华工流体力学作业题答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
⇒
dx dy = = dt ⇒ bdx = ady = 2abt 2 dt 2 2 2at 2bt
积分得: 3-3
x= 2 at 3 + C1 3
2 y=3 bt 3 + C2
⇒ bx − bC1 = ay − aC2 取 C1 = C2 = 0 则有 a y = b x
B −x 由 流 线 方 程 : 2π x 2 + y 2
第5章
5-1 c = K/ρ 5-2 取 n、D 和 ρ 为基本变量,有 µ v F v µ , ) ⋅ ρn2 D4 f( 2 4, , ) = 0 或 F = CF ( 2 2 ρ n D nD ρ nD ρ nD nD 5-3 取 n、qV 和 H 为基本变量(注意 H 为压强单位) ,有 nT q H 1 V f( ,η ) = 0 或 T = C T qV H n η 5-4 取 D、ρ 和 v 为基本变量,有
Fx = 2aρ gh , Fz = π a 2 ρ g / 2 ; y d − y c =
2-10 解:建立以水平面为 X 轴,垂直向下为 Y 轴的坐标系,取微元 dA
a = H −1 2 dF = PdA = ( P0 + ρ gh ) dA yc = H − I xc =
F = ( P0 + ρ gyc ) A
⇒ϕ =
3-11 ~ 3-15
1 2
2 x 2 − 3x − 1 2 y − 2y + C
PDF 文件使用 "pdfFactory Pro" 试用版本创建
第4章
4-1 ux = x2 + y 2 + x + y + 2 u y = y 2 + 2 yz + 2 由
du y dt
=
∂u y ∂t
+ ux
∂u y ∂x
+ uy
∂u y ∂y
在 t=4 时刻(2,1)处,则有: 3-2
du y du x = 137 , = 72.5 dt dt
解:该二维流场的迹线微分方程为:
dx dy = = dt ux u y
2
在(a,b)处,有
u x = ( x + a)t 2 = 2at 2 u y = ( y + b)t = 2bt
流 体 力 学
张国强 吴家鸣 编
习题答案 第1章
1-1 ρ = 8 kg/m3,v = 0.125 m3/kg,p = 0.684 MPa
M 20 V 2.5 = = 8kg / m3 υ = = = 0.125m3 / kg V 2.5 M 20 P = ρ RT = 8 ⋅ 287 ⋅ 298.15 = 684552.4 Pa ρ=
4-2 4-3 4-4 4-5 4-6
du 1 = f − ∇p = −0.108i + 0.029 j − 9.8k dt ρ du y du du j + z k ) = −136000i + 18000 j − 889800k ∇p = − ρ gk − ρ ( x i + dt dt dt 5 σ xx ≈ −10 5 , τ xy = 4.8 ,τ xz = −0.5 ; τ yx = τ xy = 4.8 , σ yy ≈ −10 , τ yz = −3.1 ; τ zx = τ xz = −0.5 , τ zy = τ yz = −3.1 , σ zz = −10 5
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PA + ρ g ( x + 0.001) sin α − ( PA + ρ gx sin α ) × 100% ≤ 0.5% PA + ρ gx sin α 其中: 0 ≤ x ≤ L 当 x = 0 时,误差最大 0.001ρ g sin α 即 × 100% ≤ 0.5% PA ⇒ sin α ≤ 0.5 ⇒ α ≤ 30o 2-7 由图知: PA + ρ1 gh1 − P 3 = ρ 2 gh2
f(
5-5
F µ , )=0 2 2 ρ v D ρ vD
或
2 2 F = C F ( Re) ⋅ 1 2 ρv D
取 l、v 和 ρ 为基本变量,有
FL = C L ( Ma , Re,
u u dx dy dz = = ⇒ z = x = 2x + 1 u x u y uz dz dx
uz u y = = 2 y + 2 z ⇒ u z = −2 xz − 2 yz − z 2 − z dz dy
∂u z ∂u y ωx = 1 − = z− y 2 ∂z ∂y 为有旋流动 ⇒ ∂ux ∂u z − = −z ωy = 1 2 ∂x ∂z ∂u y ∂u x 1 ωz = 1 − = −y − 2 2 ∂y ∂x
PDF 文件使用 "pdfFactory Pro" 试用版本创建
