《计算方法引论》实验题目3
《计算方法引论》实验题目4
实验四 数值积分--Romberg 积分法实验目的:1、了解逐次分半法的基本原理和方法;2、了解Richardson 外推法的基本原理和方法;3、在1、2的基础上理解Romberg 积分法的基本原理和方法并编程实现;实验内容(自己填写相关公式和原理,以下仅作参考,个别符号与书中不一致) 考虑积分()()ba I f f x dx =⎰欲求其近似值,可以采用如下公式:(复化)梯形公式 110[()()]2n i i i h T f x f x -+==+∑ 2()12b a E h f η-''=- [,]a b η∈ (复化)辛卜生公式 11102[()4()()]6n i i i i h S f x f x f x -++==++∑ 4(4)()1802b a h E f η-⎛⎫=- ⎪⎝⎭[,]a b η∈ (复化)柯特斯公式 111042[7()32()12()90n i i i i h C f x f x f x -++==+++∑ 31432()7()]i i f x f x +++6(6)2()()9454b a h E f η-⎛⎫=- ⎪⎝⎭[,]a b η∈ 这里,梯形公式显得算法简单,具有如下递推关系121021()22n n n i i h T T f x -+==+∑ 因此,很容易实现从低阶的计算结果推算出高阶的近似值,而只需要花费较少的附加函数计算。
但是,由于梯形公式收敛阶较低,收敛速度缓慢。
所以,如何提高收敛速度,自然是人们极为关心的课题。
为此,记0,k T 为将区间[,]a b 进行2k等份的复化梯形积分结果,1,k T 为将区间[,]a b 进行2k 等份的复化辛卜生积分结果,2,k T 为将区间[,]a b 进行2k 等份的复化柯特斯积分结果。
根据李查逊(Richardson )外推加速方法,可得到1,11,,0,1,2,40,1,2,41m m k m km k m k T T T m -+-=-⎛⎫= ⎪=-⎝⎭可以证明,如果()f x 充分光滑,则有,lim ()m k k T I f →∞= (m 固定) ,0lim ()m m T I f →∞= 这是一个收敛速度更快的一个数值求积公式,我们称为龙贝格积分法。
计算方法第一章引论
§2 数值问题与数值算法
求解数值问题的计算机上可 以执行的系列计算公式。
2-2 数值方法与数值算法
2. 数值算法
指有步骤地完成解数值问题的过程,数值方法是它 的前提和基础,它是数值方法的具体化。具备以下四
个特性:
(1) 目的性:给出输入数据和输出数据的明确的规定
与要求。
(2) 确定性:必须精确地给出每一步的操作定义,不 允许有歧义。
3. 算法的分类
(1) 按面向求解问题的不同分为:数值算法和非数值 算法
(2) 按面向计算机的不同分为:串行算法和并行算法
(3) 按算法的内部特征分为:确定型算法和非确定型 本课程只讨论计算机上串行确定型的数值 算法 算法 即通过按规定顺序执行一个完整且有限的 运算序列后,将输入的数据(向量)变成输 出的数据(向量)。
每秒1亿次的计算机计算也要30万年; 而若改用高斯消去法作为算法进行求解,只需乘除 运算约2670次。
§2 数值问题与数值算法
N=0, S=0 若N<10000 N=N+1, S = S +N 输出N和S
输入 循环条件 循环体 输出
省略
§2 数值问题与数值算法
2-2 数值方法与数值算法
说明:对于大型数值问题,使用不同的算法其计算复
杂性将大不相同。
如对20阶线性方程组,用克莱姆法则作为算法进行
求解,其乘、除法运算次数共需约 9.7×1020 次,若用
②《计算方法》:武汉大学,高等教育出版社
③《数值计算方法》:李有法,高等教育出版社
④《数值分析》:李庆扬,王能超,易大义。
⑤《计算方法引论》:徐萃薇。
④《数值分析引论》:易大义,陈道琦。
§2 数值问题与数值算法
《计算方法引论》-徐翠微主编
《计算方法引论》-徐翠微主编2009 ~ 2010学年第一学期计算方法教案计0701-0703 4h第二章插值法知识点:拉格朗日插值法,牛顿插值法,余项,分段插值。
实际问题中,时常不能给出f(x)的解析表达式或f(x)解析表达式过于复杂而难于计算,能采集的只是一些f(x)的离散点值{xi,f(xi)}(i=0,1,2,…n)。
因之,考虑近似方法成为自然之选。
定义:设f(x)为定义在区间[a,b]上的函数,x0,x1,…,xn为[a,b]上的互异点,yi=f(xi)。
若存在一个简单函数,(x),满足(插值条件),(xi)=f(xi),i=0,1,…,n。
则称 ,(x)为f(x)插值函数,f(x)为被插函数,点x0,x1,…,xn为插值节点,点{xi,f(xi)},i=0,1,2,…n为插值点。
于是计算f(x)的问题就转换为计算 ,(x)。
构造插值函数需要解决:插值函数是否存在唯一;插值函数如何构造(L插值);插值函数与被插函数的误差估计和收敛性。
对插值函数 ,(x)类型有多种不同的选择,代数多项式常被选作插值函数。
P23(2.18)和(2.19)指出,存在唯一的满足插值条件的n次插值多项式p(x)。
但是需要计算范德蒙行列式,构造插值多n项式工作量过大,简单表达式不易得到,实际中不采用这类方法。
p(x)?f(x) n插值法是一种古老的数学方法,拉格朗日(Lagrange)、牛顿(Newton)等分别给出了不同的解决方法。
拉格朗日插值拉格朗日(Lagrange)插值的基本思想:把插值多项式p(x)的构造问题转化为n+1个插值基函数l(x)(i=0,1,…,n)的ni构造。
(1)线性插值?构造插值函数已知函数y=f(x)的两个插值点(x,y),(x,y),构造多项式y=p(x),使p(x)=y,p(x)=y。
001111001111 《计算方法引论》、徐翠薇,高等教育出版社 2008年4月第三版第二章Lagrange插值法2009 ~ 2010学年第一学期计算方法教案计0701-0703 4h由直线两点式可知,通过A,B的直线方程为, y y 1 0 , , , y y ,, x x p ( x ) + 0 0 1 , x x 1 0变形为 x-x0 x-x1 y 1, , p(x) y 10 x1-x0 x0-x1记 x-x0 x-x1 , l(x) , l(x) 10 x1-x0 x0-x1则p(x)=l(x)y+l(x)y10011插值完毕~注意性质:l(x)=l(x)=1,l(x)=l(x)=0,p(x)=y,p(x)=y。
计算方法试题集与答案(新)
1.*x 为精确值x 的近似值;()**x f y =为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***r x xe x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂ 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。
3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有6 位和7 1.73≈(三位有效数字)-211.73 10 2≤⨯。
4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。
5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。
6、 已知近似值2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为 0.0000204 .7、 递推公式,⎧⎪⎨⎪⎩0n n-1y y =10y -1,n =1,2,如果取0 1.41y =≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。
9、 若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5。
10、 设x*的相对误差为2%,求(x*)n的相对误差0.02n11、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;12、计算方法主要研究( 截断 )误差和( 舍入 )误差;13、为了使计算 ()()2334610111y x x x =++---- 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。
计算方法与实习第五版-习题答案
3.2589
3.2590 4.3820 0.00078925
绪论
习题1——4:已知下列近似值x1=4.8675, x2=4.08675, x3=0.08675,求x1+x2+x3 的误差限。 4 5 5 e ( x ) 0 . 5 * 10 , e ( x ) 0 . 5 * 10 , e ( x ) 0 . 5 * 10 解: 1 2 3
1
用迭代法求方程根的关键问题是:
a.精确地选定初值 c.正确构造一个迭代公式
