第2章 卫星通信基本技术3要点

合集下载

卫星通信工作原理

卫星通信工作原理

卫星通信工作原理卫星通信是一种通过人造卫星进行通信传输的技术。

它利用卫星作为中继站,将信号从发射站传输到接收站,实现了远距离、高质量的通信。

一、卫星通信的基本原理卫星通信的工作原理可以分为三个主要步骤:上行链路、卫星传输和下行链路。

1.上行链路:在卫星通信中,上行链路是指信号从地面站向卫星传输的部分。

用户在地面站发射信号,通过指定的天线将信号向上空发送。

信号经过电离层进入太空,然后到达指定卫星。

上行链路的频率一般比较低。

2.卫星传输:卫星接收到上行链路的信号后,将其放大并重新发射到地球上的其他区域。

卫星利用特定的波束和频率进行传输,确保信号能够准确到达目标地点。

卫星在传输过程中还可以进行频率的转换和多路复用,提高信号的传输效率和容量。

3.下行链路:下行链路是指信号从卫星传输到地面接收站的部分。

接收站通过天线接收卫星发射的信号,并通过解调器对信号进行解码和还原。

最终,用户可以通过设备来接收、处理和显示信号。

二、卫星通信的关键技术卫星通信依赖于多项关键技术来实现高效、稳定的通信传输。

1.频段选择:卫星通信使用的频段一般分为C频段、Ku频段和Ka频段等。

在频段选择时,需要综合考虑频段的传输性能、天线尺寸和成本等因素。

2.天线设计:卫星通信中的天线设计非常重要,它关系到传输过程中的信号强度和覆盖范围。

天线的设计需要考虑到天线增益、波束宽度、指向精度和天线尺寸等因素。

3.调制解调:调制解调器是卫星通信中的关键设备之一。

它可以将信号进行调制,将信息转换成适合卫星传输的形式。

在接收端,解调器将信号解调,还原成原始的信息。

4.多路复用技术:为了提高卫星传输的效率,多路复用技术被广泛应用。

通过将多个信号合并在一个信道中传输,可以有效提高信道利用率,减少传输成本。

三、卫星通信的应用领域卫星通信在各个领域都有着广泛的应用,其中包括但不限于以下几个方面:1.远程通信:通过卫星通信,可以实现远距离的通信传输,解决了地理位置限制的问题。

卫星通信

卫星通信

4.2 通信卫星的组成及部分功能
通信卫星主要有两部分组成:
有效载荷:装载于卫星上用于完成通信任务的仪器设备的总称。
卫星公用舱:用于安装固定有效载荷的服务系统。
二、卫星公用舱的组成——五个分系统组成。
Ⅰ姿态和轨道控制系统——Aocs(Attitude and orbit control subsystem)
重叠区设置中继站,可实现全球通卫星通信。
第二阶段:实用阶段
1964年,美国人成功发射了“辛康姆”卫星——事件标志着卫星通信进入实 用阶段,标志性体现在:
1、成功的进行了电话和电视的传输试验。 2、向美国国内传播在日本东京举行的奥运会。 第三阶段:商用阶段
由于卫星通信带来的巨大经济效益。卫星通信商用化逐渐提上了议事日程。
第四章 卫星通信系统的组成
4.1 卫星通信系统的组成 一个完整的卫星通信系统由空间段、地面段和用户段三部分组成:
一、空间段:也称空间分系统,通常是指通信卫星,研究的重点
二、地面段:一般包括地球站群,测控系统和监控中心
1、地球站群:包括一个中央地球站和若干个普通地球站,中央站和普通站之
间采用高度集中的星形网络结构
的“闪电”号卫星及实现全球通信三颗同步卫星)
2、国内卫星通信系统——为本国提供卫星业务的系统 3、区域卫星通信系统——低轨卫星。(用于特殊服务,地质勘测,海洋勘探等)
二、按卫星业务分类 1、卫星固定业务:向现有的电话网(PSTN)和有线电视网(CATV) 提供卫星链路,用来传输语音信号和电视信号。
S
Sun
Earth Satellite
E
E
Td=2d/c=0.27s
为消除0.27s的时间延迟,必须增加回波抵消器,大大增加了星上设备的复杂

