,每个苹果有4个橘子,你能用幂的乘方表示这个问题吗?”2.学生思考后,教师解释幂的乘方的概念:幂的乘方是指将一个幂作为乘数,连续相乘的操作。
在这个问题中,3个苹果可以表示为3^1,每个苹果有4个橘子可以表示为4^3,所以总共的橘子数可以表示为3^1×4^33.教师用黑板上的例子,如2^3,解释幂的乘方的计算方法:将底数2连乘3次,即2×2×2=8,所以2^3=8、教师帮助学生理解幂的乘方的计算方法。
4.学生进行练习,计算以下幂的乘方:(a)5^2;(b)10^3;(c)3^4三、积的乘方(20分钟)1.教师写出问题:“如果有2组橘子,每组橘子有3个苹果,你能用积的乘方表示这个问题吗?”2.学生思考后,教师解释积的乘方的概念:积的乘方是指将一个积作为乘数,连续相乘的操作。
在这个问题中,2组橘子可以表示为(2×3)^1,每组橘子有3个苹果可以表示为3^2,所以总共的橘子数可以表示为(2×3)^1×3^23.教师用黑板上的例子,如(3×4)^2,解释积的乘方的计算方法:先将两个因数(3×4)相乘,得到12,然后再将12连乘2次,即12×12=144,所以(3×4)^2=144、教师帮助学生理解积的乘方的计算方法。
4.学生进行练习,计算以下积的乘方:(a)(2×5)^2;(b)(4×6)^3;(c)(2×3×4)^2四、扩展应用(25分钟)1.教师给学生提供更复杂的问题,让学生运用幂的乘方和积的乘方来解决。
幂的乘方与积的乘方说课教案
幂的乘方与积的乘方(一)》说课教案一、教材分析(一)本节内容在教材中的地位与作用。
幂的运算,是把前面学过的数的运算抽象为式的运算,幂的乘方与积的乘方是本章的第二节,是在学生已有的同底数幂的乘法运算性质的基础上,通过做幂的乘方后,再明晰的幂的乘方运算性质,是进一步学习幂的运算的基础,是今后学习整式乘法的重要基础,也是今后学习方程、不等式、函数等知识的储备内容,同时也是学习物理、化学、生物等学科必不可少的解题工具。
因此,本节课的知识承上启下,具有重要作用。
(二)教学目标在本课的教学中,不仅要让学生学会如何进行幂的乘方的运算,更主要地是要让学生掌握研究问题的方法,初步领悟化归的数学思想。
同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。
为此,我确立如下教学目标:知识与技能:理解幂的乘方的运算性质,能熟练的运用性质进行计算,并能说出每一步计算的依据。
过程与方法:经历探索幂的乘方性质的过程,结合探究活动,掌握幂的乘方的运算性质的运用方法和技巧。
情感态度和价值观:进一步体会幂的意义,发展归纳、概括、推理能力和有条理的数学表达能力,增强学数学的信心。
(三)教材重难点由于本节课是探索并运用幂的运算的性质的第二个基本性质,故我确定“以理解并掌握运算性质”作为教学的重点,而将其灵活的运用作为教学的难点。
同时,我将采用让学生通过先“做”,然后思考、猜想、合作探究、媒体演示的方式以及渗透从一般到特殊、从具体到抽象的数学思想方法教学来突出重点、突破难点。
(四)教具准备:相关多媒体课件。
二、教法选择与学法指导本节课主要是理解、掌握性质并运用运算性质计算,故我在课堂教学中将尽量为学生提供“做”中“学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透一些数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自觅规律、自悟原理。
三、教学流程(一)创设情景,激发求知欲望首先,我提出一个趣味性问题:谁能在黑板上写下100个410的乘积?根据经验,同学们发现写不下。
数学教案-幂的乘方与积的乘方-教学教案
一、知识结构二、重点、难点分析本节教学的重点是幂的乘方与积的乘方法则的理解与掌握,难点是法则的灵活运用.1.幂的乘方幂的乘方,底数不变,指数相乘,即(都是正整数)幂的乘方的推导是根据乘方的意义和同底数幂的乘法性质.幂的乘方不能和同底数幂的乘法相混淆,例如不能把的结果错误地写成,也不能把的计算结果写成.幂的乘方是变乘方为(底数不变,指数相乘的)乘法,如;而同底数幂的乘法是变(同底数的幂)乘为(幂指数)加,如.2.积和乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即(为正整数).三个或三个以上的积的乘方,也具有这一性质.