b.选定一个粗糙的初值 d.编好计算程序
方程求根
习题2——6:方程x3-x2-1=0在1.5附近有一根,将方 程写成如下不同的等价形式,判断是否满足迭代收 敛的条件,并选择一种最好的迭代格式,以x0=1.5 为初值求方程的根,要求精确到4位有效数字。
1) 2) 4) 3)
x=1+1/x2 x3=1+x2 x2=x3-1 x2=1/(x-1)
2)判断二分次数 由(b-a)/2k+1=1/2k+1≤1/2*10-3,解得k≥3ln10/ln2≥9.965, 所以需要二分10次,才能满足精度要求。
方程求根
习题2——2:用二分法求方程2e-x-sinx=0在区 间[0,1]内的1个实根,要求3位有效数字。
解:3)迭代计算
∴x ≈0.921
3 ln( 10 ) k
ln( 2)
9.965
2
2
2
∴需二分10次
方程求根——二分法
习题2——2:用二分法求方程2e-x-sinx=0在区 间[0,1]内的1个实根,要求3位有效数字。
《计算方法》样题与参考答案(一)
《计算方法》样题(一)说明:1) 可使用计算器;第一、九题各15分,其余每题10分 2) 把要求的答案直接写在横线 上或方框 [ ] 内一、解答下列问题:1) 数值计算中,最基础的五个误差概念(术语)是 , , , , .2) 分别用 2.718281, 2.718282 作数e 的近似值 ,它们的有效位数分别有位, 位; 又取73.13≈ (三位有效数字),则≤-73.13 .3)为减少乘除法运算次数,应将算式32)1(7)1(51318---+-+=x x x y 改写成4)为减少舍入误差的影响,应将算式 9910- 改写成 5)递推公式 ⎪⎩⎪⎨⎧=-==-,2,1,110210n y y y n n如果取41.120≈=y 作计算,则计算到10y 时,误差有这个计算公式数值稳定不稳定 ?二、解答下列线性代数方程组问题:1) 解线性代数方程组b Ax =(nn R A ⨯∈非奇异)的关键思想是首先把方程组约化为 和 ,然后分别通过 过程 或 过程很容易求得方程组的解. 2)用“列主元Gauss 消元法”将下列方程组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-20111.0310********x x x化为上三角方程组的两个步骤⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-211.03010451321 ⇒ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ ⇒ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡再用“回代过程”可计算解:三、解答下列线性代数方程组:1) 给定线性方程组 ⎩⎨⎧-=-=-45892121x x x x则解此方程组的Jacobi 迭代公式是⎪⎩⎪⎨⎧而Guass-Seidel 迭代公式是⎪⎩⎪⎨⎧2) 取迭代初值T x )0,0()0(=,用Guass-Seidel 迭代公式计算(取至小数后5位)可得 ⎪⎩⎪⎨⎧====)2(2)1(2)2(1)1(1,,x x x x四、设一元方程0133=--x x ,欲求其正根,试问:1) 方程的正根有几个? (个) 2) 方程的正根的有根区间是 3) 给出在有根区间收敛的不动点迭代公式: 4) 给出求有根区间上的Newton 迭代公式:五、解答插值问题:1) 函数)(x f 在],[10x x 上的一次(线性)插值函数(公式) =)(1x L其余项公式=)(x R2) 函数)2ln()(+=x x f 在区间]1,0[上的一次(线性)插值函数 =)(1x L 其余项估计 =)(x R六、设有实验数据如下:x 0 1 2 3 5 f 1.1 1.9 3.1 3.9 4.9要求按最小二乘法拟合上述数据。
计算方法引论课后答案
计算方法引论课后答案第一章误差1.什么是模型误差,什么是方法误差?例如,将地球近似看为一个标准球体,利用公式 $A=4\pi r$ 计算其表面积,这个近似看为球体的过程产生的误差即为模型误差。
在计算过程中,要用到 $\pi$,我们利用无穷乘积公式计算 $\pi$ 的值:pi=2\cdot\frac{2}{1}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\f rac{4}{5}\cdot\frac{6}{5}\cdot\frac{6}{7}\cdot\frac{8}{7}\cdot\ frac{8}{9}\cdot\cdots我们取前9项的乘积作为 $\pi$ 的近似值,得$\pi\approx3.xxxxxxxx5$。
这个去掉 $\pi$ 的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也称为截断误差。
2.按照四舍五入的原则,将下列各数舍成五位有效数字:816.956,76.000,.322,501.235,.182,130.015,236.23.解:816.96,76.000,.501.24,.130.02,236.23.3.下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字?81.897,0.008,136.320,050.180.解:五位,三位,六位,四位。
4.若 $1/4$ 用 0.25 表示,问有多少位有效数字?解:两位。
5.若 $a=1.1062$,$b=0.947$,是经过舍入后得到的近似值,问:$a+b$,$a\times b$ 各有几位有效数字?已知 $da<\frac{1}{2}\cdot10^{-4}$,$db<\frac{1}{2}\cdot10^{-3}$,又 $a+b=0.\times10$。
begin{aligned}d(a+b)&=da+db\leq da+db=\frac{1}{2}\cdot10^{-4}+\frac{1}{2}\cdot10^{-3}=0.55\times10^{-3}<\frac{1}{2}\cdot10^{-2}end{aligned}所以 $a+b$ 有三位有效数字;因为 $a\timesb=0.xxxxxxxx\times10$。
(完整版)计算方法考试试卷及答案
《计算方法》试卷 A 第1页(共2页)《计算方法》试卷(A 卷)一、填空题(每空3分,共27分)1、若15.3=x 是π的的近似值,则误差限是 0.05 ,有 2 位有效数字。
2、方程013=--x x 在区间]2,1[根的牛顿迭代格式为1312131-)()(23231-+=---='-=+k k k k k k k k k k x x x x x x x f x f x x 。
3、对252)(23-+-=x x x f ,差商 =]3,3,3,3[432f -2 ,=]3,3,3,3,3[5432f 0 。
4、数值积分中的梯形公式为)]()([2)(b f a f ab dx x f ba+-≈⎰,Simpson 公式为 )]()2(4)([6)(b f ba f a f ab dx x f ba+++-≈⎰。
5、求解微分方程初值问题⎩⎨⎧==∈=5.01)0(]1,0['h y x xy y 用欧拉公式计算得到=1y 1 ,用改进的欧拉公式计算得到=1y 1.125 。
二、已知方程14-=x x 在区间]2,0[内有根 (1)用二分法求该方程的根,要求误差不超过0.5。
(2)写出求解方程的一种收敛的简单迭代格式,并说明收敛原因。
解:(1)由题意,令分。
3....,.........013)2(,01)0(,1)(4<-=>=+-=f f x x x f 列表如下:所以取1满足误差不超过0.5。
...........................................7 分 (2) 原方程等价变形为41+=x x ,迭代函数41)(+=x x ϕ,……………………….2分则43)1(41)(+='x x ϕ且在区间]2,0[上141)1(41)(043<<+='<x x ϕ,即1)(<'x ϕ…......5分 所以41)(+=x x ϕ单调递增且在区间]2,0[上23)2(1)()0(1044<=≤+=≤=<ϕϕϕx x ,.7分符合简单收敛的全局收敛条件,所以收敛的简单迭代格式可构造为:315+=+k k x x .............................................8 分三、利用x x f sin )(=在点2,6,0ππ的函数值:(1)建立其拉格朗日插值多项式,并进行误差分析;(2)构造差商表,建立牛顿插值多项式。
奥鹏东师 《计算方法》练习题参考答案.doc
《计算方法》练习题一 参考答案练习题第1套参考答案 一.填空题 1.210- 2.))((!2)(b x a x f --''ξ 3.524.按模最大 5.]0,2[- 二.单选题1.C 2.A 3.C 4.B 5.C 三.计算题1.22122122121)2()42()3(),(--+-++-+=x x x x x x x x ϕ,由0,021=∂∂=∂∂x x ϕϕ得:⎩⎨⎧=+=+9629232121x x x x , 解得149,71821==x x 。