卫星通信系统与卫星通信技术分析

卫星通信系统与卫星通信技术分析

卫星通信系统与卫星通信技术分析随着科技的不断发展,卫星通信系统在现代社会中扮演着越来越重要的角色。

它通过卫星与地面站之间的通信,实现了全球范围内的信息传输和通信服务。

卫星通信系统的普及不仅带来了便利和高效的通讯服务,也在地面通信无法覆盖的区域提供了重要的通讯支持。

本文将对卫星通信系统及其相关技术进行深入分析。

一、卫星通信系统卫星通信系统是通过卫星与地面站之间的通信连接,实现信息传输和通信服务的系统。

通常包括卫星、地面站和用户终端等部分。

卫星通信系统的关键技术包括发射、传输、接收和处理等环节,每一个环节都需要高精度的技术支持。

1. 卫星卫星是卫星通信系统的核心组成部分,一般由发射天线、载荷、动力系统、存储系统等部分组成。

载荷是卫星传输信息的关键部分,它包括了信号的发射和接收器、天线等设备。

通过载荷系统,卫星能够实现信息的接收和发送,并将其传输到地面站或用户终端。

2. 地面站地面站是卫星通信系统的另一个重要组成部分,它用于与卫星进行双向通信。

地面站由天线、发射接收设备、信号处理设备等部分组成。

当地面用户需要进行通信时,地面站通过发射天线向卫星发送信号,并通过接收天线接收卫星传输的信号,完成信息交换的过程。

3. 用户终端用户终端是卫星通信系统中的最终用户设备,它通过卫星进行通信和信息传输。

用户终端通常包括卫星电话、卫星电视接收器、卫星定位接收器等设备。

用户终端设备通过接收卫星传输的信号,实现了通信、定位、导航和信息接收等功能。

卫星通信技术是支撑卫星通信系统实现通信和信息传输的关键技术。

它主要涉及到卫星发射接收、信号处理、频谱管理等方面的技术。

1. 频率与频率复用在卫星通信系统中,频率是信息传输的关键要素。

卫星通信用户使用的频率是有限的,为了提高频谱资源的利用率,需要采用频率复用技术。

频率复用技术能够实现多个用户共享同一频谱资源,通过不同的调制方案或多址接入技术,使得不同用户之间的信号不会互相干扰,从而实现了频谱资源的有效利用。

卫星通信知识点

卫星通信知识点

卫星通信卫星通信:是指利用人造地球卫星作为终极辗转发或发射无线电信号,在两个或多个地球站之间进行的通信。

(特点:它覆盖面积大、不受地理条件的限制、通信频带宽、容量大、机动灵活,因而在国际和国内通信领域中,成为不可缺少的通信手段)卫星通信系统:由空间分系统、通信地球站、跟踪遥测及指令分系统、监控管理分系统四大功能部分组成。

(①跟踪遥测及指令系统对卫星进行跟踪测量控制其准确进入静止轨道上的指定位置,并对在轨卫星的轨道位置及姿态进行监视和校正。

②监控管理分系统对在轨卫星的通信性能及参数进行业务开通前的监测和业务开通后的例行监测和控制,以便保证通信卫星的正常运行和工作。

③空间分系统指通信卫星)卫星转发器:装在卫星上的收、发系统称为转发器,作用是接受由各地面站发来的信号,经变换频率和放大后,再发给各收端站。

它主要是由天线、接收设备、发射设备和双工器组成。

(主要的功能收到地面发来的信号(上行信号)后,进行低噪声发大,然后混频,混频后的信号再进行功率放大,然后发射回地面(下行信号)。

上行信号和下行信号的频率是不同的,这是为了避免在卫星天线中产生同频率信号干扰)卫星通信频率选择中考虑的损耗(电波传播的特点)工作频段的选择主要考虑电离层的反射、吸收;对流层的吸收、散射损耗等因数与频率的关系。

常用波段:L波段(1.6/1.5GHz)C波段(6.0/4.0GHz )Ku波段(14.0/12.0GHz 14.0/11.0GHz)Ka波段30/20GHz)一般工作频率选择在1-10GHz,最理想为4-6GHz。

考虑的传播损耗:1.自由空间的传播损耗。

2.大气损耗(对流层的影响和电离层的影响)3.移动卫星通信电波的衰落现象(多径传播和多径衰落)4.多普勒频移(由于通信双方相对位置在移动时,由多普勒效应引起的附加频移)同步卫星:如果卫星的轨道是圆形且在赤道轨道上,卫星离地面约35860km时,其飞行的方向与地球自转的方向相同,则从地面上任何一点看去,卫星都是相对静止的,这种对地静止的同步卫星简称为静止卫星。

卫星通讯知识点归纳总结

卫星通讯知识点归纳总结

卫星通讯知识点归纳总结一、卫星通讯基础知识1.卫星通讯的概念卫星通讯是利用卫星作为信号中继站,进行远距离通讯的一种通讯方式。

通过卫星,可以实现全球范围内的通讯覆盖,能够跨越地面的地理障碍,适用于广域通信、广播、电视等多种通讯应用。

2.卫星通讯的原理卫星通讯是通过地面站发射信号到卫星,再由卫星转发信号到目标地点的过程。

具体而言,地面站发射的信号经过天线传输到卫星上,再由卫星的转发器转发到另一地面站或用户终端,实现通讯目的。

3.卫星通讯的组成卫星通讯系统包括地面站、卫星和用户终端三部分。

地面站通过地面设备和天线发射信号到卫星,卫星通过天线接收地面信号并转发到另一地面站或用户终端。

二、卫星通讯技术1.卫星通讯的频段卫星通讯利用的频段主要包括C波段、Ku波段和Ka波段等。

C波段通讯距离远,穿透能力强,适用于卫星广播、远程通讯等;Ku波段通讯带宽大,传输速率快,适用于高速数据传输、互联网接入等;Ka波段通讯频率高,传输速率更快,适用于高清视频传输、卫星移动通信等。