例如:3.不要把幂的乘方性质与同底数幂的乘法性质混淆.幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).4.同底数幂的乘法、幂的乘方、积的乘方的三个运算性质是整式乘法的基础,也是整式乘法的主要依据.对三个性质的数学表达式和语言表述,不仅要记住,更重要的是理解.在这三个幂的运算中,要防止符号错误:例如,;还要防止运算性质发生混淆:等等.三、教法建议1.幂的乘方导出的根据是乘方的意义和同底数幂的乘法性质.教学时,也要注意导出这一性质的过程.可先以具体指数为例,明确幕的乘方的意义,导出性质,如对于从指数连加得到指数相乘,要根据学生情况多作一些说明.以为例,再一次说明可以写成.这一点是导出幂的乘方性质的关键,务必使学生真正理解.在此基础上再导出性质.2.使学生要严格区分同底数幂乘法性质与幂的乘方性质的不同,不能混淆.具体讲解可从下面两点来说明:(1)牢记不同的运算要使用不同的性质,运算的意义决定了运算的性质.(2)记清幂的运算与指数运算的关系:(同底)幂相乘→指数相加(“乘”变“加”,降一级运算);幂乘方→指数相乘(“乘方”变“乘法”,降一级运算).了解到有关幂的两个重要性质都有“使原运算仅降一级运算”的规律,可使自己更好掌握有关性质.3.在教学的各个环节中,注意启发学生,不仅掌握法则,还要明确为什么.三种运算法则全讲完之后,学生最易产生法则间的混淆,为了解决这个问题除叫学生熟记法则之外,在学生回答问题和写作业时,注意解题步骤,或及时发现问题,说明出现问题的原因;要注意防止两个错误:(1)(-2xy)4=-24x4y4.(2)(x+y)3=x3+y3.幂的乘方与积的乘方(一)一、教学目标1.理解幂的乘方性质并能应用它进行有关计算.2.通过推导性质培养学生的抽象思维能力.3.通过运用性质,培养学生综合运用知识的能力.4.培养学生严谨的学习态度以及勇于创新的精神.5.渗透数学公式的结构美、和谐美.二、学法引导1.教学方法:引导发现法、尝试指导法.2.学生学法:关键是准确理解幂的乘方公式的意义,只有准确地判别出其适用的条件,才可以较容易地应用公式解题.三、重点·难点及解决办法(-)重点准确掌握幂的乘方法则及其应用.(二)难点同底数幂的乘法和幂的乘方的综合应用.(三)解决办法在解题的过程中,运用对比的方法让学生感受、理解公式的联系与区别.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计1.复习同底数幂乘法法则并进行、的计算,从而引入新课,在探究规律的过程中,得出幂的乘方公式,并加以充分的理解.2.教师举例进行示范,师生共练以熟悉幂的乘方性质.3.设计错例辨析和练习,通过不同的题型,从不同的角度加深对公式的理解.七、教学步骤(-)明确目标本节课重点是掌握幂的乘方运算性质并能进行较灵活的应用(二)整体感知幂的乘方法则的应用关键是判断准其适用的条件和形式.(三)教学过程1.复习引入(1)叙述同底数幂乘法法则并用字母表示.(2)计算:①②2.探索新知,讲授新课(1)引入新课:计算和和提问学生式子、的意义,启发学生把幂的乘方转化为同底数暴的乘法.计算过程按课本,并注明每步计算的根据.观察题目和结论:推测幂的乘方的一般结论:(2)幂的乘方法则语言叙述:幂的乘方,底数不变,指数相乘.字母表示:.(,都是正整数)推导过程按课本,让学生说出每一步变形的根据.(3)范例讲解例1 计算:①②③④解:①②③④例2 计算:①②解:①原式②原式练习:①p97 1,2②错例辨析:下列各式的计算中,正确的是()a.b.c.d.(四)总结、扩展同底数幂的乘法与幂的乘方性质比较:幂运算种类指数运算种类同底幂乘法乘法加法幂的乘方乘方乘法八、布置作业p101 a组1~3; b组1.参考答案略.。
第2讲:幂的乘方与积的乘方-教案
1.幂的乘方、积的乘方运算法则的灵活运用。
2.幂的乘方、积的乘方运算法则的逆应用。
3.同底数幂乘法、幂的乘方与积的乘方三种运算的混合问题。
【知识导图】
【教学建议】
有关幂的乘方与积的乘方的题目,通常着重计算能力的考查,要求学生对幂的运算方法非常熟悉,可以灵活、正确运用运算法则进行计算。在教学过程中要注意区分幂的乘方、积的乘方和同底数幂乘法的异同,更要对混合运算重点讲解。
1.幂的乘方运算法则: (其中 均为正整数)
幂的乘方,底数不变,指数相乘。
2.幂的乘方的逆运算