⇒ P2 = 95.8kPa ⇒ T2 =
P2 = 271.2 K Rg ρ 2
v2 = 38.26 m/s,p2 = 95.8 kPa,T2 = 270 K,ρ2 = 1.232 kg/m3 4-13 ∆E = 3 ρ Av 3 16 4-14 T = 0.348 N. m,P = 63 W,ρ2 = ρ1 = 1.154 kg/m3,p2 = 1.011 MPa,T2 = 305 K
2-2 泵吸水管入口:p = 116 kPa,冷凝器中:p = 20 kPa 2-3 在对流层: P = 97325 Pa P0 = 101325 Pa
P 0.0065H = 1 − P0 288.15
2-4
5.25588
⇒ H ≈ 340 m
2π kρ 2 ( R 2 − r 2 ) + ρ g ( z 0 − z ) ,p0、z0 为液球表面某一点处的压强和垂直 3 坐标;特别地,在无重力的外层空间,等压面为球面。 2-5 p = 0.97p0:H = 256 m,T = 0.97T0:H = 1129 m 2-6 解: 倾斜式酒精微压计: PB − PA = ρ gL sin α PB 为待测压强, ρ =789 kg / m3 p − p0 =
由测量误差可知:
由测量范围可知: 784.5 Pa ≤ PB = PA + ρ gL sin α ≤ 1569 Pa
2-8 2-9
⇒ pA - pB = 9963 Pa F = 2150 N
P3 + ρ 3 gh3 − PB − ρ1 g h1 + ( h3 − h2 ) − h4
4 a2 , xd = a 3h 3π
v1 = 8.04 m/s,v8 = 6.98 m/s 解: h = 0.02m, ρ = 800kg / m3 , ∆p = 314 Pa 考虑重力: ∆p = ρ gh +
2 ( ∆p − ρ gh ) ρu 2 ⇒ qm = ρ uπ R 2 = 3.54 g / s ⇒u = ρ 2
2 gh ρ' ρ 1− d 4 / D 4
1-2 1-3 m = 0.075 kg,V = 0.878 m3 K = 3 MPa
K =−
1-4 1-5 1-6
等温:K = 0.1 MPa,绝热:K = 0.14 MPa,等压:αV = 0.00336 K 1 T = 212.1 N . m
-
δp −90000 = = 3MPa δV / V −3%
3-6 uz = -x z + z2/2 3-7 qV = 0.241 m3/s, qm = 241 kg/s,v = 21.3 m/s 3-8 qVmax = 0.0177 m3/s,vmax = 2.25 m/s dx = − β ( a sin β t + b cos β t ) ux = dt x = a cos β t − b sin β t 3-9 u = dy = β ( a cos β t − b sin β t ) ⇒ y y = a sin β t + b cos β t dt dy =α uy = dt du ⇒ u x = − β y , u y = β x , u z = α ; ⇒ du x = −β 2 x , y = − β 2 y , du z = 0 dt dt dt 3-10 解:ψ = xy + 2 x − 3 y + 10 ∂ψ = y + 2 = −u y ∂ϕ ∂ϕ ∂x = uy = − y − 2 = ux = x − 3 ⇒ ∂x ∂y ∂ψ = x − 3 = ux ∂y
2( H − 2)3 12 p0 yc h + ρ g ( yc 2 A + I xc ) yd = =H-h F H ≥ 2.7 m
2-11 2-12 2-13 2-14 2-15 圆柱:D ≥ 0.1 m,圆球:R ≥ 0.072 m D = 0.057 m x = 0.25 m 1) p = 109800 Pa;2) a = g;3) a = 6.1 g。g 为重力加速度 a = 1.96 m/s2
ρ1 AV1 A A1 A + ρ1 BV1B A1B = ρ 2V2 A2 ⇒ ρ 2 = 1.224kg / m3
P V 2 P V 2 P V2 ρ1 AV1 A A1 A 1 + 1 A + ρ1BV1B A1B 1 + 1B = ρ 2V2 A2 2 + 2 2 2 2 ρ1 A ρ1B ρ2
Hale Waihona Puke 2-16 1) z s = z 0 + 2-17 n = 12
ω2 2 rs ;2) ω = 14.0 rad/s;3) V = 0.025 m3,h = 0.090 m 2g
PDF 文件使用 "pdfFactory Pro" 试用版本创建
第3章