2.卫星通讯的调制技术卫星通讯采用的调制技术主要包括AM、FM、PM等模拟调制技术,以及BPSK、QPSK、8PSK等数字调制技术。

调制技术可以提高信号的抗干扰能力、增加传输速率、提高频谱利用率等。

3.卫星通讯的编码技术卫星通讯采用的编码技术主要包括差分编码、卷积编码、交织编码、纠错编码等。

编码技术可以提高信号的可靠性,减小误码率,提高通讯质量。

4.卫星通讯的多址技术卫星通讯中的多址技术包括FDMA、TDMA、CDMA等。

FDMA将频段分成不同的信道,每个信道分配给不同的用户;TDMA将时间分成不同的时隙,不同用户在不同的时隙传输;CDMA利用不同码型区分用户,提高频谱利用率。

5.卫星通讯的跟踪技术卫星通讯中的跟踪技术包括天线跟踪、频率跟踪、星上时钟跟踪等。

跟踪技术可以确保地面站和卫星之间的通讯连续性,减小信号衰减和误差。

6.卫星通讯的天线技术卫星通讯中的天线技术主要包括馈源天线、反射天线、相控阵天线等。

卫星通信知识点

卫星通信知识点

第1章1.卫星通信:利用人造地球卫星作为中继站转发无线电破,在两个或多个地球站之间进行通信。

它是宇宙通信形式之一。

2.卫星通信的特点:①覆盖面积大, 通信距离远。

一颗静止卫星可最大覆盖地球表面三分之一, 三颗同步卫星可覆盖除两极外的全球表面, 从而实现全球通信。

②设站灵活, 容易实现多址通信。

③通信容量大, 传送的业务类型多。

④卫星通信一般为恒参信道, 信道特性稳定。

⑤电路使用费用与通信距离无关。

⑥建站快, 投资省。

3.卫星通信的缺点:①卫星要求严格,要求有高可靠性、长寿命。

②通信地球站设备较复杂、庞大。

③存在日凌和星蚀现象。

④卫星传输信号有延迟4.非同步卫星系统按轨道分:1)低轨道卫星通信系统(LEO),如极轨道卫星, 当卫星通过赤道上空时卫星间的距离最大, 此时须多开放一些小区; 当卫星通过两极时, 卫星间的距离变小, 这时会出现小区重叠, 在切换时要关闭一些小区。

2)中轨道卫星通信系统(MEO)3)同步(静止)卫星通信系统(GEO):当卫星的运行轨道在赤道平面内,其高度大约为35800 km 时,它的运行方向与地球自转的方向相同.5.地球卫星轨道分为:赤道轨道,极轨道,倾斜轨道。

6.卫星通信系统的组成:通信卫星,地球站,跟走遥测及指令系统和监控管理系统。

7.地球站的组成:天馈设备,收信机,发信机,终端设备,天线跟踪设备,以及电源设备。

8.基本工作原理:当甲地一些用户要与乙地的某些用户通话时, 甲地首先要把本站的信号组成基带信号, 经过调制器变换为中频信号(70 MHz), 再经上变频变为微波信号, 经高功放放大后, 由天线发向卫星(上行线)。

卫星收到地面站的上行信号,经放大处理, 变换为下行的微波信号。

9.影响同步卫星通信的因素:1)摄动:在空中运行的卫星, 受到来自地球、太阳、月亮的引力以及地球形状不均匀, 太阳辐射压力等影响, 使卫星运行轨道偏离预定理想轨道, 这种现象称为摄动。

2)轨道平面倾斜效应3)星蚀与日凌中断4)卫星姿态的保持与控制10.同步卫星通信卫星的组成:控制分系统,通信分系统,遥测指令分系统,电源分系统,温控分系统。

卫星通信技术手册

卫星通信技术手册

卫星通信技术手册一、引言卫星通信技术是一种基于卫星作为中继设备传输信息的通信方式。

它具有广域覆盖、大容量传输、抗干扰能力强等优势,被广泛应用于军事、民用通信等领域。

本文将系统地介绍卫星通信技术的原理、应用及未来展望。

二、卫星通信技术原理1.卫星通信系统组成卫星通信系统由发射站、卫星和接收站三个基本部分组成。

其中,发射站负责将信息转换为信号并以指定的频率发送至卫星上,卫星作为中继设备将信号再次转发至接收站。

2.卫星通信信号传输过程卫星通信信号传输过程包括上行链路传输、卫星中继和下行链路传输三个环节。

上行链路传输指的是发射站将信号通过天线发送至卫星;卫星中继是指卫星接收到信号后再次通过天线转发至接收站;下行链路传输是指接收站通过天线接收到卫星发送的信号。

三、卫星通信技术应用1.卫星通信在军事领域的应用在军事通信中,卫星通信技术可以实现反向链路通信、数据传输、精确定位等功能。

它具有抗干扰能力强、通信范围广等特点,被广泛用于战略指挥、军事卫星通信等领域。

2.卫星通信在民用通信领域的应用在民用通信领域,卫星通信技术广泛应用于卫星电视、移动通信、国际长途通信等方面。

它可以实现全球范围内的通信覆盖,并满足大容量传输的需求,极大地促进了全球通信的发展。

四、卫星通信技术的发展趋势1.低轨卫星技术的兴起低轨卫星技术以其低延迟、大容量等优势逐渐崭露头角。

它可以实现较高频率的数据传输,并提供更加稳定的通信服务。

2.卫星通信与其他技术的融合随着信息技术的快速发展,卫星通信与其他技术的融合将成为未来发展的趋势。

例如,卫星通信与5G技术的结合,可以提供更快速、更稳定的通信服务。

3.卫星通信技术的智能化应用智能化应用是卫星通信技术的未来发展方向之一。

通过引入人工智能等技术,可以实现对卫星通信系统的自动化管理和优化,提高系统的工作效率和稳定性。

五、结语卫星通信技术作为一种高效、可靠的通信手段,在军事、民用等领域发挥着重要作用。

随着技术的不断发展和创新,相信卫星通信技术将迎来更加广阔的发展空间,为人类社会的通信发展做出更大贡献。

卫星通信第2章调制技术

卫星通信第2章调制技术

第2章 调制技术
3.频率调制信号系统的传输特性
(1)调频信号的带宽
只要系统所提供的传输带宽(B)足 以容纳调频波频谱能量的98%以上时,就 可忽略信号失真的影响。我们把此时的 带宽称为射频传输带宽。此时可认为传 输带宽为
B 2(m f 1)Fm
第2章 调制技术
(2)调频解调器输出信噪比
码变换
B
D
cosωct
-π4
π
-π4cos(ωct-π4 )

cos(ωct+ 4 )