1.积的乘方运算法则: (n是正整数)
积的乘方等于积的每个因式分别乘方,再把所得的幂相乘。
2.积的乘方的逆运算ห้องสมุดไป่ตู้ (n是正整数)
【题干】计算 的结果是()
A.a5B.a6C.a8D.3 a2
【答案】B
【解析】运用运算法则:幂的乘方,底数不变,指数相乘得:
故选B。
【题干】若 ,则m=_______。
【答案】2
【解析】考查幂的乘方和同底数幂乘法的综合计算,先计算幂的乘方再进行同底数幂的运算。
∴5+3m=11
解得m=2
【题干】若 ,则 的值为()
A.6 B.8 C.9 D.12
【答案】B
【解析】考查幂的乘方的逆运算。
=8
【题干】计算(2x3y)2的结果是()
符号表示: ,(其中 均为正整数)
2.积的乘方法则:积的乘方等于乘方的积.
符号表示: ,(其中 均为正整数)
1. 的结果是()
A. B. C. D.
【答案】C
【解析】根据运算法则计算。
数学教案-幂的乘方与积的乘方二
数学教案-幂的乘方与积的乘方二教学目标:1.理解幂的乘方与积的乘方的概念。
2.学会运用幂的乘方与积的乘方的法则进行计算。
3.培养学生的逻辑思维能力和解决问题的能力。
教学重点:1.幂的乘方与积的乘方的法则。
2.运用法则进行计算。
教学难点:1.幂的乘方与积的乘方的法则在实际计算中的应用。
2.理解幂的乘方与积的乘方的概念。
教学过程:一、导入1.复习幂的定义和性质。
2.提问:同学们,上一节课我们学习了幂的乘方和积的乘方,谁能告诉我幂的乘方和积的乘方的概念?二、新课1.幂的乘方(1)定义:幂的乘方是指将一个幂再乘以另一个幂。
(2)法则:幂的乘方等于底数不变,指数相乘。
(3)举例:如\(2^3\times2^2=2^{3+2}=2^5\)2.积的乘方(1)定义:积的乘方是指将一个积再乘以另一个积。
(2)法则:积的乘方等于每个因子的幂相加。
(3)举例:如\((2\times3)^2=2^2\times3^2=4\times9=36\)3.拓展:当幂的乘方与积的乘方同时出现时,如何进行计算?(1)原则:先算乘方,再算乘法。
(2)举例:如\((2^3\times3)^2=(2^3)^2\times3^2=4^2\times9=16\times9=144\ )三、课堂练习1.计算:\(2^4\times2^3\)2.计算:\((2\times3)^3\)3.计算:\((2^2\times3)^3\)4.计算:\((2^3\times3^2)^2\)四、疑难解答1.学生提出问题:在进行幂的乘方与积的乘方计算时,如何避免出错?(1)明确幂的乘方与积的乘方的法则。
(2)按照计算顺序进行计算,先算乘方,再算乘法。
(3)注意底数不变,指数相乘或相加。
五、课堂小结1.回顾幂的乘方与积的乘方的概念和法则。
六、作业布置1.练习册第8页第1-5题。
2.家长签字确认。
教学反思:本节课通过讲解幂的乘方与积的乘方的概念、法则和举例,让学生掌握了幂的乘方与积的乘方的计算方法。
(完整版)《幂的乘方与积的乘方》教案
幂的乘方与积的乘方一、教学目标(一)知识目标1。
经历探索幂的乘方的运算性质的过程,进一步体会幂的意义.2。
了解幂的乘方的运算性质,并能解决一些实际问题.(二)能力目标1.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力.2.学习幂的乘方的运算性质,提高解决问题的能力.(三)情感目标在发展推理能力和有条理的表达能力的同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.二、教学重难点(一)教学重点幂的乘方的运算性质及其应用.(二)教学难点幂的运算性质的灵活运用。
三、教具准备投影片三张第一张:做一做,记作(§1。
4.1 A)第二张:例题,记作(§1.4。
1 B)第三张:练习,记作(§1.4。
1 C)四、教学过程Ⅰ。
提出问题,引入新课[师]我们先来看一个问题:一个正方体的边长是102毫米,你能计算出它的体积吗?如果将这个正方体的边长扩大为原来的10倍,则这个正方体的体积是原来的多少倍?[生]正方体的体积等于边长的立方.所以边长为102毫米的正方体的体积V=(102)3立方毫米;如果边长扩大为原来的10倍,即边长变为102×10毫米即103毫米,此时正方体的体积变为V1=(103)3立方毫米。