3-1 解:
du x ∂u x ∂u ∂u = + ux x + u y x dt ∂t ∂x ∂y
4q 4q πd2 4-15 qv = C ⋅ ⇒ 入口 C1 = v2 = 1.42m / s 出口 ⇒ C2 = v2 = 2m / s 4 π d1 π d2
由伯努力方程可知 P = ρ qv g h +
P2 − P C 2 − C12 1 + 2 ⇒ P = 31.6 kW 2 ρg
4-7 4-8
qm = ρ
π D2 4
2 gh πd2 ρ' = ρ ρ D 4 / d 4 −1 4
1)设 a 处为参考平面,压强为 Pa b 处压强为: Pb = P − a ρ gh2 = 62787 Pa
Pb + ρ gh1 = Pc = 80427 Pa
⇒ u = 5.94m / s 如果要发生汽化,最高点处压强为:pmin = 62763 Pa 2) Pc − P = ρ g ( h2 − h1 ) ⇒ h2 = 9.76m h2’ ≤ 9.76 m
x2 + y2 = C 2
ux =
B y 2 2π x + y 2
uy =
dx dy = ux u y
⇒
dx dy = y −x
⇒ − xdx = ydy
3-4
x2 y 2 积分得: − = + C0 即 x 2 + y 2 = C 2 2
ω = −ci − aj + bk , | ω |= a 2 + b 2 + c 2 & 3-5 γ xy = a − b , ω z = − a − b
4-9 qm = 439 kg/s 4-10 m = 3.09 kg 4-11 F = 11.70 N,θ = 30o 4-12 V1 A A1 A + V1B A1 B = V2 A2 ⇒ V2 = 38.26m / s
ρ1 A = ρ1B = P 1 = 1.254kg / m3 RgT1 A P 1 = 1.120kg / m3 RgT1B
τ=
d + 2δ 4δ 4δ /(1 + ) ≈T 3 8h π ω hd 3 π ω (d + δ ) h 1-7 P = 128.6 W 1-8 h = 3 mm
F u =µ A δ
A = π dh
u = ωr =
ωd d T = F ⋅r = F ⋅ 2 2
⇒ µ =T
第2章
2-1
∇p =
∂p ∂p ∂p i+ j+ k = ai + bj − ck , ∇p max ≤ 3 14 ∂x ∂y ∂z
⇒
dx dy = = dt ⇒ bdx = ady = 2abt 2 dt 2 2 2at 2bt
积分得: 3-3
x= 2 at 3 + C1 3
2 y=3 bt 3 + C2
⇒ bx − bC1 = ay − aC2 取 C1 = C2 = 0 则有 a y = b x
B −x 由 流 线 方 程 : 2π x 2 + y 2
第5章
5-1 c = K/ρ 5-2 取 n、D 和 ρ 为基本变量,有 µ v F v µ , ) ⋅ ρn2 D4 f( 2 4, , ) = 0 或 F = CF ( 2 2 ρ n D nD ρ nD ρ nD nD 5-3 取 n、qV 和 H 为基本变量(注意 H 为压强单位) ,有 nT q H 1 V f( ,η ) = 0 或 T = C T qV H n η 5-4 取 D、ρ 和 v 为基本变量,有
Fx = 2aρ gh , Fz = π a 2 ρ g / 2 ; y d − y c =
2-10 解:建立以水平面为 X 轴,垂直向下为 Y 轴的坐标系,取微元 dA
a = H −1 2 dF = PdA = ( P0 + ρ gh ) dA yc = H − I xc =
F = ( P0 + ρ gyc ) A
⇒ϕ =
3-11 ~ 3-15
1 2
2 x 2 − 3x − 1 2 y − 2y + C
PDF 文件使用 "pdfFactory Pro" 试用版本创建
第4章
4-1 ux = x2 + y 2 + x + y + 2 u y = y 2 + 2 yz + 2 由
du y dt
=
∂u y ∂t
+ ux
∂u y ∂x
+ uy
∂u y ∂y
在 t=4 时刻(2,1)处,则有: 3-2
du y du x = 137 , = 72.5 dt dt
解:该二维流场的迹线微分方程为:
dx dy = = dt ux u y
2
在(a,b)处,有
u x = ( x + a)t 2 = 2at 2 u y = ( y + b)t = 2bt
流 体 力 学
张国强 吴家鸣 编
习题答案 第1章
1-1 ρ = 8 kg/m3,v = 0.125 m3/kg,p = 0.684 MPa
