学生成绩分析数学建模

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目学生成绩的分析问题

摘要

本文针对大学高数和线代,概率论成绩进行建模分析,主要用到统计分析的知识及SPSS软件,建立了方差分析、单因素分析、相关性分析等相关模型,从而分析两个专业、四门课程成绩的显著性,以及课程之间的相关性。最后利用分析结论表明了我们对大学数学学习的看法。

问题一:每门课程两个专业的差异性需要进行多个平均数间的差异显著性检验,首先应该对数据进行正态分布检验,结论是各个专业的分数都服从正态分布,之后可以根据Kolmogorov-Smirnov 检验(K-S检验)原理,利用SPSS软件进行单因素方差分析,得出方差分析表,进行显著性检验,最后得出的结论是高数1、高数2、线代和概率这四科成绩在两个专业中没有显著性差异。

问题二:对于甲乙两个专业分别分析,应用问题一的模型,以每个专业不同班级的高数一、高数二、线代和概率平均数为自变量,同第一问相同的做法,得到两个专业中不同学科之间没有显著差异。

问题三:我们通过对样本数据进行Spss的“双变量相关检验”得出相关系数值r、影响程度的P值,从而来分析出高数1、高数2与概率论、现代的相关性。

问题四:利用上面数据,得到各专业课程的方差和平均值,再通过对各门课程的分析,利用分析结论表明了我们对大学数学学习的看法。

关键词:单因素方差分析、方差分析、相关分析、 spss软件、

一、问题重述

附件是甲专业和乙专业的高等数学上册、高等数学下册、线性代数、概率论

与数理统计等三门数学课程的成绩数据,请根据数据分析并回答以下问题:

(1)针对每门课程分析,两个专业的分数是否有明显差异?

(2)针对专业分析,两个专业学生的数学水平有无明显差异?

(3)高等数学成绩的优劣,是否影响线性代数、概率论与数理统计的得分情况?

(4)根据你所作出的以上分析,面向本科生同学阐述你对于大学数学课程学习

方面的看法。

二、模型假设

1、假设两个班学生的整体程度和基础差异不大。

2、学生和学生之间的成绩是相互独立的,没有影响的。

3、假设样本学生的成绩均来自于实际,由此做出的分析是接近实际,能够反映实际状况的。

三、问题分析

问题一分析:对于每门课程,两个专业的分数是否有显著性差异。首先,应该利用SPSS证明其服从正态分布,之后可以利用SPSS对数据进行单因素分析和方差分析,采用单因素分析法,以专业为方差分析因素,最后比较显著性(Sig),如果Sig>0.05,即没有显著性差异,若Sig<0.05,即对于该门课程,两专业分数有明显差异。

问题二分析:模型同问题一。针对专业分析,两个专业学生的各科数学水平有无明显差异。

问题三分析:判断高数I、高数Ⅱ和线代、概率论之间成绩的相关性。首先我们要分别整合出四门学科的一组综合指标作为样本,然后求出相关系数矩阵。

问题四分析:总结分析。求出各专业科目的平均值和方差,然后进行比较并和前几问相结合,提出合理的建议。

四、模型建立和求解

模型一:单因素方差分析模型

单因素方差分析是固定其他因素,只考虑某一因素对试验指标的影响。建立单因素方差分析模型,用以解决针对每门课程两个专业成绩是否有明显差异和针对专业各科数学成绩是否有明显差异的问题。

问题一求解:

我们以专业为方差分析的因子,甲专业和乙专业为因子的不同水平,每个班的成绩是实验的数据样本。

首先我们需要对数据进行正态分析检验其服从正态分布。利用SPSS软件可以进行正态性分析检验。

输入数据后,运行:分析——非参数检验——1-样本 K-S;之后运行:分析——描述统计——QQ图,可以对数据进行正态检验。

运行结果如图:

对每门课程的数据进行QQ图检验如图:

高数1的QQ图检验:

上图中,实线是正态分布的标准曲线,散点是实际的数据分布,由图可知,散点分布和实线非常接近,即甲乙两专业的高数1成绩服从正态分布。

同样可知,甲乙两专业的高数2和线代、概率论都服从正态分布。

之后可以对数据进行单因素分析,利用SPSS 进行统计分析:分析——比较均值——单因素ANOVA ,最后得出每门课程的单因素分析如下: 1、对高数1进行单因素分析,分析结果如下表:

ANOVA

高数I

平方和 df

均方 F 显著性

组间 6105.142 35 174.433 1.279

.189

组内 9685.849 71 136.420

总数

15790.991

106

由图可知,其显著性Sig=0.189>0.05(显著性水平为0.05),说明两个专业的高数1的成绩无明显差异,出现显著相同的状况。

2、对高数2进行单因素分析,分析结果如下表:

ANOVA

高数2

平方和 df 均方

F 显著性

组间4391.588 34 129.164 1.161 .294

组内7898.978 71 111.253

总数12290.566 105

同样由图可知,其显著性水平Sig=0.294>0.05(显著性水平为0.05),说明两个专业的高数2成绩也显著相同。

3、对线代成绩进行单因素分析,分析结果如下表:

ANOVA

线代

平方和df 均方 F 显著性

组间4149.755 35 118.564 .952 .553

组内8841.833 71 124.533

总数12991.589 106

由图可知,其显著性水平为Sig=0.553>0.05,说明两个专业的线代水平没有明显差别,出现基本相同的状况。

4、对概率成绩进行单因素分析,分析结果如下表:

ANOVA

概率

平方和df 均方 F 显著性

组间7055.251 35 201.579 1.244 .216

组内11507.217 71 162.073

总数18562.467 106

由图可知,概率成绩的显著性水平为Sig=0.216>0.05,说明两个专业的概率成绩显著相同,没有明显差别。

问题二求解:(模型一)

求解每个专业的学生各门数学成绩之间是否有明显不同,我们仍然运用单因素方差分析的模型,将科目看做对成绩的影响因素,则有两个条件,分别是高数1,高数2,线代,概率论。四科数学成绩看做随机变量,证明其也服从正态分布(仍然运用spss正态检验)。

每个变量的样本值为每个专业各班成绩的平均值。

相关文档
最新文档