2.⎰≈++++≈21697.0]217868581[81x dx ,9611612)(2=⨯≤M x R 。
3.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1142242644223214264426453426352回代得:Tx )1,1,1(-=4.因为A为严格对角占优阵,所以雅可比法收敛。
雅可比迭代公式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=+=+++Λ,1,0,)1(41)3(41)1(41)(2)1(3)(3)(1)1(2)(2)1(1m x x x x x x x m m m m m m m 。
取T x )1,1,1()0(=计算得: T x )5.0,25.1,5.0()1(=。
5.因为0875.0)5.0(,01)0(<-=>=f f ,所以]5.0,0[*∈x ,在]5.0,0[上,06)(,043)(2≥=''<-='x x f x x f 。
由0)()(0≥''x f x f ,选00=x ,由迭代公式:Λ,1,0,4314231=-+--=+n x x x x x n n n n n 计算得:25.01=x 。
四.证明题1.设))()(()()()(),)()(()(10110x t x t x k t L t f t g x x x x x k x R ----=--=,有x x x ,,10为三个零点。
数值计算方法习题答案(绪论,习题1,习题2)
引论试题(11页)4 试证:对任给初值x 0,0)a >的牛顿迭代公式112(),0,1,2,......k ak k x x x k +=+= 恒成立下列关系式:2112(1)(,0,1,2,....(2)1,2,......kk k x k x x k x k +-=≥=证明:(1)(2211222k k k k k k k kx a x ax x x x x +-⎫⎛-+=+==⎪ ⎝⎭(2) 取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+=+2121216 证明:若k x 有n 位有效数字,则n k x -⨯≤-110218, 而()kk k k k x x x x x 288821821-=-⎪⎪⎭⎫⎝⎛+=-+ nnk k x x 2122110215.22104185.28--+⨯=⨯⨯<-∴>≥ 1k x +∴必有2n 位有效数字。
8 解:此题的相对误差限通常有两种解法. ①根据本章中所给出的定理:(设x 的近似数*x 可表示为m n a a a x 10......021*⨯±=,如果*x 具有l 位有效数字,则其相对误差限为()11**1021--⨯≤-l a x x x ,其中1a 为*x 中第一个非零数) 则7.21=x ,有两位有效数字,相对误差限为025.010221111=⨯⨯≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=⨯⨯≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=⨯⨯≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。
计算方法引论课后答案
第一章 误差1. 试举例,说明什么是模型误差,什么是方法误差.解: 例如,把地球近似看为一个标准球体,利用公式24A r π=计算其表面积,这个近似看为球体的过程产生的误差即为模型误差.在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 其中我们取前9项的乘积作为π的近似值,得这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差.2. 按照四舍五入的原则,将下列各数舍成五位有效数字:816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 2363. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +⨯各有几位有效数字?解: 已知4311d 10,d 1022a b --<⨯<⨯, 又0.2053210a b +=⨯,()433211110100.551010222d a b da db da db ----+=+≤+=⨯+⨯=⨯<⨯,所以a b +有三位有效数字;因为0.1047571410a b ⨯=⨯,所以a b ⨯有三位有效数字.6. 设120.9863,0.0062y y ==,是经过舍入后作为12,x x 的近似值.求1211,y y 的计算值与真值的相对误差限及12y y ⋅与真值的相对误差限.解: 已知-4-41112221211d ,d ,d =10,d 1022x y x x y x x x =+=+⨯=⨯, ()44111111110d d 12dr dr 0.50100.9863x xx x x y --⨯⎛⎫==≈=≈⨯ ⎪⎝⎭;()42222222110d d 12dr dr 0.81100.0062x xx x x y --⨯⎛⎫==≈=≈⨯ ⎪⎝⎭;()()()4221212dr dr dr 0.50100.81100.8210x x x x ---⋅=+≈⨯+⨯≈⨯.7. 正方形的边长约为100cm,应该怎样测量,才能使其面积的误差不超过1cm 2. 解: 设正方形面积为S,边长为a,则S=a 2.所以要使:2d d 2d 1s a a a ==≤,则要求211d 0.5102200a a -≤==⨯.所以边长的误差不能超过20.510-⨯cm.8. 用观测恒星的方法求得某地维度为4502'''(读到秒),试问:计算sin ϕ将有多大误差?解: ()()1d sin cos d cos 45022ϕϕϕ*''⎛⎫'''== ⎪⎝⎭.9 . 真空中自由落体运动距离s 与时间的关系由公式212s gt =确定,g 是重力加速度.现在假设g 是准确的,而对t 的测量有0.1s ±的误差,证明t 增加时,距离的绝对误差增加而相对误差却减小. 证明: 因为:221d d d d d d d ;2.122s gt t gt t t s gt gt t s s t gt ⎛⎫=====⎪⎝⎭ d s 与t成正比,d s s与t 成反比,所以当d t 固定的时候, t增加时,距离的绝对误差增加而相对误差却减小.10. 设0x >,x 的相对误差为δ,求ln x 的绝对误差. 解: 已知d x x δ=,所以ln x 的绝对误差()d d ln x x xδ==. 11. 设x 的相对误差为%α,求nx 的相对误差.解: 1d d d %n n n nx nx x n xn x x xα-===. 12. 计算球的体积,为了使相对误差限为1%,问度量半径R 时允许的相对误差限如何? 解: 已知343V R π=,设()d dr R R a R ==,则要使得 ()()3d dr dln d ln 3d ln 3d ln 3dr 31%V V V R R R R a V ========,则11%3a =⋅. 第二章 插值法与数值微分1.设y =在100,121,144x =三处的值是很容易求得的,试以这三个点建立y =的二次插值多项式,并用,且给出误差估计.用其中的任意两点,构造线性插值函数,用得到的三个线性插值函数,,并分析其结果不同的原因.解: 已知012012100,121,144;10,11,12x x x y y y ======,建立二次Lagrange 插值函数可得:()211510.7228L ≈=.误差()()()()()()2012012,,,,3!f R x x x x x x x x x x ξξξ'''=---∈,所以利用前两个节点建立线性插值函数可得:()111510.7143L ≈=.利用后两个节点建立线性插值可得:()111510.7391L ≈=.利用前后两个节点建立线性插值可得:()111510.6818L ≈=.与,二次插值比线性插值效果好,利用前两个节点的线性插值比其他两个线性插值效果好.此说明,二次插值比线性插值效果好,内插比外插效果好.2. 利用(2.9)式证明 证明: 由(2.9)式当01x x x <<时,()()01max x x x f f x ξ≤≤''''≤,()()()01201101max 4x x x x x x x x x ≤≤--≤- 所以3. 若()0,1,...,j x n 为互异节点,且有 证明 证明: 由于且()0nk j j j x l x =∑和kx都为k 次多项式,而且在k+1个不同的节点处的函数值都相同0,1,...,k n =, 所以马上有()0,0,1,...,nk kj j j x l x xk n =≡=∑.4. 