[师](102)3,(103)3很显然不是最简,你能利用幂的意义,得出最后的结果吗?大家可以独立思考.[生]可以。
根据幂的意义可知(102)3表示三个102相乘,于是就有(102)3=102×102×102=102+2+2=106;同样根据幂的意义可知(103)3=103×103×103=103+3+3=109。
于是我们就求出了V=106立方毫米,V1=109立方毫米。
我们还可以计算出当这个正方形边长扩大为原来的10倍时,体积就变为原来的1000倍即103倍.[生]也就是说体积扩大的倍数,远大于边长扩大的倍数.[师]是的!我们再来看(102)3,(103)3这样的运算。
1.2.1幂的乘方与积的乘方(教案)
最后,今天的总结回顾环节,我尝试让学生们自己总结所学内容,我发现这样的方式能够有效地帮助他们巩固知识点。但同时,我也意识到,对于一些理解上仍有障碍的学生,我需要提供更个性化的辅导,确保每个人都能跟上课程的进度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“幂的乘方与积的乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
1.2.1幂的乘方与积的乘方(教案)
一、教学内容
本节课选自教材第七章第一节《幂的乘方与积的乘方》,主要包括以下内容:
1.幂的乘方:同底数幂相乘,底数不变,指数相加。
-举例:\(a^m \times a^n = a^{m+n}\)
2.积的乘方:多个数相乘,每个因数分别乘方,再将所得的幂相乘。
-举例:\(ab^n = a^n \times b^n\)
3.应用实例:运用幂的乘方与积的乘方解决实际问题。
二、核心素养目标
本节课旨在培养学生以下核心素养:
1.理解幂的乘方与积的乘方的概念,形成严谨的逻辑思维,提升数学抽象能力。
2.能够运用幂的乘方与积的乘方法则,解决实际问题,培养数学建模和问题解决能力。
3.在探索幂的乘方与积的乘方过程中,培养数学运算和数据分析能力,提高数学素养。
《幂的乘方与积的乘方》 教学设计
《幂的乘方与积的乘方》教学设计一、教学目标1、知识与技能目标理解幂的乘方和积的乘方的运算法则。
能够熟练运用幂的乘方和积的乘方的运算法则进行计算。
2、过程与方法目标通过观察、类比、猜想、归纳等数学活动,经历幂的乘方和积的乘方运算法则的推导过程,培养学生的逻辑推理能力和数学思维能力。
通过实际问题的解决,让学生体会数学与生活的紧密联系,提高学生应用数学知识解决实际问题的能力。
3、情感态度与价值观目标让学生在数学活动中体验成功的喜悦,增强学习数学的自信心。
培养学生勇于探索、敢于创新的精神,以及合作交流的意识。
二、教学重难点1、教学重点幂的乘方和积的乘方的运算法则。
正确运用幂的乘方和积的乘方的运算法则进行计算。
2、教学难点幂的乘方和积的乘方运算法则的推导过程。
灵活运用幂的乘方和积的乘方的运算法则解决问题。
三、教学方法讲授法、启发式教学法、练习法四、教学过程1、导入新课回顾同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
即:\(a^m×a^n = a^{m+n}\)(\(m\)、\(n\)为正整数)提出问题:如果一个幂的指数再乘方,或者几个同底数幂相乘,结果又会怎样呢?从而引出本节课的课题——幂的乘方与积的乘方。
2、讲授新课(1)幂的乘方计算:\((a^m)^n\)(\(m\)、\(n\)为正整数)引导学生思考:这个式子表示什么意义?讲解:\((a^m)^n\)表示\(n\)个\(a^m\)相乘,即:\\begin{align}(a^m)^n&=a^m×a^m×\cdots×a^m\\&=a^{m+m+\cdots+m}\\&=a^{mn}\end{align}\得出幂的乘方法则:幂的乘方,底数不变,指数相乘。
即:\((a^m)^n = a^{mn}\)(\(m\)、\(n\)为正整数)(2)积的乘方计算:\((ab)^n\)(\(n\)为正整数)引导学生思考:这个式子表示什么意义?讲解:\((ab)^n\)表示\(n\)个\(ab\)相乘,即:\\begin{align}(ab)^n&=(ab)×(ab)×\cdots×(ab)\\&=(a×a×\cdots×a)×(b×b×\cdots×b)\\&=a^n×b^n\end{align}\得出积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