π 4
10
e(t) 11
00
01 0π
单/双极性变换
D4
gd
1
-34π (a)
二进制序列 0 0 1 0 0 1 1 1 1 0
直接调相—码变换法产 生4DPSK信号方框图及 码变换波形
0
1
0
A
绝对码
0
0
1
B
0
1
第2章 调制技术
图2-3 压扩器的功能和压扩范围
第2章 调制技术
类似自动增益控制。信号经整流并反馈到输入(或 输出)端,控制输入(或输出)信号电平
图2-4 压扩器的原理框图
第2章 调制技术
2.3 时分复用与数字信号的调制 与解调
2.3.1 时分复用与数字调制
1.时分复用
TDM是从时域的角度进行分析的,
第2章 调制技术
① 四相相对调相信号的产生
四相相对调相可采用类似两相调相 系统码变换的方法。
② 在存在多普勒频移情况下的差分相干解调
图2-12(a)给出了4PSK信号的产生 原理图。如在此图的串/并变换之前加 入一个码变换器,即把输入数据序列变 换为差分码序列,则即为4DPSK信号产 生的原理图。

卫星通信技术与应用

卫星通信技术与应用

卫星通信技术与应用一、概论随着科技的不断发展,人类对于信息的需求和传递也越来越高。

卫星通信技术在这一过程中发挥着越来越重要的作用。

卫星通信是通过卫星作为中继站,将信息从一个地方传递到另一个地方。

这项技术具有全球覆盖、高速率、不受地形限制等优点,广泛应用于军事、民用领域。

二、卫星通信技术1.卫星通讯的基础卫星通信的基础包括发射和接收两个环节。

发射端将信息通过脉冲调制技术转换为电磁波信号,通过天线发送到地面站,再经由地面站转发到卫星上。

卫星将信号再通过接收天线发回到地球上的地面接收站,解调处理后将信息还原。

2.卫星的轨道根据不同的用途和要求,卫星的轨道也存在差异。

根据轨道高度不同,可以分为地球同步轨道、中圆轨道、低轨道等。

地球同步轨道一般用于卫星电视、电话、互联网等通讯服务,而低轨道卫星则多用于地球观测、科学研究等领域。

3.卫星通信的调制方式卫星通信的调制方式一般有频率调制、振幅调制和相位调制等。

其中频率调制是最广泛使用的调制方式,其原理是将基带信号通过频移后与载波相乘,再将信号发送出去。

4.卫星通信保障卫星通信保障是指保证在各种情况下卫星通信的通畅和稳定。

为确保卫星信号的质量和可靠性,一般采用双路冗余、质量控制、自动切换等技术。

三、卫星通信应用1.军事领域在军事领域,卫星通信广泛用于指挥、控制、情报、侦察等方面。

卫星通信可以隔绝地域限制,在信息传递时能够实现保密性和快速性。

2.气象预报卫星通信在气象预报领域也有明显的应用。

通过卫星观测,气象专家可以获取全球范围内的气象信息,从而做出更加准确的气象预报。

3.交通运输在交通运输领域,卫星通信可以用于导航、避免碰撞、车队管理、航班管理等方面。

卫星通信使得交通运输更加安全和高效。

4.卫星电视卫星电视是卫星通信的典型应用之一。

通过卫星电视,用户可以享受全国甚至全球各种电视节目,彻底摆脱地域限制。

5.互联网通信互联网通信已经成为卫星通信的一个重要领域。

通过卫星通信,用户可以在全球范围内进行高速的互联网通信,网络的覆盖范围得到了显著扩大。

卫星通讯知识点总结大全

卫星通讯知识点总结大全

卫星通讯知识点总结大全一、卫星通讯的概念卫星通信是指通过卫星作为中继器,实现不同地区之间的通信传输,包括声音、数据和图像等信息的交换。

卫星通信系统包括地面站、卫星和用户终端设备,通过这些设备完成信息的发送和接收。

二、卫星通讯的原理1. 发射和接收卫星通信系统的工作原理主要包括发射和接收两个过程。

发射端将要传输的信息通过天线发射到卫星上,卫星再将信号转发到接收端,接收端通过天线接收到信号。

2. 中继卫星是作为信息传输的中继器,接收到的信号再通过卫星转发到另一个地方的接收端,从而实现远距离的通信传输。

3. 多路复用卫星通信系统通过多路复用技术将多个信号合并成一个信号进行传输,接收端再通过解复用技术将信号还原为原来的多个信号。

三、卫星通讯的分类1. 通信卫星通信卫星是专门用于通信传输的卫星,根据轨道的不同可以分为地球同步轨道卫星和非地球同步轨道卫星。

2. 导航卫星导航卫星主要用于定位和导航,目前比较知名的导航卫星系统包括美国的GPS系统、俄罗斯的GLONASS系统和中国的北斗系统。

3. 气象卫星气象卫星用于气象观测和预报,通过卫星传输气象图像和数据,帮助人们了解天气变化并进行应对。

四、卫星通讯的优势1. 覆盖范围广卫星通信可以覆盖地面上很广泛的范围,尤其是在偏远地区或海洋中,常规通信方式难以覆盖的地区。

2. 传输距离远卫星通信可以实现远距离的通信传输,无需铺设大量的通信线路,节省了成本。

3. 抗干扰能力强卫星通信系统的天线设备对外部干扰的抗干扰能力较强,通信质量相对稳定。

4. 运营成本低一些卫星通信系统可以实现空间资源共享,降低了运营成本,对于那些需要低成本的应用场景比较适合。

五、卫星通讯的技术要点1. 大功率射频通信卫星通信系统中的射频通信是其核心技术,需要大功率的发射设备和高灵敏度的接收设备,以保证通信质量。

2. 天线设计卫星通讯系统中的天线设计对于信号的传输和接收至关重要,需要考虑到方向性、增益、波束宽度等参数。

卫星通信教学大纲(新版)