设给出sin x 在[],ππ-上的数值表,用二次插值进行计算,若希望截断误差小于510-,问函数表的步长最大能取多少?解: 记插值函数为p(x),则所以()()()()11cos max sin 3!i i i x x p x x x x x x ππξ-+-≤≤--=---()cos 1ξ-≤;令()()()()11i i i g x x x x x x x -+=---,设1i x x th -=+,得又()()()[]12,0,2t t t t t ϕ=--∈的最大值为10.3849ϕ⎛= ⎝⎭,所以有 所以0.0538h ≤.5. 用拉格朗日插值和牛顿插值找经过点()()()()3,1,0,2,3,2,6,10---的三次插值公式. 解: Lagrange 插值函数:牛顿插值: 首先计算差商也可以利用等距节点构造,首先计算差分 可得前插公式 和后插公式6. 确定一次数不高于4的多项式()x ϕ,使()()()()()00,00,111,21ϕϕϕϕϕ''=====. 解: 利用重节点计算差商则可构造Hermite 插值函数满足题设条件:7. 寻找过1n +个点01,,...,n x x x 的21n +次多项式()21n H x +,满足条件: 解: 和Lagrange 插值函数的构造类似,可将插值函数写成其中,基函数满足条件 (1)()()(),,,21n i n i h x h x P n ∈+;(2)()()()(),,,,,0;,0n i n i n ij ij n i j j ijj h x h x h x h x δδ''====则可由已知条件,可得()()()()2,,,12n i n i i i n i h x l x x x l x '⎡⎤=--⎣⎦;()()()2,,n i i n i h x x x l x '=-.所以可得8. 过0,1两点构造一个三次Hermite 插值多项式,满足条件: 解: 计算重节点的差商马上可得9. 过给定数组(1) 作一分段线性插值函数.(2) 取第二类边界条件,作三次样条插值多项式.(3) 用两种插值函数分别计算75.5,78.3x x ==的函数值. 解: (1)做分段线性插值函数可得:其中, ()[][]076 75,76;0 75,76.x x l x x ⎧-∈⎪=⎨∉⎪⎩()[][][]175 75,7677 76,77;0 75,77.x x l x x x x ⎧-∈⎪=-∈⎨⎪∉⎩ (2)把已知节点值带入M 关系式可得: 由边界条件可得050M M ==,所以上面方程组变为可求解方程组解得12340.0058,0.0067,0.0036,0.0071M M M M ====.所以可得在每个区间上的三次样条函数的表达式: (3)当75.5x =时,()()()50175.5 2.76875.5 2.83375.5 2.8005I l l =+=;()()()()()30.00580.005875.575.576 2.7687675.5 2.83375.575 2.79966s ⎛⎫=-+-+--= ⎪⎝⎭当78.3x =时,()()()53475.5 2.97978.3 3.06278.3 3.0039I ll =+=;10. 若给出sin ,cos ,tan x x x 的函数表:用表上的数据和任一插值公式求: (1) 用tan x 表格直接计算tan1.5695.(2) 用sin1.5695和cos1.5695来计算tan1.5695.并讨论这两个结果中误差变化的原因. 解: 利用Lagrange 插值直接用tan 表计算得tan1.5695819.0342874999274≈;利用Lagrange 插值计算sin 得sin1.56950.99999917500000≈;利用Lagrange 插值计算cos 得cos1.56950.00129630000000≈;最后利用sin/cos 计算tan 得tan1.5695771.4257309264500≈.出现小除数,误差被放大.11. 求三次样条函数()s x ,已知和边界条件解: 把表中数据带入M 关系式可得由边界条件还可得到两个方程: 联立两个方程组可解得:带入M 表达式便可得所求三次样条函数.12. 称n 阶方阵()ij A a =具有严格对角优势,若 (1) 试证明:具有严格对角优势的方阵必可逆. (2) 证明:方程组(2.62)解存在唯一.证明: (1)设矩阵A 按行严格对角占优,如果A 奇异,则存在非零向量x 使得Ax=0,写成分量形式为令指标0i 使得00i x x∞=≠,则因此0000010n i i i i j j j i x a a =≠⎛⎫⎪-≤ ⎪ ⎪⎝⎭∑ 即000010ni i i j j j i a a =≠-≤∑上式与矩阵按行严格对角占优矛盾,因此矩阵非奇异. (2)方程组(2.62)由于该方程组系数矩阵为严格对角占优的方阵,所以由克拉默法则可知方程组存在唯一解.。
计算方法各章习题及答案
第二章 数值分析2.1 已知多项式432()1p x x x x x =-+-+通过下列点:试构造一多项式()q x 通过下列点:答案:54313()()()3122q x p x r x x x x x =-=-++-+. 2.2 观测得到二次多项式2()p x 的值:表中2()p x 的某一个函数值有错误,试找出并校正它.答案:函数值表中2(1)p -错误,应有2(1)0p -=.2.3 利用差分的性质证明22212(1)(21)/6n n n n +++=++.2.4 当用等距节点的分段二次插值多项式在区间[1,1]-近似函数xe 时,使用多少个节点能够保证误差不超过61102-⨯. 答案:需要143个插值节点.2.5 设被插值函数4()[,]f x C a b ∈,()3()h H x 是()f x 关于等距节点01n a x x x b =<<<=的分段三次艾尔米特插值多项式,步长b ah n-=.试估计()3||()()||h f x H x ∞-.答案:()443||()()||384h M f x H x h ∞-≤.第三章 函数逼近3.1 求()sin ,[0,0.1]f x x x =∈在空间2{1,,}span x x Φ=上最佳平方逼近多项式,并给出平方误差.答案:()sin f x x =的二次最佳平方逼近多项式为-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-⨯+-,二次最佳平方逼近的平方误差为0.122-1220(sin )())0.989 310 710x p x dx δ=-=⨯⎰.3.2 确定参数,a b c 和,使得积分2121(,,)[I a b c ax bx c -=++-⎰取最小值.答案:810, 0, 33a b c ππ=-==3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳一致逼近多项式()p x .答案:()f x 的最佳一致逼近多项式为323()74p x x x =++. 3.4 用幂级数缩合方法,求() (11)xf x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-.答案:236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++,6,3||()()||0.006 572 327 7f x p x ∞-≤3.5 求() (11)xf x e x =-≤≤上的关于权函数()x ρ=的三次最佳平方逼近多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-.答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++,32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤.第四章 数值积分与数值微分4.1 用梯形公式、辛浦生公式和柯特斯公式分别计算积分1(1,2,3,4)n x dx n =⎰,并与精确值比较.答案:计算结果如下表所示4.2 确定下列求积公式中的待定参数,使得求积公式的代数精度尽量高,并指明所确定的求积公式具有的代数精度. (1)101()()(0)()hhf x dx A f h A f A f h --≈-++⎰(2)11211()[(1)2()3()]3f x dx f f x f x -≈-++⎰ (3)20()[(0)()][(0)()]2h h f x dx f f h h f f h α''≈++-⎰答案:(1)具有三次代数精确度(2)具有二次代数精确度(3)具有三次代数精确度.4.3 设10h x x =-,确定求积公式12300101()()[()()][()()][]x x x x f x dx h Af x Bf x h Cf x Df x R f ''-=++++⎰中的待定参数,,,A B C D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.