北师大版数学七年级下册2 幂的乘方与积的乘方教案与反思
2 幂的乘方与积的乘方路漫漫其修远兮,吾将上下而求索。
屈原《离骚》原创不容易,【关注】店铺,不迷路!第1课时幂的乘方教学目标一、基本目标1.了解幂的乘方的运算法则,并能解决一些实际问题.2.经历探索幂的乘方的运算法则的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.二、重难点目标【教学重点】会进行幂的乘方的运算.【教学难点】幂的乘方法则的总结及其运用.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P5~P6的内容,完成下面练习.【3min反馈】1.(1)乘方的意义:32中,底数是3,指数是2,表示2个3相乘.(32)3的意义:3个32相乘;(2)根据幂的意义填空:(32)3=32×32×32(根据幂的意义)=32+2+2(根据同底数幂的乘法法则)=32×3,(am)2=am·am=a2m(根据am·an=am+n),(am)n=am·am·…·am(幂的意义)=am+m+…+m(同底数幂相乘的法则)=amn(乘法的意义);(3)幂的乘方法则:(am)n=amn(m、n都是正整数),即幂的乘方,底数不变,指数相乘.2.已知球体的体积公式为V=43πR3.(1)若乙球的半径为3cm,则乙球的体积V乙=36πcm3.甲球的半径是乙球的10倍,则甲球的体积V甲=36_000πcm3,V甲是V乙的103倍;(2)地球、木星、太阳可以近似地看作球体.木星、太阳的半径分别约是地球的10倍、100倍,它们的体积分别约是地球的103倍、106倍.3.(教材P6例1)计算:(1)(102)3;(2)(b5)5;(3)(an)3;(4)-(x2)m;(5)(y2)3·y;(6)2(a2)6-(a3)4.解:(1)原式=106. (2)原式=b25.(3)原式=a3n. (4)原式=-x2m.(5)原式=y7. (6)原式=a12.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(-24)3;(2)(xm-1)2;(3)[(24)3]3;(4)(-a5)2+(-a2)5.【互动探索】(引发学生思考)确定各式的底数→利用幂的乘方法则计算.【解答】(1)原式=212.(2)原式=x2(m-1)=x2m-2.(3)原式=24×3×3=236.(4)原式=a10-a10=0.【互动总结】(学生总结,老师点评)(1)运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆.(2)在幂的乘方中,底数可以是单项式,也可以是多项式.(3)幂的乘方的推广:((am)n)p=amnp(m、n、p都是正整数).【例2】若92n=38,求n的值.【互动探索】(引发学生思考)比较等式两边的底数→将等式转化为(32)2n=38→建立方程求n值.【解】依题意,得(32)2n=38,即34n=38,所以4n=8,所以n=2.【互动总结】(学生总结,老师点评)解此类题时,可将等式两边化成底数或指数相同的数,再比较.【例3】已知ax=3,ay=4(x、y为整数),求a3x+2y的值.【互动探索】(引发学生思考)将a3x+2y变形,得a3x·a2y,再利用幂的乘方进行解答.【解答】因为ax=3,ay=4,所以a3x+2y=a3x·2y=(ax)3·(ay)2=33×42=27×16=432.【互动总结】(学生总结,老师点评)利用amn=(a)n=(an)m,可对式子进行变形,从而使问题得到解决.活动2 巩固练习(学生独学)1.计算(-a3)2的结果是( A )A.a6 B.-a6C.-a5 D.a52.下列运算正确的是( B )A.(x3)2=x5 B.(-x)5=-x5C.x·x2=x6 D.x2+2x3=5x53.当n为奇数时,(-a2)n+(-an)2=0.4.计算:(1)a2·(-a)2·(-a2)3+a10;(2)x4·x5·(-x)7+5(x4)4-(x8)2.解:(1)原式=a2·a2·(-a6)+a10=-a10+a10=0.(2)原式=x4·x5·(-x7)+5x16-x16=-x 16+5x 16-x 16=316.