1.1菱形的性质和判定培优(一)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菱形培优训练
参考答案与试题解析
一.选择题(共8小题)
1.(2011•聊城)已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()
A.12cm2B.24cm2C.48cm2D.96cm2
考点:菱形的性质.
分析:设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x的值,最后根据菱形的面积公式求出面积的值.
解答:解:设菱形的对角线分别为8x和6x,
已知菱形的周长为20cm,故菱形的边长为5cm,
根据菱形的性质可知,菱形的对角线互相垂直平分,
即可知(4x)2+(3x)2=25,
解得x=1,
故菱形的对角线分别为8cm和6cm,
所以菱形的面积=×8×6=24cm2,
故选B.
点评:本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.
2.(2012•孝感)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2其中正确的结论有()
A.1个B.2个C.3个D.4个
考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.
专题:综合题.
分析:先判断出△ABD、BDC是等边三角形,然后根据等边三角形的三心(重心、内心、垂心)合一的性质,结合菱形对角线平分一组对角,三角形的判定定理可分别进行各项的判断.
解答:解:①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;
②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG=CG,故
可得出BG+DG=CG,即②也正确;
③首先可得对应边BG≠FD,因为BG=DG,DG>FD,故可得△BDF不全等△CGB,即③错误;
④S△ABD=AB•DE=AB•(BE)=AB•AB=AB2,即④正确.
综上可得①②④正确,共3个.
故选C.
3.(2010•陕西)若一个菱形的边长为2,则这个菱形两条对角线的平方和为()
A.16 B.8C.4D.1
考点:菱形的性质.
分析:根据菱形的对角线互相垂直平分,即菱形被对角线平分成四个全等的直角三角形,根据勾股定理,即可求解.
解答:解:设两对角线长分别是:a,b.
则(a)2+(b)2=22.则a2+b2=16.
故选A.
点评:本题主要考查了菱形的性质:菱形被两个对角线平分成四个全等的直角三角形.
4.(2001•嘉兴)菱形的边长为4cm,一个内角为30°,这个菱形的面积为()
A.2cm2B.4cm2C.6cm2D.8cm2
考点:菱形的性质;含30度角的直角三角形.
分析:根据直角三角形的性质:30度所对的直角边等于斜边的一半,可得出菱形的高为2cm.然后可求出菱形面积.
解答:解:由30°锐角所对的直角边等于斜边的一半,可得30°所对菱形的高为2cm,则这个菱形的面积为4×2=8cm2.故选D.
点评:此题主要考查菱形的面积求法,综合运用了直角三角形的性质.
5.(2011•衡阳)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()
A.M(5,0),N(8,4)B.M(4,0),N(8,4)C.M(5,0),N(7,4)D.M(4,0),N(7,4)
考点:菱形的性质;坐标与图形性质.
专题:数形结合.
分析:此题可过P作PE⊥OM,根据勾股定理求出OP的长度,则M、N两点坐标便不难求出.
解答:解:过P作PE⊥OM,
∵顶点P的坐标是(3,4),
∴OE=3,PE=4,
∴OP==5,
∴点M的坐标为(5,0),
∵5+3=8,
∴点N的坐标为(8,4).
故选A.
点评:此题考查了菱形的性质,根据菱形的性质和点P的坐标,作出辅助线是解决本题的突破口.
6.(2008•丽水)如图,在三角形ABC中,AB>AC,D、E分别是AB、AC上的点,△ADE沿线段DE翻折,使点A落在边BC上,记为A′.若四边形ADA′E是菱形,则下列说法正确的是()
A.D E是△ABC的中位线B.A A′是BC边上的中线
C.A A′是BC边上的高D.A A′是△ABC的角平分线
考点:菱形的判定;翻折变换(折叠问题).
分析:根据菱形的性质:对角线互相垂直的平分进行判断即可.
解答:解:∵四边形ADA'E是菱形,则根据菱形的对角线平分一组对角,
∴AA'是△ABC的角平分线,
故D正确;
而B、C不正确;DE不一定是△ABC的中位线,A也不正确.
故选D.
点评:本题考查了菱形的性质:对角线平分一组对角.
7.(2010•安顺)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()
A.1B.2C.D.
考点:菱形的性质;勾股定理.
专题:计算题.
分析:根据题意可知,AC=2BC,∠B=90°,所以根据勾股定理可知AC2=AB2+BC2,即(2BC)2=32+BC2,从而可求得BC的长.
解答:解:∵AC=2BC,∠B=90°,
∴AC2=AB2+BC2,
∴(2BC)2=32+BC2,
∴BC=.
故选D.
点评:此题主要考查学生对菱形的性质及勾股定理的理解及运用.