答案:3711,,,20203020A B C D ====-,(4)6()[]1440f R f h η=,其中01(,)x x η∈.4.4 设2()P x 是以0,,2h h 为插值点的()f x 的二次插值多项式,用2()P x 导出计算积分30()hI f x dx =⎰的数值积分公式h I ,并用台劳展开法证明:453(0)()8h I I h f O h '''-=+. 答案:3203()[(0)3(2)]4h h I p x dx h f f h ==+⎰.4.5 给定积分10sin xI dx x =⎰(1)运用复化梯形公式计算上述积分值,使其截断误差不超过31102-⨯. (2)取同样的求积节点,改用复化辛浦生公式计算时,截断误差是多少?(3)要求的截断误差不超过610-,若用复化辛浦生公式,应取多少个节点处的函数值? 答案:(1)只需7.5n ≥,取9个节点,0.946I ≈(2)4(4)46111|[]||()|()0.271102880288045n b a R f h f η--=-≤=⨯ (3)取7个节点处的函数值.4.6 用变步长的复化梯形公式和变步长的复化辛浦生公式计算积分10sin xI dx x =⎰.要求用事后误差估计法时,截断误不超过31102-⨯和61102-⨯. 答案:使用复化梯形公式时,80.946I T ≈=满足精度要求;使用复化辛浦生公式时,40.946 083I s ≈=满足精度要求.4.7(1)利用埃尔米特插值公式推导带有导数值的求积公式2()()[()()][()()][]212ba b a b a f x dx f a f b f b f a R f --''=+--+⎰,其中余项为 5(4)()[](), (,)4!30b a R f f a b ηη-=∈. (2)利用上述公式推导带修正项的复化梯形求积公式020()[()()]12Nx N N x h f x dx T f x f x ''≈--⎰,其中 0121[()2()2()2()()]2N N N hT f x f x f x f x f x -=+++++,而 00, (0,1,2,,), i N x x ih i N Nh x x =+==-.4.8 用龙贝格方法计算椭圆2214x y +=的周长,使结果具有五位有效数字. 答案:49.6884l I =≈.4.9确定高斯型求积公式00110()()()x dx A f x A f x ≈+⎰的节点0x ,1x 及系数0A ,1A .答案:00.289 949x =,10.821 162x =,00.277 556A =,10.389 111A =.4.10 验证高斯型求积公式00110()()()x e f x dx A f x A f x +∞-≈+⎰的系数及节点分别为0001 2 2A A x x ===-=+第五章 解线性方程组的直接法5.1 用按列选主元的高斯-若当消去法求矩阵A 的逆矩阵,其中111210110A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 答案: 1110331203321133A -⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪-- ⎪⎝⎭5.2 用矩阵的直接三角分解法解方程组1234102050101312431701037x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 答案: 42x =,32x =,21x =,11x =.5.3 用平方根法(Cholesky 分解法)求解方程组12341161 4.25 2.750.51 2.75 3.5 1.25x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-=- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭答案: 12x =,21x =,31x =-.5.4 用追赶法求解三对角方程组123421113121112210x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 答案:42x =,31x =-,21x =,10x =.第六章 解线性代数方程组的迭代法6.1 对方程1212123879897x x x x x x x -+=⎧⎪-+=⎨⎪--=⎩作简单调整,使得用高斯-赛得尔迭代法求解时对任意初始向量都收敛,并取初始向量(0)[0 0 0]T x=,用该方法求近似解(1)k x +,使(1)()3||||10k k x x +-∞-≤.答案:近似解为(4)[1.0000 1.0000 1.0000]Tx =.6.2 讨论松弛因子 1.25ω=时,用SOR 方法求解方程组121232343163420412x x x x x x x +=⎧⎪+-=⎨⎪-+=-⎩ 的收敛性.若收敛,则取(0)[0 0 0]T x=迭代求解,使(1)()41||||102k k x x +-∞-<⨯. 答案:方程组的近似解为*1 1.50001x =,*2 3.33333x =,*3 2.16667x =-.6.3 给定线性方程组Ax b =,其中111221112211122A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,证明用雅可比迭代法解此方程组发散,而高斯-赛得尔迭代法收敛.6.4 设有方程组112233302021212x b x b x b -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,讨论用雅可比方法和高斯-赛得尔方法解此方程组的收敛性.如果收敛,比较哪种方法收敛较快.答案:雅可比方法收敛,高斯-赛得尔方法收敛,且较快.6.5 设矩阵A 非奇异.求证:方程组Ax b =的解总能通过高斯-赛得尔方法得到.6.6 设()ij n nA a ⨯=为对称正定矩阵,对角阵1122(,,,)nn D diag a a a =.求证:高斯-赛得尔方法求解方程组1122D AD x b --=时对任意初始向量都收敛.第七章 非线性方程求根例7.4 对方程230xx e -=确定迭代函数()x ϕ及区间[,]a b ,使对0[,]x a b ∀∈,迭代过程1(), 0,1,2,k x x k ϕ+==均收敛,并求解.要求51||10k k x x -+-<.答案:若取2()x x e ϕ=,则在[1,0]-中满足收敛性条件,因此迭代法121, 0,1,2,k x k x ek +==在(1,0)-中有惟一解.取00.5x =-,*70.458960903x x ≈=-.取2()x x eϕ=,在[0,1]上满足收敛性条件,迭代序列121, 0,1,2,k x k x e k +==在[0,1]中有惟一解.取00.5x =,*140.910001967x x ≈=-在[3,4]上,将原方程改写为23x e x =,取对数得2ln(3)()x x x ϕ==.满足收敛性条件,则迭代序列21ln(3), 0,1,2,k k x x k +==在[3,4]中有惟一解.取0 3.5x =, *16 3.733067511x x ≈=.例7.6 对于迭代函数2()(3)x x c x ϕ=+-,试讨论:(1)当c 为何值时,1()k k x x ϕ+=产生的序列{}k x; (2)c 取何值时收敛最快?(3)取1,2c =-()x ϕ,要求51||10k k x x -+-<. 答案:(1)(c ∈时迭代收敛.(2)c =时收敛最快.(3)分别取1, 2c =--,并取0 1.5x =,计算结果如下表7.7所示表7.7例7.13 设不动点迭代1()k x x ϕ+=的迭代函数()x ϕ具有二阶连续导数,*x 是()x ϕ的不动点,且*()1x ϕ'≠,证明Steffensen 迭代式21(), (), 0,1,2,()2k k k k k k k k k k k y x z x k y x x x z y xϕϕ+==⎧⎪=-⎨=-⎪-+⎩二阶收敛于*x .例7.15 设2()()()()()x x p x f x q x f x ϕ=--,试确定函数()p x 和()q x ,使求解()0f x =且以()x ϕ为迭代函数的迭代法至少三阶收敛.答案:1()()p x f x =',31()()2[()]f x q x f x ''=' 例7.19 设()f x 在[,]a b 上有高阶导数,*(,)x a b ∈是()0f x =的(2)m m ≥重根,且牛顿法收敛,证明牛顿迭代序列{}k x 有下列极限关系:111lim2k kk k k k x x m x x x -→∞-+-=-+.第八章 矩阵特征值8.1 用乘幂法求矩阵A 的按模最大的特征值与对应的特征向量,已知5500 5.51031A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,要求(1)()611||10k k λλ+--<,这里()1k λ表示1λ的第k 次近似值.