活动3 拓展延伸(学生对学)【例4】请看下面的解题过程:比较2100与375的大小.解:因为2100=(24)25,375=(33)25,而24=16,33=27,16<27, 所以2100<375.请你根据上面的解题过程,比较3100与560的大小.【互动探索】仔细阅读材料,确定例子的解题方法是将指数化为相同,再比较底数的大小来比较所求两个数的大小.【解答】因为3100=(35)20,560=(53)20,而35=243,53=125,243>125, 所以3100>560.【互动总结】(学生总结,老师点评)此题考查了幂的乘方法则的应用,根据题意得到3100=(35)20,560=(53)20是解此题的关键.环节3 课堂小结,当堂达标(学生总结,老师点评)幂的乘方法则⎩⎨⎧ 内容:幂的乘方,底数不变,指数相乘字母表示:am n =amn m 、n 都是正整数推广:am n p =amnp m 、n 、p 都是正整数练习设计请完成本课时对应练习!第2课时 积的乘方教学目标一、基本目标1.了解积的乘方的运算法则,并能解决一些实际问题.2.经历探索积的乘方的运算法则的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.二、重难点目标【教学重点】会进行积的乘方的运算.【教学难点】明确幂的乘方与积的乘方的异同.教学过程环节1 自学提纲,生成问题【5min 阅读】阅读教材P7~P8的内容,完成下面练习.【3min 反馈】1.(1)(3×5)4=3(4 )·5(4 );(2)(3×5)m =3(m )·5(m );(3)(ab )n =a (n )·b (n );(4)(ab )n =(ab )·(ab )·…·(ab n 个ab =a ·a ·…·a n 个a ·b ·b ·…·b n 个b =anbn .2.积的乘方法则:(ab )n =anbn (n 是正整数),即积的乘方等于积的每一个因式分别乘方,再把所得的幂相乘.推广:(abc )n =anbncn (n 是正整数).3.(教材P7例2)计算:(1)(3x )2;(2)(-2b )5;(3)(-2xy )4;(4)(3a 2)n .解:(1)原式=9x 2. (2)原式=-32b 5.(3)原式=16x 4y 4. (4)原式=3na 2n .环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(x 4·y 2)3;(2)(anb 3n )2+(a 2b 6)n ;(3)[(3a 2)3+(3a 3)2]2;(4)⎝ ⎛⎭⎪⎫991002018×⎝ ⎛⎭⎪⎫100992019; (5)0.12515×(23)15.【互动探索】(引发学生思考)先确定运算顺序,再根据积的乘方法则计算.【解答】(1)原式=x 12y 6.(2)原式=a 2nb 6n +a 2nb 6n =2a 2nb 6n .(3)原式=(27a 6+9a 6)2=(36a 6)2=1296a 12.(4)原式=⎝ ⎛⎭⎪⎫99100×100992018×10099=1×10099=10099. (5)原式=⎝ ⎛⎭⎪⎫1815×815=⎝ ⎛⎭⎪⎫18×815=1. 【互动总结】(学生总结,老师点评)(1)~(3)题按先乘方再乘除后加减的运算顺序计算;(4)、(5)题逆用(ab )n =anbn 可使计算简便.活动2 巩固练习(学生独学)1.计算(x 2y )2的结果是( B )A .x 6yB .x 4y 2C .x 5yD .x 5y 22.(am )m ·(am )2不等于( C )A .(am +2)mB .(am ·a 2)mC .am 2+am 2D .(am )3·(am -1)m 3.已知am =2,an =3,则a 2m +3n =108.4.计算:(1)-4xy 2·(xy 2)2·(-2x 2)3;(2)(-a 3b 6)2+(-a 2b 4)3;(3)⎝ ⎛⎭⎪⎫232018×⎝ ⎛⎭⎪⎫322019. 解:(1)原式=-4xy 2·x 2y 4·(-8x 6)=32x 9y 6.(2)原式=a 6b 12-a 6b 12=0.(3)原式=⎝ ⎛⎭⎪⎫23×322018×32 =32. 