卫星通信教学大纲(新版)

【卫星通信】课程教学大纲第一部分课程基本信息【课程代码】【学分】 2.5【参考学时】40【讲授学时】34【实验学时】6【课程性质】专业指导性选修课程【课程基础】应该掌握《通信原理》、《信号与系统》、《移动通信》等课程的知识。

【适应对象】通信工程;电子信息工程。

【教学目的】卫星通信是目前最重要的通信方式之一。

通过本课程的学习,熟悉卫星通信的基本原理、卫星通信系统与地面站的组成。

初步掌握FDMA、TDMA、SDMA/SS/TDMA的主要技术问题。

初步掌握CDMA,数据卫星分组通信基本原理,了解编码技术和信号处理技术在卫星通信中的应用,了解卫星通信线计算和卫星通信系统设计。

【内容提要】主要包含卫星通信的基本原理、卫星通信系统与地面站的组成。

FDMA、TDMA、SDMA/SS/TDMA的主要技术问题。

初步掌握CDMA,数据卫星分组通信基本原理,了解编码技术和信号处理技术在卫星通信中的应用,了解卫星通信线计算和卫星通信系统设计。

第二部分主要教学内容和基本要求【主要教学内容】讲授CDMA,数据卫星分组通信基本原理,编码技术和信号处理技术在卫星通信中的应用,卫星通信线计算和卫星通信系统设计。

主要包含卫星通信的基本原理、卫星通信系统与地面站的组成。

FDMA、TDMA、SDMA/SS/TDMA 的主要技术问题。

第一章卫星通信系统概述第一节卫星通信发展第二节卫星通信综述一、卫星通信的概念二、卫星通信的特点三、卫星通信的工作频率四、卫星通信系统的组成【基本要求】一、熟练掌握卫星通信系统中卫星轨道、系统组成、频段特点;卫星通信系统的地面段和空间段。

二、掌握卫星通信的频率分配;卫星通信的特点。

三、了解卫星通信的发展。

【参考学时】2【参考资料】Timothy Pratt Charles Bostian Jeremy Allnutt 著甘良才等译.卫星通信 Satellite Communications(Third Edition) [M].北京:电子工业出版社,2008:1~11第二章卫星通信网结构第一节卫星一、卫星通信各个子系统二、设备可靠性第二节轨道理论及发射系统一、轨道理论二、卫星发射和运载工具第三节卫星通信网一、卫星移动通信系统(部分)二、卫星通信系统中的互联网业务和宽带综合业务(部分)三、典型卫星通信系统(部分)【基本要求】一、熟练掌握利用卫星大范围覆盖的我实现点到多点的传输。

卫星通信

卫星通信
பைடு நூலகம்
3.卫星通信系统的分类
卫星通信系统按不同的角度分,可以分成以下几类:
(1)按卫星运动方式分
静止卫星通信系统 低轨道移动卫星通信系统
(2)按通信覆盖区域分
国际卫星通信系统 国内卫星通信系统 区域卫星通信系统
(3)按用户分
公用卫星通信系统 专用卫星通信系统 (气象、军事等)
(4)按通信业务分
1.静止卫星通信
目前,绝大多数通信卫星是地球同步卫星(静止卫星)。静止 卫星的条件为:
(1)卫星的运行轨道在赤道平面内; (2)卫星运行的轨道形状为圆形轨道; (3)卫星距地面的高度约为35786.6km; (4)卫星运行的方向与地球自转的方向相同,即自西向东; (5)卫星绕地球运行一周的时间恰好是24h,和地球的自转周 期等。
① 太阳、月亮的引力。对于低高度的卫星,由于地球的引力 占绝对优势,所以太阳、月亮以及其他行星的作用可以忽略不计。 但对高高度的卫星,太阳、月亮的引力就较大了。例如,对静止卫 星来说,太阳的引力约为地球引力的1/37,月亮的引力约为地球
引 力的1/6 800。这些引力不断使卫星在轨道上的位置发生微小摆 动,累计起来约使卫星轨道的倾角平均发生0.85°/年的变化。
平面重合,即i=0°时,卫星离地球表面的高度为
35786.6km,卫星的飞行方向又与地球的自转方 向相同。这时,卫星绕地球一周的时间恰好为24h, 如果从地球表面任何一点看卫星,卫星都是“静止” 不动的。这种相对地球表面静止的卫星称为静止卫 星或同步卫星,利用这种卫星来进行通信的系统称 为静止卫星通信系统。
② 通过对各种轨道高度的有源通信卫星的试验,证明 了高轨道特别是同步定点轨道对于远距离、大容量、高质量 的通信最有利。所以,试验及试用逐步集中到同步定点卫星 方面。