答案:15λ≈,对应的特征向量为[5,0,0]T-;25λ≈-,对应的特征向量为[5,10,5]T --.8.2 用反幂法求矩阵110242012A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭的按模最小的特征值.知A 的按模较大的特征值的近似值为15λ=,用5p =的原点平移法计算1λ及其对应的特征向量.答案:(1) A 的按模最小的特征值为30.2384428λ≈(2) 1 5.1248854λ≈,对应的特征向量为(8)[0.242 4310, 1 ,0.320 011 7]T U =--.8.3 设方阵A 的特征值都是实数,且满足121, ||||n n λλλλλ>≥≥>,为求1λ而作原点平移,试证:当平移量21()2n p λλ=+时,幂法收敛最快. 8.4 用二分法求三对角对称方阵1221221221A ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭的最小特征值,使它至少具有2位有效数字.答案:取5 2.234375λ≈-即有2位有效数字.8.5 用平面旋转变换和反射变换将向量[2 3 0 5]Tx =变为与1[1 0 0 0]T e =平行的向量.答案:23/053/20000101015/013/T ⎛⎫⎪- ⎪=⎪--⎝0.324 442 8400.486 664 26200.811 107 1040.486 664 2620.812 176 04800.298 039 92200100.811 107 1040.298 039 92200.530 266 798H --⎛⎫⎪-- ⎪= ⎪ ⎪ ⎪--⎝⎭8.6 若532644445A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,试把A 化为相似的上Hessenberg 阵,然后用QR 方法求A 的全部特征值.第九章 微分方程初值问题的数值解法9.1 用反复迭代(反复校正)的欧拉预估-校正法求解初值问题0, 0<0.2(0)1y y x y '+=≤⎧⎨=⎩,要求取步长0.1h =,每步迭代误差不超过510-. 答案: [4]11(0.1)0.904 762y y y ≈==,[4]22(0.2)0.818 594y y y ≈== 9.2 用二阶中点格式和二阶休恩格式求初值问题2, 0<0.4(0)1dy x y x dx y ⎧=+≤⎪⎨⎪=⎩的数值解(取步长0.2h =,运算过程中保留五位小数). 答案:用二阶中点格式,取初值01y =计算得0n =时,1211.000 00, 1.200 00, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.298 72, (0.4)=1.699 74K K y y ==≈用二阶休恩格式,取初值01y =计算得0n =时,1211.000 00, 1.266 67, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.499 18, (0.4)=1.701 76K K y y ==≈9.3 用如下四步四阶阿达姆斯显格式1123(5559379)/24n n n n n n y y h f f f f +---=+-+-求初值问题, (0)1y x y y '=+=在[0,0.5]上的数值解.取步长0.1h =,小数点后保留8位.答案:4(0.4)0.583 640 216y y ≈=,5(0.5) 1.797 421 984y y ≈=. 9.4 为使二阶中点公式1(,(,))22n n n n n n h hy y hf x y f x y +=+++,求解初值问题 , (0)y y y a λλ'=-⎧⎨=⎩为实常数绝对稳定,试求步长h 的大小应受到的限制条件. 答案:2h λ≤.9.5 用如下反复迭代的欧拉预估-校正格式(0)1(1)()111(,)[(,)(,)]2 0,1,2,; 0,1,2,nn n n k k n n n n n n y y hf x y h y y f x y f x y k n +++++⎧=+⎪⎪=++⎨⎪⎪==⎩,求解初值问题sin(), 01(0)1x y e xy x y '⎧=<≤⎨=⎩时,如何选择步长h ,使上述格式关于k 的迭代收敛. 答案:2h e<时上述格式关于k 的迭代是收敛的.9.6 求系数,,,a b c d ,使求解初值问题0(,), ()y f x y y x a '==的如下隐式二步法221()n n n n n y ay h bf cf df +++=+++的误差阶尽可能高,并指出其阶数.答案:系数为142,,33a b d c ====,此时方法的局部截断误差阶最高,为五阶5()O h .9.7 试用欧拉预估-校正法求解初值问题, (0)=1, 0<0.2()/, (0)2dyxy z y dxx dz x y z z dx⎧=-⎪⎪≤⎨⎪=+=⎪⎩,取步长0.1h =,小数点后至少保留六位.答案:由初值00(0)1, (0)2y y z z ====可计算得110.800 000z 2.050 000y =⎧⎨=⎩ , 11(0.1)0.801 500(0.1) 2.046 951y y z z ≈=⎧⎨≈=⎩ 220.604 820z 2.090 992y =⎧⎨=⎩ , 22(0.2)0.604 659(0.2) 2.088 216y y z z ≈=⎧⎨≈=⎩。
计算方法习题集及答案
得:
当方法为零稳定时 ,从而 ,故方法是二阶收敛的。
6.给出题(6.5)题中 时的公式的绝对稳定域.
解:
6.5中当 时,即为方法
其相应的差分方程的多项式为
令 ,
即方法的绝对稳定域为
7.指出Heun方法
0
0
0
0
1/3
1/3
0
0
2/3
0
2/3
0
1/4
0
3/4
的相容阶,并给出由该方法以步长h计算初值问题(6.45)的步骤.
即
取 。即
满足上述条件的多步方法即为一类三步四阶显示方法,令 可得
方法即为
3.形如
的k阶方法称为Gear方法,试确定一个三步Gear方法,并给出其截断误差主项。
解:线性k步公式为
由Gear法的定义知,三步Gear法满足
方法为 阶,故有
得:
取 得
得三步Gear方法:
其中
4.试用显式Euler法及改进的Euler法
证明:
且
即 为 的二阶零点
设
令
易知
又
由微分中值定理(Rolle定理) ,使得
进而 有三个零点, 有两个零点, 有一个零点,
即 使得
得
8.设 是Lagrange基函数,则 。
9.求一个次数不超过4次的多项式 ,使它满足
,并写出其余项表达式。
10.求一个四次插值多项式 ,使 时, ;而 时, ,并写出插值余项的表达式。
练习
班级
学号
姓名
1.试构造迭代收敛的公式求解下列方程:
(1) ; (2) 。
解:
(1)迭代公式 , 公式收敛
k
计算方法试题参考
计算方法试题参考 2002-2003第一学期一.计算及推导(5*8)1.已知* 3.141,x x π==,试确定*x 近似x 的有效数字位数。
2.有效数***1233.105,0.001,0.100x x x =-==,试确定***123x x x ++的相对误差限。
3.已知3()0.50.12f x x x =++,试计算差商[]0,1,2,3f 4.给出拟合三点(0,1),(1,0)A B ==和(1,1)C =的直线方程。
5.推导中矩形求积公式''31()()()()()224baa b f x dx b a f f b a η+=-+-⎰6.试证明插值型求积公式0()()nbi i ai f x dx A f x =≈∑⎰的代数精确度至少是n 次。
7.已知非线性方程()x f x =在区间[],a b 内有一实根,试写出该实根的牛顿迭代公式。
8.用三角分解法求解线性方程组123121022331302x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦要用二次插值多项式计算(0.63891)f 的近似值,试选择合适的插值节点进行计算,并说明所选用节点依据。
(保留5位有效数字)(12分) 三. 已知方程ln 0x x +=在(0,1)内有一实根α(1)给出求该实根的一个迭代公式,试之对任意的初始近似0(0,1)x ∈迭代法都收敛,并证明其收敛性。
(2)00.5x =试用构造的迭代公式计算α的近似值n x ,要求3110n n x x ---≤。
四. 设有方程组112233131232a x b a x b a x b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦(1) 当参数a 满足什么条件时,雅可比方法对任意的初始向量都收敛。
(2) 写出与雅可比方法对应的高斯赛德尔迭代公式。
(12分) 五.用欧拉预估校正法求解初值问题'2 (00.2)(0)1x y y x y y ⎧=-≤≤⎪⎨⎪=⎩取h=0.1,小数点后保留5位。
计算方法引论课后答案.