活动3 拓展延伸(学生对学)【例2】太阳可以近似地看作是球体,如果用V 、R 分别代表球的体积和半径,那么V =43πR 3,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3) 【互动探索】已知球的体积公式和其半径,代入数据直接计算. 【解答】因为R =6×105千米,所以V =43πR 3=43×3×(6×105)3=8.64×1017(立方千米). 即它的体积大约是8.64×1017立方千米.【互动总结】(学生总结,老师点评)读懂题目信息,理解球的体积公式并熟记积的乘方法则是解此题的关键.环节3 课堂小结,当堂达标(学生总结,老师点评)积的乘方法则⎩⎨⎧内容:积的乘方等于积的每一个因式分 别乘方,再把所得的幂相乘字母表示:ab n =anbn n 是正整数逆用:anbn =ab n n 是正整数练习设计请完成本课时对应练习!【素材积累】 宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。
(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案
(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案一. 教材分析《幂的乘方与积的乘方》是湘教版七年级数学下册第2章第1节的内容。
本节课主要让学生掌握幂的乘方运算法则和积的乘方运算法则,培养学生运用幂的运算性质解决实际问题的能力。
教材通过引入实例,引导学生发现规律,从而得出幂的乘方与积的乘方的运算法则。
二. 学情分析学生在之前的学习中已经掌握了有理数的乘法、幂的定义及简单的幂的运算。
但对于幂的乘方与积的乘方,学生可能存在理解上的困难。
因此,在教学过程中,教师需要注重引导学生发现规律,让学生在理解的基础上掌握运算法则。
三. 教学目标1.理解幂的乘方与积的乘方的运算法则。
2.能够运用幂的运算性质解决实际问题。
3.培养学生的观察能力、推理能力及运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:幂的乘方与积的乘方的运算法则。
2.教学难点:理解幂的乘方与积的乘方的本质,能够灵活运用运算法则解决实际问题。
五. 教学方法1.情境教学法:通过引入实例,让学生在实际问题中发现幂的乘方与积的乘方的规律。
2.引导发现法:教师引导学生观察、分析、推理,从而得出幂的乘方与积的乘方的运算法则。
3.实践操作法:让学生在课堂上动手操作,巩固幂的乘方与积的乘方的运算法则。
六. 教学准备1.教学课件:制作课件,展示幂的乘方与积的乘方的实例及运算法则。
2.教学素材:准备一些实际问题,让学生在解决实际问题的过程中运用幂的运算性质。
3.学生活动材料:为学生提供一些练习题,让学生在课堂上进行实践操作。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,让学生尝试解决。
例如:计算(23)2,32×33等。
引导学生发现这些问题都可以转化为幂的乘方与积的乘方的问题。
2.呈现(10分钟)教师通过课件展示幂的乘方与积的乘方的实例,引导学生发现规律。
如:(a m)n=a mn,(ab)n=a n b n等。
让学生总结出幂的乘方与积的乘方的运算法则。
幂的乘方与积的乘方教案
教师学生年级七年级授课时间2018.05授课课题幂的乘方及积的乘方授课类型新授课教学目标1. 体会幂的意义,会用同底数幂的乘法性质进行计算,并能解决一些实际问题。
2. 会用幂的乘方、积的乘方性质进行计算,并能解决一些实际问题。
教学重点及难点重点:(1)同底数幂的乘法性质及其运算。
(2)幂的乘方及积的乘方性质的正确、灵活运用。
难点:(1)同底数幂的乘法性质的灵活运用。
(2)探索幂的乘方、积的乘方两个性质过程中发展推理能力和有条理的表达能力。
参考资料教学过程复习巩固新课导入授课内容分析、推导(突出教学内容要点,采用的教学方法等,要求简明扼要,若有及教材中相同的文字、表格、例题等不要在教案上照抄,可注明教材页码。
)一:知识归纳1.同底数幂的意义乘方:求n个相同因数a的积的运算叫做乘方读法:a n读作a的n次幂(或a的n次方)。
同底数幂是指底数相同的幂,如:23及25,a4及a,()a b23及()a b27,()x y-2及()x y-3等等。
注意:底数a可以是任意有理数,也可以是单项式、多项式。
