电力电子器件的发展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子器件的发展浅析

引言

电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。

电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。

1 电力电子器件

1.1概述

1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向。

1.2发展

1.2.1 整流管

整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管

的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。

1.2.2 晶闸管

自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。

晶闸管只能由门极控制导通,导通后门极便失去控制作用,因此称之为半控型器件,普通晶闸管(Thysister)是目前阻断电压最高、流过电流最大、承受、能力最强的电力电子器件,现在已能生产8kV/4kA和

6kV/6kA的晶闸管。但由于PN结的载流子积蓄效应,开关频率只能在500Hz以下。

1.2.3 门极可关断晶闸管(GTO)

GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展到1kHz。1964年,美国第一次试制成功了0.5kV/10A的GTO。自70年代中期开始,GTO的研制取得突破,相继出世了1300V/600A、

25OOV/I000A、4500V/2400A的产品,目前已达到9kV/25kA/0.8kHz及6 kV/6kA/1kHz的水平。GTO包括对称、非对称和逆导三种类型。非对称GTO相对于对称GTO,具有通态压降小、抗浪涌电流能力强、易于提高耐压能力(3000v以上)的特点。逆导型GTO,由于是在同一芯片上将GTO与整流二极管反并联制成的集成器件,因此不能承受反向电压,主要用于中等容量的牵引驱动中。

在当前各种自关断器件中,GTO容量最大,工作频率最低,通态压降大、及耐量低,需要庞大的吸收电路。但其在大功率电力牵引驱动中有明显的优势,因此它在中高压领域中必将占有一席之地。

1.2.4 大功率晶体管(GTR)

GTR是一种电流控制的双极双结电力电子器件,20世纪70年代中期,双极性晶体管(BJT)扩展到高功率领域,产生大功率晶体管(GTR),它由基极(B)电流的正、负控制集电极(C)和发射极(E)的通、断,也属全控型器件。由于能承受上千伏电压,具有大的电流密度和低的通态压降,曾经风靡一时,在20世纪七八十年代成为逆交器、变频器等电力电

子装置的主导功率开关器件,开关频率可达5kHz。但是GTR存在许多不足:①对驱动电流波形有一定要求,驱动电路较复杂;②存在局部热点引起的二次击穿现象,安全工作区(SOA)小;③通态损耗和关断时存储时间()存在矛盾,要前者小必须工作于深饱和,而如深饱和,便长,既影响开关频率,又增加关断损耗大;④承受及能力低;⑤单管电流放大倍数小,为增加放大倍数,联成达林顿电路又使管压降增加等等,而为改善性能(抑制及,改变感性负载时的动态负载线使在SOA内,减小动态损耗),运用时必须加缓冲电路。目前的器件水平约为:1800V/800,

2kHz;1400V/600,2kHz;600V/3,100kHz。

1.2.5 功率MOSFET

功率MOSFET是一种电压控制型单极晶体管,它是通过栅极电压来控制漏极电流的,因而它的一个显著特点是驱动电路简单、驱动功率小;仅由多数载流子导电,无少子存储效应,高频特性好,工作频率高达100kHz以上,为所有电力电子器件中频率之最,因而最适合应用于开关电源、高频感应加热等高频场合;没有二次击穿问题,安全工作区广,耐破坏性强。功率MOSFET的缺点是电流容量小、耐压低、通态压降大,不适宜运用于大功率装置。顺便强调一下,由于MOSFET管内阻与电压成比例,它在要求低压(3.3~1V)电源的电脑和通信等领域则可大显身手,目前MOSFET的导通电阻可减小至6~10,主要用于高频开关电源的同步电流。

1.2.6 绝缘栅双极晶体管(IGBT)

20世纪80年代绝缘栅双极晶体管是一种复合型器件,综合了少子器件(G T O、G T R)和多子器件(MOSFET)各自的优良特性,既有输入阻抗高,开关速度快,驱动电路简单的优点,又有输出电流密度大,通态压降下,电压耐量高的长处。

IGBT可视为双极型大功率晶体管与功率场效应晶体管的复合。通过施加正向门极电压形成沟道、提供晶体管基极电流使IGBT导通;反之,若提供反向门极电压则可消除沟道、使IGBT因流过反向门极电流而关断。IGBT集GTR通态压降小、载流密度大、耐压高和功率MOSFET驱动功率小、开关速度快、输入阻抗高、热稳定性好的优点于一身,因此备受人们青睐。它的研制成功为提高电力电子装置的性能,特别是为逆变器的小型化、高效化、低噪化提供了有利条件。比较而言,IGBT的开关速度低于功率MOSFET,却明显高于GTR;IGBT的通态压降同GTR相近,但比功率MOSFET低得多;IGBT的电流、电压等级与GTR接近,而比功率MOSFET高。由于IGBT具有上述特点,在中等功率容量(600V以上)的UPS、开关电源及交流电机控制用PWM逆变器

相关文档
最新文档