计算⽅法引论课后答案.第⼀章误差1. 试举例,说明什么是模型误差,什么是⽅法误差.解: 例如,把地球近似看为⼀个标准球体,利⽤公式24A r π=计算其表⾯积,这个近似看为球体的过程产⽣的误差即为模型误差.在计算过程中,要⽤到π,我们利⽤⽆穷乘积公式计算π的值:12222...q q π=?其中112,3,...n q q n +?=??==?? 我们取前9项的乘积作为π的近似值,得3.141587725...π≈这个去掉π的⽆穷乘积公式中第9项后的部分产⽣的误差就是⽅法误差,也成为截断误差.2. 按照四舍五⼊的原则,将下列各数舍成五位有效数字:816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 236 3. 下列各数是按照四舍五⼊原则得到的近似数,它们各有⼏位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位三位六位四位4. 若1/4⽤0.25表⽰,问有多少位有效数字? 解: 两位5. 若 1.1062,0.947a b ==,是经过舍⼊后得到的近似值,问:,a b a b +?各有⼏位有效数字?解: 已知4311d 10,d 1022a b --()433211110100.551010222d a b da db da db ----+=+≤+=?+?=?所以a b +有三位有效数字;因为0.1047571410a b ?=?,()43321110.94710 1.1062100.600451010222所以a b ?有三位有效数字.6. 设120.9863,0.0062y y ==,是经过舍⼊后作为12,x x 的近似值.求1211,y y 的计算值与真值的相对误差限及12y y ?与真值的相对误差限. 解: 已知-4-41112221211d ,d ,d =10,d 1022x y x x y x x x =+=+?=?, ()44111111110d d 12dr dr 0.50100.9863x xx x x y --==≈=≈? ???;()42222222110d d 12dr dr 0.81100.0062x xx x x y --==≈=≈? ???;()()()4221212dr dr dr 0.50100.81100.8210x x x x ---?=+≈?+?≈?.7. 正⽅形的边长约为100cm,应该怎样测量,才能使其⾯积的误差不超过1cm 2.解: 设正⽅形⾯积为S,边长为a,则S=a 2.所以要使:2d d 2d 1s a a a ==≤,则要求211d 0.5102200a a -≤==?.所以边长的误差不能超过20.510-?cm.8. ⽤观测恒星的⽅法求得某地维度为4502'''o(读到秒),试问:计算sin ?将有多⼤误差?解: ()()1d sin cos d cos 45022*''?'''==o.9 . 真空中⾃由落体运动距离s 与时间的关系由公式212s gt =确定,g 是重⼒加速度.现在假设g 是准确的,⽽对t 的测量有0.1s ±的误差,证明t 增加时,距离的绝对误差增加⽽相对误差却减⼩.证明: 因为:221d d d d d d d ;2.122s gt t gt t t s gt gt t s s t gt ??d s 与t 成正⽐,d s s与t 成反⽐,所以当d t 固定的时候, t 增加时,距离的绝对误差增加⽽相对误差却减⼩.10. 设0x >,x 的相对误差为δ,求ln x 的绝对误差. 解: 已知d x x δ=,所以ln x 的绝对误差()d d ln x x x δ==.11. 设x 的相对误差为%α,求nx 的相对误差.解: 1d d d %n n n n x nx x n xn x x xα-===.12. 计算球的体积,为了使相对误差限为1%,问度量半径R 时允许的相对误差限如何? 解: 已知34 3V R π=,设()d dr R R a R ==,则要使得 ()()3d dr dln d ln 3d ln 3d ln 3dr 31%V V V R R R R a V ========,则11%3a =?.第⼆章插值法与数值微分1.设y =在100,121,144x =三处的值是很容易求得的,试以这三个点建⽴y =的⼆次插值多项式,,且给出误差估计.⽤其中的任意两点,构造线性插值函数,⽤得到的三个线性插值函数,,并分析其结果不同的原因.解: 已知012012100,121,144;10,11,12x x x y y y ======,建⽴⼆次Lagrange 插值函数可得:()()()()21211441001441011100121100144121100121144121100 12144121144100x x x x L x x x ----= +------+--()211510.7228L ≈=.误差()()()()()()2012012,,,,3!f R x x x x x x x x x x ξξξ'''=---∈,所以20.00065550.001631R <<利⽤前两个节点建⽴线性插值函数可得:()()()()()11211001011100121121100x x L x --=+--()111510.7143L ≈=.利⽤后两个节点建⽴线性插值可得:()()()()()11441211112121144144121x x L x --=+--()111510.7391L ≈=.利⽤前后两个节点建⽴线性插值可得:()()()()()21441001012100144144100x x L x --=+()111510.6818L ≈=.,⼆次插值⽐线性插值效果好,利⽤前两个节点的线性插值⽐其他两个线性插值效果好.此说明,⼆次插值⽐线性插值效果好,插⽐外插效果好.2. 利⽤(2.9)式证明()()()0121001max ,8x x x x x R x f x x x x ≤≤-''≤≤≤证明: 由(2.9)式()()()()0101,2!f R x x x x x x x ξξ''=--<<当01x x x <<时,()()01max x x x f f x ξ≤≤''''≤,()()()01201101max 4x x x x x x x x x ≤≤--≤- 所以()()()0121001max ,8x x x x x R x f x x x x ≤≤-''≤≤≤3. 若()0,1,...,j x n 为互异节点,且有()()()()()()()()()011011............j j n j jj j j j j n x x x x x x x x l x xx x x x x x x -+-+----=证明()0,0,1,...,nk kj j j x l x xk n =≡=∑证明: 由于() 1 ;0 .j i ij i j l x i j δ=?==?≠? 且()0nk j j j x l x =∑和kx都为k 次多项式,⽽且在k+1个不同的节点处的函数值都相同0,1,...,k n =, 所以马上有()0,0,1,...,nk kj j j x l x xk n =≡=∑.4. 设给出sin x 在[],ππ-上的数值表,⽤⼆次插值进⾏计算,若希望截断误差⼩于5 10-,问函数表的步长最⼤能取多少? 解: 记插值函数为p(x),则()()()()()11sin sin 3!i i i x p x x x x x x x ξ-+'''-=--- 所以()()()()11cos max sin 3!i i i x x p x x x x x x ππξ-+-≤≤--=---()()()[]3112,0,2i g x th h t t t t -+=--∈⼜()()()[]12,0,2t t t t t ?=--∈的最⼤值为10.3849??= ?,所以有 350.3849max sin 106x x p h ππ--≤≤-≤< 所以 0.0538h ≤.5. ⽤拉格朗⽇插值和⽜顿插值找经过点()()()()3,1,0,2,3,2,6,10---的三次插值公式. 解: Lagrange 插值函数:()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()12302330101020310121301301223202123303132 31033101622731033 .2781/5x x x x x x x x x x x x L x y y x x x x x x x x x x x x x x x x x x x x x x x x y y x x x x x x x x x x x x x x x x x x x x x x x x ------= +------------++--------+--=++-+-++⽜顿插值: ⾸先计算差商3 10 2 13 2 1.333 0.38896 104 0.8889 0.1420-----()()()()()3130.38893 1.142033.N x x x x x x x =-++-+++-也可以利⽤等距节点构造,⾸先计算差分。