2. 同底数幂的乘法性质a a am n m n·=+(m,n都是正整数)这就是说,同底数幂相乘,底数不变,指数相加。
当三个或三个以上同底数幂相乘时,也具有这一性质,例如:a a a am n p m n p··=++(m,n,p都是正整数)3. 幂的乘方的意义幂的乘方是指几个相同的幂相乘,如()a53是三个a5相乘读作a的五次幂的三次方,()a m n是n个a m相乘,读作a的m次幂的n次方4. 幂的乘方性质na指数幂底数()a a m n mn =(m ,n 都是正整数)这就是说,幂的乘方,底数不变,指数相乘。
注意:(1)不要把幂的乘方性质及同底数幂的乘法性质混淆,幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变)。
(2)此性质可逆用:()a a mn mn=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师学生年级七年级
授课时间2018.05 授课课题幂的乘方与积
的乘方
授课类型新授课
教学目标1. 体会幂的意义,会用同底数幂的乘法性质进行计算,并能解决一些实际问题。
2. 会用幂的乘方、积的乘方性质进行计算,并能解决一些实际问题。
教学重点与难点重点:(1)同底数幂的乘法性质及其运算。
(2)幂的乘方与积的乘方性质的正确、灵活运用。
难点:(1)同底数幂的乘法性质的灵活运用。
(2)探索幂的乘方、积的乘方两个性质过程中发展推理能力和有条理的表达能力。
参考资料
教学过程
复习巩固
新课导入
授课内容分析、推导(突出教学内容要点,采用的教学方法等,要求简明扼要,若有与教材中相同的文字、表格、例题等不要在教案上照抄,可注明教材页码。
) 一:知识归纳
1.同底数幂的意义
乘方:求n个相同因数a的积的运算叫做乘方
读法:a n读作a的n次幂(或a的n次方)。
同底数幂是指底数相同的幂,如:23与25,a4与a,()
a b23与()
a b27,()
x y
-2与()
x y
-3等等。
注意:底数a可以是任意有理数,也可以是单项式、多项式。
2. 同底数幂的乘法性质
a a a
m n m n
·=+(m,n都是正整数)
这就是说,同底数幂相乘,底数不变,指数相加。
当三个或三个以上同底数幂相乘时,也具有这一性质,例如:
a a a a
m n p m n p
··=++(m,n,p都是正整数)
3. 幂的乘方的意义
幂的乘方是指几个相同的幂相乘,如()
a53是三个a5相乘
n
a指数幂
底数
读作a 的五次幂的三次方,
()a m n 是n 个a m 相乘,读作a 的m 次幂的n 次方
4. 幂的乘方性质
()a a m n mn =(m ,n 都是正整数)
这就是说,幂的乘方,底数不变,指数相乘。
注意:(1)不要把幂的乘方性质与同底数幂的乘法性质混淆,幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变)。
(2)此性质可逆用:()a
a
mn
m n
=。
5. 积的乘方的意义 积的乘方是指底数是乘积形式的乘方,如()()ab ab n 3,等。
()()()()ab ab ab ab 3=(积的乘方的意义)
()()=a a a b b b ····(乘法交换律,结合律)
=a b 33
·
(ab)n =(ab)·(ab)····(ab)
n 个 =(a ·a ···a)·(b ·b ···b)
n 个 n 个 =a n b n
6. 积的乘方的性质
()ab a b n n n =·(n 为正整数)
这就是说,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
注意:(1)三个或三个以上的乘方,也具有这一性质,例如:
()abc a b c n n n n =··
(2)此性质可以逆用:
()a b ab n n
n
·=
a ,
b 与前面几个公式一样,可以表示具体的数,也可以表示一个代数式
二:课前练习
计算:(1)y 12·y 6; (2)x 10·x ; (3)x 3·x 9;
(4)10·102·104; (5)y 4·y 3·y 2·y ; (6)x 5·x 6·x 3.
(7)-b 3·b 3; (8)-a ·(-a)3;(9)(-a)2·(-a)3·(-a);(10)(-x)·x 2·(-x)4;。