卫星通信3

卫星通信3

2.1 卫星轨道
开普勒第二定律
● 卫星与地心的连线在相同时间内扫过 的面积相等。
图2.2 开普勒 第二定律示意 图(阴影区为 卫星单位时间 扫过的面积)
2.1 卫星轨道
开普勒第二定律(续)
● 定律的意义 当轨道为椭圆时,卫星在轨道上的 各点飞行速度不同:在远地点的速 度最小;在近地点的最大。 当轨道为圆形时,则卫星为匀速圆 周运动,这时卫星运行的周期、切 线速度与卫星的质量无关,只与离 地面的高度有关。
2.1 卫星轨道
例2:我国第一颗人造地球卫星近地点 高度 ,远地点高 hA = 439 (km) 度 hB = 2384(km) ,试求其轨道方程、公 转周期、远地点和近地点瞬时速度。 解:首先求出偏心率 则半正焦弦为,
2384 − 439 hB − hA = = 0.125 e= hB + hA + 2re 2384 + 439 + 2 × 6378
2.1 卫星轨道
星蚀(续)
● 解决星蚀的方法 卫星定点偏离,将使地球站天线仰角发生 变化,可能会带来一些不利影响(如传输 损耗)。
2.1 卫星轨道
日凌中断
● 概念 与星蚀原因相似的另一现象,是每年春分和 秋分的前后几天中,当星下点进入当地中午 前后的一段时间里,卫星处于地球与太阳之 间的连线上。这时,对准卫星的地球站天线 也就同时对准了太阳,强大的太阳噪声会使 信噪比下降或信号被淹没而使通信中断,这 种现象就是所谓的日凌中断,如图2.3所示。
2.1 卫星轨道
卫星的摄动(续)
● 引起卫星摄动的原因 1. 地球非球形即扁圆度的影响。 地球赤道的半径大于两极,为非理 想的圆球体。
改变了地球周围的引力场的理想分 布,导致了地球引力的不均匀性,使 卫星偏离预定轨道。

《卫星通信技术》课件

《卫星通信技术》课件
拓展应用领域
卫星通信技术的应用领域将进一步拓展,如应急 通信、远程医疗、智慧城市等领域。
3
推动国际合作
卫星通信技术的发展需要国际合作,共同推进相 关技术和标准的发展,促进全球卫星通信产业的 繁荣。
05
结论
总结
卫星通信技术是现代通信领域的重要分支,具 有覆盖范围广、不受地面限制等优势,在军事 、民用等领域得到广泛应用。
发展,以满足日益增长的数据需求。
灵活的频谱利用
02
卫星通信将更加灵活地利用频谱资源,通过动态频谱分配和共
享技术提高频谱利用率。
高效的天线技术
03
天线技术的进步将有助于提高卫星通信系统的覆盖范围和数据
传输效率。
卫星通信技术的未来挑战
安全性问题
随着卫星通信的广泛应用 ,网络安全和隐私保护成 为重要挑战,需要加强安 全措施和技术研发。
《卫星通信技术》PPT 课件
目录 CONTENT
• 卫星通信技术概述 • 卫星通信系统组成 • 卫星通信技术的应用 • 卫星通信技术的未来发展 • 结论
01
卫星通信技术概述
卫星通信技术的定义
01
卫星通信技术是指利用人造地球 卫星作为中继站,实现地球站之 间的无线电通信。
02
卫星通信技术可以实现全球覆盖 、远距离传输和广播服务等功能 ,是现代通信技术的重要分支之 一。
数据传输。
加强卫星通信在偏远地区和 海洋等地的覆盖和应用,提 高信息传递的普及率和便捷
性。
加大对卫星通信技术研发的支 持力度,鼓励创新,突破关键
技术瓶颈。
对未来研究的展望
01
探索新型卫星通信体制和传输协议,提高数据传输 效率和可靠性。
02

卫星通信的技术和应用

卫星通信的技术和应用

卫星通信的技术和应用卫星通信指的是利用人造卫星进行通信的一种方式。

这种通信方式已经广泛应用于全球范围的通信、气象探测、军事侦察、科学研究等领域。

在现代社会中,卫星通信对于促进全球化、信息化和数字化发展具有重要作用。

一、卫星通信的技术卫星通信的技术主要包括两个方面:卫星和地面终端。

1.卫星技术卫星通信主要使用地球同步卫星,具有高度稳定的轨道,可以覆盖全球范围内的地面站。

目前,卫星通信使用的频段包括C、Ku、Ka和L波段,每个频段的特点不同,能够克服不同的传输障碍。

C波段:具有强的穿透性能,适用于距离较远、发射功率较小的通信场景。

Ku波段:适用于短距离通信,具有高容量和大带宽。

Ka波段:适用于高清晰度视频传输和卫星定位服务。

L波段:适用于海上通信、气象探测等领域。

2.地面终端技术地面终端主要包括卫星地面站和用户终端,这些设备用于与卫星进行信息交换。

卫星地面站可以进行信号发送和接收、信号调制和解调、信道控制等操作。

用户终端则可以通过天线接收卫星信号并与其他终端进行通信。

二、卫星通信的应用1.全球通信卫星通信可以覆盖全球范围内的通信需求。

通过卫星通信,人们可以在地球上的任何一个角落进行通信。

这种通信方式同时适用于个人、企业和政府机构,能够极大地促进全球化发展。

2.气象探测卫星可以获取地球各个角落的气象信息,使气象预测变得更加精确和实时。

例如,卫星可以追踪气旋、风暴和热带气旋,及时通知相关部门和民众。

3.军事侦察卫星可以用于军事侦察,进行照片测量、电子侦察、天文侦察等活动。

卫星可以收集到高分辨率的图像和视频,并进行实时监视。

4.科学研究卫星通信对于天文学、地球科学、生态学等领域的研究都具有巨大的推动作用。

卫星可以对宇宙、地球、气候等进行观测和研究,提供重要的数据支持。

5.地理信息系统卫星通信可为地理信息系统(GIS)提供数据支持。

通过卫星图像和位置数据,GIS可以进行地图制作和空间分析,更好地理解地球上的自然和人文环境。

西电夏克文《卫星通信》第一章

西电夏克文《卫星通信》第一章
就是传输时延。
04
要解决信号传输时 延带来的影响
02
卫星通信的概念和特 点
03
缺点:
01
02
27s
54s
卫星通信的概念和特点
一.卫星通信的概念 二.静止卫星与运动卫星 三.卫星通信的特点
第 一 章
西 东
1.1 卫星通信的概念和特点
缺点: • 卫星寿命短
(1)部件故障导致的不可修复
(2)推进剂携带量有限
制卫星入轨 推进剂的应用