数值计算引论(第二版)三四五章习题解答
close all clear all clc n=10; x=zeros(n+1,1); for k=1:n+1 x(k)=cos((2*k-1)*pi/2/(n+1)); end y=1./(1+25*x.^2); x0=-1:0.1:1; y0=interp1(x,y,x0,'spline'); plot(x0,y0,'r')
h2 1.5, h3 0.5, h4 1.5, h5 0.5
b [0
h2 h3 3 h3 A 6 0 h3 6 h3 h4 3 h4 6
2
0]
0
T
2 3 h4 1 12 6 h4 h5 0 3
(d)样条函数插值具有比较好的数值稳定性。 √
习题
3.以0.1,0.15,0.2为插值节点,计算 f ( x ) x 的二次Lagrange插值多 项式 P2 ( x ) ,比较 P2 (0) 和 f (0) ,问定理4.1的结果是否适用于本问题。 解答: 首先构造二次Lagrange插值多项式
R=chol(A)
0 -0.8165 1.1547 0 0 0 -0.8660 1.1180
-0.7071 1.2247 0 0
方法2: 利用Cholesky定义求解
6.矩阵
1 A1 1 2 2 1 2
2 2 1 , A2 2 1 1
2 2 0
(B) 0 1
2 1 2
Gauss-Seidel迭代
0 1 M (D L) U 0 0
(M ) 2 1
计算方法及答案.docx
A. det A = 0B.detA k = 0(1 乞 k n)c. detA 0D. det A :: 0《计算方法》练习题一一、填空题1.理=3.14159…的近似值3.1428 ,准确数位是()。
2 .满足 f(a) = C, f(b) = d 的插值余项 R(X)=()。
3 .设{P k (x)}为勒让德多项式,则(F 2(χ), P 2(x)) - ( )o4 •乘幕法是求实方阵()特征值与特征向量的迭代法。
5 .欧拉法的绝对稳定实区间是()o6. e =2.71828…具有3位有效数字的近似值是( )。
7 .用辛卜生公式计算积分[fc ( ) oVHx8 .设A (kJ0 =(a (Z )第k 列主兀为a Pk J),则a (Pk A) =()10 •已知迭代法:X n 1 =(X n ), (n=0,1,…)收敛,则:(x)满足条件()。
、单选题1•已知近似数a,b,的误差限;(a), ;(b),则;(ab)=()。
A. E(a)E(b)B. E(a)+^(b)c. ag(a)+∣bw(b) D . a E (b)+'b w(a)2 .设 f(x) =X 2 X ,则 f[1,2,3]=()。
A.lB. 2C. 3D .4 3 . 设A =们 ,则化A 为对角阵的平面旋转 Q =().:1 3一ππππ A.—B .—C .—D .—23 464 . 若双点弦法收敛, 则双点弦法具有()敛速.A.线性B.超线性C.平方D .三次5 .改进欧拉法的局部截断误差阶是().A. o(h)Bo(h 2)C.o(h 3)D.o(h 4)6 .近似数 a = 20.47820 "0的误差限是()o1 一 c -51 _ -4 1__3 1 _ _2A. ×10B.×10 C.×10D . × 1022229 .已知贝TtJ 1 25 4_-7 .矩阵A满足(),则存在三角分解A=LR)&已知 X =(—1,3,-5)T ,则 X 1 =()。
计算方法引论徐萃薇课后题答案
计算方法引论徐萃薇课后题答案徐萃薇(Xu Cuiwei)教授向学生们提出了一个有关计算方法的练习题,这里是课后习题的答案:题目一:定义“计算方法”计算方法是一种数值解决问题的方法,用计算机或者类比设备来完成一系列计算过程,以解决由某一特定问题及其变体而产生的一系列更复杂问题。
它是一种能用有限的资源(如时间、空间、技术等)产生正确结果的计算机程序,他可以安排合理的步骤,使用易于操作的方法来解决指定的问题。
题目二:分析计算方法的优缺点优点:1. 计算方法基于数理模型的明确理论,可以更好地解决问题;2. 相较于其他方法,它使用更简单的计算机程序来实现更复杂的功能;3. 它可以把不容易解决的问题转变为容易解决的形式,这将有助于系统更好地管理和管理空间。
缺点:1. 计算方法有一定的局限性,不一定适用于所有的情景;2. 数学建模常常非常耗时,而且可能有很多假设和过程;3. 数学建模的结果可能有很多偏差,可能不切实际。
题目三:对于复杂问题,需要用到哪些计算方法对于复杂问题,可以用到多种方法来解决,如:1. 动态规划法(DP):动态规划法可以用来解决最优化问题,如旅行商问题、背包问题等。
2. 概率法:概率法可以跨越归纳和演绎,在可预期结果和把握风险方面有很大的优势。
3. 机器学习:机器学习可以帮助系统自动从数据中获取规律,从而有效地解决规模复杂的问题。
4. 启发式搜索:启发式搜索可以有效地模拟人类的求解思考方法,通过把问题分解为子问题,再变换为其他问题求解的方法,可以有效解决复杂的问题。
5. 分支定界法:分支定界法是一种能获得全局最优解的解决复杂问题的方法,它被广泛应用于思维密集型最优化问题。
总而言之,复杂问题可以用多种计算方法来解决。
正确使用和选择合适的方法是关键,从而能够获得更好的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 数值积分
实验目的:
1、了解数值积分的基本原理和方法;
2、熟练掌握复化梯形公式、复化Simpson 公式及其截断误差的分析;
实验内容:(复化梯形求积公式,根据复化梯形求积公式相关公式和原理自己
填写,以下仅作参考)
由于高阶牛顿--柯特斯公式是不稳定的,因此不可能通过提高阶的方法来提高求积精度,为了提高精度通常可把积分区间分成若干n 等份,再在每个子区间上用梯形公式即当n=2时的Newton-Cotes 公式进行计算,最后将所有区间上的梯形相加即可得该积分的近似值。
)]
()(2)([2)]()([21
1110b f x f a f h
x f x f h T n k k k n k k n ++=+=∑∑-=+-=,
它的余项公式是
2
()()12n b a R f h f η-''=-
,
实际上=-=n n T I f R )()()],(12[1,1
3+-=∈''-∑k k n k x x f h ηη, )(1)(1
0∑-=''=''n k k f n f ηη;
具体计算步骤如下
1).给出被积函数f (x )、区间[a ,b ]端点a ,b 和等分数n ; 2).求出 n
a
b h h k a x k -=
+=,*; 3).计算)(a f 、)(b f 、
1
1
()n k
k f x -=∑;
4). 得**21
h T n
=⎥⎦
⎤
⎢⎣⎡+*+∑-=)()(2)(1
1b f x f a f n k k
实验题目1
用复化梯形公式计算由下表数据给出的积分值 1.5
0.3
()d y x x
⎰。
k 1 2 3 4 5 6 7 x k 0.3 0.5 0.7 0.9 1.1 1.3 1.5 y k
0.3895
0.6598
0.9147
1.1611
1.3971
1.6212
1.8325
若已知该表数据为函数y =x +sin x /3所产生,请将计算值与精确值作比较。
1、已知精确积分值为:
()()1.5
222
0.3
1cos 111.50.3cos1.5cos 0.3 1.374866429152632323x x ⎛⎫-=---= ⎪⎝⎭
实验题目2
利用复化梯形求积公式计算圆周率,要求达到10位有效数字(方法可参考课后第三题)。