人教版数学八年级上册 全等三角形单元练习(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学八年级上册 全等三角形单元练习(Word 版 含答案)

一、八年级数学轴对称三角形填空题(难)

1.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.

【答案】30

【解析】

【分析】

根据轴对称得出OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,根据线段垂直平分线性质得出12COA AOP COP ,12

POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,求出△COD 是等边三角形,即可得出答案.

【详解】

解:如图示:连接OC ,OD ,

∵点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,

∴OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,

∵OP=5cm ,

∴12COA AOP COP ,12

POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,

∵△PEF 的周长是5cm ,

∴PE+EF+PF=CE+EF+FD=CD=5cm ,

∴CD=OD=OD=5cm ,

∴△OCD 是等边三角形,

∴∠COD=60°,

∴11122230AOB AOP BOP COP DOP COD ,

故答案为:30.

【点睛】

本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.

2.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.

【答案】16

【解析】

【分析】

利用基本作图可以判定MN 垂直平分BC ,则DC=DB ,然后利用等线段代换得到ACD ∆的周长=AB+AC ,再把10AB =,6AC =代入计算即可.

【详解】

解:由作法得MN 垂直平分BC ,则DC=DB ,

10616ACD C CD AC AD DB AD AC AB AC ∆=++=++=+=+=

故答案为:16.

【点睛】

本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.

3.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2,B 3…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记a 1,第2个等边三角形的边长记为a 2,以此类推,若OA 1=3,则a 2=_______,a 2019=_______.

【答案】6; 3×22018.

【解析】

【分析】

根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.

【详解】

解:如图,

∵△A1B1A2是等边三角形,

∴A1B1=A2B1,∠3=∠4=∠12=60°,

∴∠2=120°,

∵∠MON=30°,

∴∠1=180°-120°-30°=30°,

又∵∠3=60°,

∴∠5=180°-60°-30°=90°,

∵∠MON=∠1=30°,

∴OA1=A1B1=3,

∴A2B1=3,

∵△A2B2A3、△A3B3A4是等边三角形,

∴∠11=∠10=60°,∠13=60°,

∵∠4=∠12=60°,

∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,

∴∠1=∠6=∠7=30°,∠5=∠8=90°,

∴a2=2a1=6,

a3=4a1,

a4=8a1,

a 5=16a 1,

以此类推:a 2019=22018a 1=3×22018

故答案是:6;3×22018.

【点睛】

此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1…进而发现规律是解题关键.

4.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,

,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.

【答案】30°

【解析】

【分析】

先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.

【详解】

解:∵AB AC =,82BAC ∠=︒,∴180492

BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,

作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,

∴∠EBC=11°+11°+38°=60°,

∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,

又∵AB=AC ,EA=EA ,

∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =

1302

BEC ∠=︒, ∴∠ADB =30°.

相关文档
最新文档