轨道位置保持 姿
姿态保持方法:
1
自旋稳定法 三轴稳定法
2
1.1 卫星通信的概念和特点
需要先进的空间和电子技术
缺点:
01
发信者发出的消息传 到收信者手中需要一 定的时间,这一时间
02
添加标题
卫星通信的概念 和特点
03
添加标题
优点:
机动灵活。
卫星通信的概 念和特点
优点:
通信链路稳定 可靠,传输质
量高。
卫星通信的概 念和特点
优点:
1.1 卫星通信的概念和特点
缺点: • 卫星寿命短
(1)部件故障导致的不可修复
(2)推进剂携带量有限
制卫星入轨 推进剂的应用

轨道位置保持 姿
章 亮
引 力 的 影 响:
节 一
自然轨道上的静止卫星 所受到的引力关系: 太阳引力=1/37地球引 力
月亮引力=1/6800地球 引力

章 阳
、 月
节 亮
引 力
一 的
影 响 :
从地球 上看, 这种摄 动使 “静止” 卫星的 位置主 要在南 北方向 上缓慢 地漂移。

卫星通信基础知识讲义(doc 67页)

卫星通信基础知识讲义(doc 67页)

卫星通信基础知识讲义(doc 67页)部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑卫星接收技术一、卫星通信基础知识1.无线电通信基本知识1.1电磁波的概念振动的电场和磁场在空间的传播叫做电磁波。

由收音机收到的无线电广播信号,由电视机收到的高频电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。

1.2 电磁波的物理量人们用频率、波长和波速来描述电磁波的性质。

频率是指在单位时间内电场强度矢量E(或磁场强度矢量H)进行完全振动的次数,通常用f表示。

波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用λ表示。

波速是指电磁波在单位时间内传播的距离,通常用v表示。

频率f,波长λ,和波速v之间满足如下关系:v=λ f如果一电磁波在一秒内振动一次,该电磁波的频率就是1Hz ,即发f=1/T在国际单位制中,波速的单位是m/s(米/秒) ,波长的单位是m(米) ,频率的单位是Hz.对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。

Y图1-1 电磁波图例如:对于一个频率为102MHz的调频广播节目,其波长为300,000,000米除102,000,000Hz,等于2.94米。

1.3 电磁波的种类不同频率的(或不同波长)电磁波具有不同的性质用途。

人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(1GHz=109Hz)以下的波称为无线电波,主要用于广播,电视或其他通讯。

频率在3×1011Hz-4×1014Hz之间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在 3.84×1014HZ-7.69×1014Hz之间的波为可见光,它能引起人们的视觉,频率在8×1014Hz-3×1017Hz之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3×1017 Hz-5×1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,在原子核物理中还有频率为1018Hz-1022Hz以上的射线,其穿透能力就更强了。

最新卫星通信基本概念及其系统组成

最新卫星通信基本概念及其系统组成
___________________________ _______________________
局限性:
(1)通信卫星使用寿命较短。
*部件故障导致的不可修复 *推进剂携带量有限
控制卫星入轨 推进剂的应用 轨道位置保持
姿态保持
(2)存在日凌中断和 星蚀现象。
图1-4__静______止____卫____星______的____日____凌______中____断____和_____星_ 蚀现象
卫星通信系统指利用人造地球卫星在地球站之间进行通 信的通信系统。
通信卫星指用于实现通信目的的人造卫星。 卫星通信是地面微波中继通信的继承和发展,是微波接 力向太空的延伸。
___________________________ _______________________
___________________________ _______________________
• 图1-1 卫星通信过程示意图
___________________________ _______________________
___________________________ _______________________
通常以空间飞行器或通信转发体为对象的无线 电通信称为空间通信(宇宙通信),它包括三种形式:
___________________________ _______________________
1.1 卫星通信的基本概念和特点
1.1.1 卫星通信的基本概念 卫星是指在围绕行星的轨道上运行的天然天体或人造
天体,如月球是地球的卫星。
卫星通信是指利用人造地球卫星作为中继站转发无线电 波,在两个或多个地球站之间进行的通信。其无线电波频率 使用微波频段(300 MHz~300 GHz,即波段1 m~1 mm)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公用单元主要包括中频单元和定时与 频率单元等。