M 20 V 2.5 = = 8kg / m3 υ = = = 0.125m3 / kg V 2.5 M 20 P = ρ RT = 8 ⋅ 287 ⋅ 298.15 = 684552.4 Pa ρ=
4-2 4-3 4-4 4-5 4-6
du 1 = f − ∇p = −0.108i + 0.029 j − 9.8k dt ρ du y du du j + z k ) = −136000i + 18000 j − 889800k ∇p = − ρ gk − ρ ( x i + dt dt dt 5 σ xx ≈ −10 5 , τ xy = 4.8 ,τ xz = −0.5 ; τ yx = τ xy = 4.8 , σ yy ≈ −10 , τ yz = −3.1 ; τ zx = τ xz = −0.5 , τ zy = τ yz = −3.1 , σ zz = −10 5
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PA + ρ g ( x + 0.001) sin α − ( PA + ρ gx sin α ) × 100% ≤ 0.5% PA + ρ gx sin α 其中: 0 ≤ x ≤ L 当 x = 0 时,误差最大 0.001ρ g sin α 即 × 100% ≤ 0.5% PA ⇒ sin α ≤ 0.5 ⇒ α ≤ 30o 2-7 由图知: PA + ρ1 gh1 − P 3 = ρ 2 gh2
f(
5-5
F µ , )=0 2 2 ρ v D ρ vD
或
2 2 F = C F ( Re) ⋅ 1 2 ρv D
取 l、v 和 ρ 为基本变量,有
FL = C L ( Ma , Re,
u u dx dy dz = = ⇒ z = x = 2x + 1 u x u y uz dz dx
uz u y = = 2 y + 2 z ⇒ u z = −2 xz − 2 yz − z 2 − z dz dy
∂u z ∂u y ωx = 1 − = z− y 2 ∂z ∂y 为有旋流动 ⇒ ∂ux ∂u z − = −z ωy = 1 2 ∂x ∂z ∂u y ∂u x 1 ωz = 1 − = −y − 2 2 ∂y ∂x
PDF 文件使用 "pdfFactory Pro" 试用版本创建
⇒ P2 = 95.8kPa ⇒ T2 =
P2 = 271.2 K Rg ρ 2
v2 = 38.26 m/s,p2 = 95.8 kPa,T2 = 270 K,ρ2 = 1.232 kg/m3 4-13 ∆E = 3 ρ Av 3 16 4-14 T = 0.348 N. m,P = 63 W,ρ2 = ρ1 = 1.154 kg/m3,p2 = 1.011 MPa,T2 = 305 K
2-2 泵吸水管入口:p = 116 kPa,冷凝器中:p = 20 kPa 2-3 在对流层: P = 97325 Pa P0 = 101325 Pa
P 0.0065H = 1 − P0 288.15
2-4
5.25588
⇒ H ≈ 340 m
2π kρ 2 ( R 2 − r 2 ) + ρ g ( z 0 − z ) ,p0、z0 为液球表面某一点处的压强和垂直 3 坐标;特别地,在无重力的外层空间,等压面为球面。 2-5 p = 0.97p0:H = 256 m,T = 0.97T0:H = 1129 m 2-6 解: 倾斜式酒精微压计: PB − PA = ρ gL sin α PB 为待测压强, ρ =789 kg / m3 p − p0 =
由测量误差可知:
由测量范围可知: 784.5 Pa ≤ PB = PA + ρ gL sin α ≤ 1569 Pa
2-8 2-9
⇒ pA - pB = 9963 Pa F = 2150 N
P3 + ρ 3 gh3 − PB − ρ1 g h1 + ( h3 − h2 ) − h4
4 a2 , xd = a 3h 3π
v1 = 8.04 m/s,v8 = 6.98 m/s 解: h = 0.02m, ρ = 800kg / m3 , ∆p = 314 Pa 考虑重力: ∆p = ρ gh +
2 ( ∆p − ρ gh ) ρu 2 ⇒ qm = ρ uπ R 2 = 3.54 g / s ⇒u = ρ 2
2 gh ρ' ρ 1− d 4 / D 4
1-2 1-3 m = 0.075 kg,V = 0.878 m3 K = 3 MPa
K =−
1-4 1-5 1-6
等温:K = 0.1 MPa,绝热:K = 0.14 MPa,等压:αV = 0.00336 K 1 T = 212.1 N . m
-
δp −90000 = = 3MPa δV / V −3%