话音的传输与话音信号的传输格式是分不开 的,因而我们首先对话音信号的传输格式进行介 a. 话音信号的传输格式
为了提高卫星系统的信道利用率,在PCMPSK-SCPC系统中采用了话音激活技术。
SOM 由于在PCM-PSK-SCPC系统中使用的是绝 对QPSK调制方式,对这种已调制信号进行相干 解调时,在其所恢复的载波中会出现“0°”或 “180°”的相位不确定的现象,这就是相位模 糊现象。 b. 话音信号的传输过程
(1)要求解决好卫星的功率和带宽
(2 (3 (4
FDMA的分类
1.每载波多路MCPC-FDMA方式
如果按所采用的基带信号类型, MCPC 又可
划 分 为 FDM-FM-FDMA 和 TDM-PSK-FDMA 方
式。
在FDM-FM-FDMA方式中,首先基带 模拟信号以频分复用方式复用在一起,然 后以调频方式调制到一个载波频率上,最 后再以FDMA
1. 预分配的SCPC
数字制的预分配SCPC又包括PCM-PSKSCPC和DM-PSK-SCPC方式,我们首先从PCMPSK-SCPC
(1)PCM-PSK-SCPC
在预分配SCPC方式中,任意两地球站之间 进行通信时,其下行链路的载波只携带一路信号, 并且占用一条卫星通道。
① SCPC
在采用SCPC方式工作的IS-IV卫星通信系统 中,将其中一个卫星转发器的36MHz带宽等间隔 地分为800个通道,其频率分配如下图所示。
1.预分配(PA)
预分配(PA)方式又分为固定预分配 (FPA)和按时预分配(TPA)方式,具体如下。
(1
固定预分配(FPA)是指按事先规定半永久 性地分配给每个地球站固定数量的信道,这样各 地球站只能各自在特定的信道上完成与其他地球 站的通信,其他地球站不得占用。
(2)按时预分配(TPA)方式
第二章 卫星通信基本技术
2.1 信号设计技术 2.2 信号处理技术
2.3 多址技术
第二章 卫星通信基本技术
2.1 信号设计技术 2.2 信号处理技术
2.3 多址技术
卫星通信系统和卫星移动通信系
统中所使用的信道分配技术和多址技
术(频分多址(FDMA)、时分多址
(TDMA)、空分多址(SDMA)和
码分多址(CDMA))等进行介绍。
※频分多址技术
频分多址技术原理与应用特点
1. 工作原理
在以此种方式工作的卫星通信网中,每个地 球站向卫星转发器发射一个或多个载波,每个载 波都具有一定的频带,它们互不重叠地占用卫星 转发器的带宽。
2. FDMA
频分多址方式是最基本的多址方式,也是最 古老的多址方式,其最突出的特点是简单、可靠 和易于实现。
空分多址访问(SDMA)方式是以空间作为 参量来进行分割的,其频率和时间无法分开,因 而不同的信道占据不同的空间,这样卫星可根据 空间位置接收相应覆盖区域中的各地球站发送的 上行链路信号。 码分多址访问(CDMA)方式是以信号的 波形、码型为参量来实现多址访问的,其频率、 时间和空间上均无法分开,因而不同的地球站使 用不同的码型作为地址码,并且这些码型相互正 交或准正交。
3. 星上交换SS-FDMA
在下图中给出SS-FDMA卫星转发器方框图。
从图中可以看出,上行链路和下行链路各包含3
个波束(空分频率复用)。其星上交换功能是由
一组滤波器和一个由微波二极管门电路组成的交
换矩阵完成的。
图 SS-FDMA卫星转发器方框图
SCPC
SCPC是英文Single Channel Per Carrier的 缩写,是每载波单路的FDMA方式。
※多址技术与信道分配技术的概念 ※频分多址技术
※时分多址技术
※随机多址和ቤተ መጻሕፍቲ ባይዱ控多址访问方式
※多址技术与信道分配技术的概念
多址技术是指在卫星覆盖区内的多个地球站,通过 同一颗卫星的中继建立两址和多址之间的通信技术。

信道分配方式实际上就是指如何进行信道分配。所 采用的多址方式不同,其信道的内含不同(FDMA:各 地球站占用转发器频段;TDMA:各地球站占用时隙)。
在TDM-PSK-FDMA方式中,首先将 多路数字基带信号用时分复用方式复用在 一起,然后以PSK方式调制到一个载波上, 最后再以FDMA方式发射和接收。
2.每载波单路SCPC-FDMA方式
由于SCPC方式主要应用于业务量较小的、 同时通信路数最多只有几条甚至一条的地球站, 显然采用固定分配载波的MCPC方式会造成频带 的浪费。
图 SCPC系统的频率配置
② SCPC
下图给出了在SCPC方式下工作的各地 球站的终端设备结构图。 地面接口单元:负责话音业务和数据
图 SCPC终端设备结构图
信道单元包含话音接口、数据接口、 话音编码/译码器、数据编码/译码器、话音 检测器、信道同步器、频率合成器和相位 调制/解调器等用来完成语音信号和数据信
(TDMA)、码分多址(CDMA)和空分多址 (SDMA)。
频分多址访问(FDMA)方式是卫星通信多 址技术中的一种比较简单的多址访问方式。在 FDMA中是以频率来进行分割的,其在时间和空 间上无法分开,故此不同的信道占用不同的频段, 互不重叠。 时分多址访问(TDMA)方式是以时间为参 量来进行分割的,其频率和空间是无法分开的, 那么不同的信号占据不同时间段,彼此互不重叠。
3
动态分配是系统根据终端申请要求,将系统 的频带资源(传输速率)实时地分配给地球站或 卫星移动通信终端,从而能高效率地利用转发器 的频带。
4
它是指通信中各种终端随机地占用卫星信道 的一种多址分配制度。
多址技术
在卫星通信中的信号分割和识别是以载波
频率出现的时间或空间位置为参量实现的,归
纳起来可分为频分多址(FDMA)、时分多址
根据统计,事先知道了各地球站间业
务量随时间的变化规律,因而在一天内可
按约定对信道做几次固定的调整,这种方
式就是按时预分配(TPA)方式。
2
按需分配(DA)方式是一种分配可变的制 度,这个可变是按申请进行信道分配变化的,通 话完毕之后,系统信道又收归公有。
(1)收端可变、发端固定的DA方式 (2)收端固定、发端可变的DA方式 (3)收、发可变DA
相关文档
最新文档