3-6 uz = -x z + z2/2 3-7 qV = 0.241 m3/s, qm = 241 kg/s,v = 21.3 m/s 3-8 qVmax = 0.0177 m3/s,vmax = 2.25 m/s dx = − β ( a sin β t + b cos β t ) ux = dt x = a cos β t − b sin β t 3-9 u = dy = β ( a cos β t − b sin β t ) ⇒ y y = a sin β t + b cos β t dt dy =α uy = dt du ⇒ u x = − β y , u y = β x , u z = α ; ⇒ du x = −β 2 x , y = − β 2 y , du z = 0 dt dt dt 3-10 解:ψ = xy + 2 x − 3 y + 10 ∂ψ = y + 2 = −u y ∂ϕ ∂ϕ ∂x = uy = − y − 2 = ux = x − 3 ⇒ ∂x ∂y ∂ψ = x − 3 = ux ∂y
2( H − 2)3 12 p0 yc h + ρ g ( yc 2 A + I xc ) yd = =H-h F H ≥ 2.7 m
2-11 2-12 2-13 2-14 2-15 圆柱:D ≥ 0.1 m,圆球:R ≥ 0.072 m D = 0.057 m x = 0.25 m 1) p = 109800 Pa;2) a = g;3) a = 6.1 g。g 为重力加速度 a = 1.96 m/s2
ρ1 AV1 A A1 A + ρ1 BV1B A1B = ρ 2V2 A2 ⇒ ρ 2 = 1.224kg / m3
P V 2 P V 2 P V2 ρ1 AV1 A A1 A 1 + 1 A + ρ1BV1B A1B 1 + 1B = ρ 2V2 A2 2 + 2 2 2 2 ρ1 A ρ1B ρ2
Hale Waihona Puke 2-16 1) z s = z 0 + 2-17 n = 12
ω2 2 rs ;2) ω = 14.0 rad/s;3) V = 0.025 m3,h = 0.090 m 2g
PDF 文件使用 "pdfFactory Pro" 试用版本创建
第3章
3-1 解:
du x ∂u x ∂u ∂u = + ux x + u y x dt ∂t ∂x ∂y
4q 4q πd2 4-15 qv = C ⋅ ⇒ 入口 C1 = v2 = 1.42m / s 出口 ⇒ C2 = v2 = 2m / s 4 π d1 π d2
由伯努力方程可知 P = ρ qv g h +
P2 − P C 2 − C12 1 + 2 ⇒ P = 31.6 kW 2 ρg
4-7 4-8
qm = ρ
π D2 4
2 gh πd2 ρ' = ρ ρ D 4 / d 4 −1 4
1)设 a 处为参考平面,压强为 Pa b 处压强为: Pb = P − a ρ gh2 = 62787 Pa
Pb + ρ gh1 = Pc = 80427 Pa
⇒ u = 5.94m / s 如果要发生汽化,最高点处压强为:pmin = 62763 Pa 2) Pc − P = ρ g ( h2 − h1 ) ⇒ h2 = 9.76m h2’ ≤ 9.76 m
x2 + y2 = C 2
ux =
B y 2 2π x + y 2
uy =
dx dy = ux u y
⇒
dx dy = y −x
⇒ − xdx = ydy
3-4
x2 y 2 积分得: − = + C0 即 x 2 + y 2 = C 2 2
ω = −ci − aj + bk , | ω |= a 2 + b 2 + c 2 & 3-5 γ xy = a − b , ω z = − a − b
4-9 qm = 439 kg/s 4-10 m = 3.09 kg 4-11 F = 11.70 N,θ = 30o 4-12 V1 A A1 A + V1B A1 B = V2 A2 ⇒ V2 = 38.26m / s
ρ1 A = ρ1B = P 1 = 1.254kg / m3 RgT1 A P 1 = 1.120kg / m3 RgT1B
τ=
d + 2δ 4δ 4δ /(1 + ) ≈T 3 8h π ω hd 3 π ω (d + δ ) h 1-7 P = 128.6 W 1-8 h = 3 mm
F u =µ A δ
A = π dh
u = ωr =
ωd d T = F ⋅r = F ⋅ 2 2
⇒ µ =T
第2章
2-1
∇p =
∂p ∂p ∂p i+ j+ k = ai + bj − ck , ∇p max ≤ 3 14 ∂x ∂y ∂z