光弹性观察试验

光弹性观察试验
光弹性观察试验

光弹性测试方法实验

一.实验目的

1. 了解光弹性仪器各部分名称和作用,掌握光弹性仪器的使用方法;

2. 观察光弹性模型受力后在偏振光场中的光学效应,加深对典型模型受力后全场应

力分布情况的了解:

3. 观察等差线和等倾线,学会判别等差线和等倾线。

二.实验设备和模型

1.PJ20型光弹性仪;

2.光弹性模型梁、圆环、圆盘、有孔拉伸板试件

三.实验原理和方法

光弹性仪由光源(包括白光和单色光)、一对偏振镜、一对四分之一波片以及透镜等构成,见下图。

PJ20型光弹性仪除偏振

偏、四分之一波片以及透镜外,

还有给模型加载荷的加力架,

见右图。

光弹性实验,最基本的是

布置平面偏振光场,该光场是

由光源和一对偏振镜组成,靠

近光源的为起偏镜,另一片为

检偏镜。当两偏振镜轴成正交

时形成暗场,平行时为亮场。

通常暗场时,调整起偏镜轴于

垂直方向,检偏镜轴为水平方向。

在正交平面偏振光场中,由暂时双折射材料制成的模型受力后,使入射到模型的平面偏振光分解为沿各点主应力方向振动的两列平面偏振光,且其传播速度不同,通过模型后,产生光程差Δ,此光程差与模型厚度h 及主应力差(σ1 - σ2)成正比

()21σσ-=?Ch (1)

式中C 为应力光学系数,此式即为平面应力-光学定律,当光程差 Δ为光波波长 λ 的整数倍时,即 Δ=N λ (N=0,1,2 …) (2)

产生消光干涉,呈现暗点,同时满足光程差为同一整数倍波长的诸点形成黑色条纹,称为等差线。由(1)、(2)两式可得

h

Nf =-21σσ (3) 式中f=λ/C 称为模型材料条纹值。由此可知,等差线上各点主应力差相同,对应于不同的N 值则有0级、1级、2级 …… 等差线。

在模型内凡主应力方向与偏振镜轴重合的点,亦形成一条黑色干涉条纹,称为等倾线。由等倾线可以确定各点的主应力方向。当两偏振轴分别为垂直和水平放置时,对应的为零度等倾线。此时若再将偏振镜轴同步反时针方向旋转100,200… 就得到100,200

… 的等倾线,其上各点主应力方向与垂直或水平线成100,200… 夹角。

等差线和等倾线是光弹性实验提供的两个重要的资料,据此可以根据模型的受力特点计算应力。

为了消除等倾线以获得清晰的等差线图,在两偏振镜之间加入一对四分之一波片,以形成正交圆偏振光场,各镜片光轴的相对位置如图2所示。一般观测等差线时,首先采用白光光源,此时等差线为彩色,故又叫等色线。当N =0时呈黑色,其等差级数为零级,其余等差线级数可根据零级依次确定,非零级条纹均为彩色。色序按黄、红、绿次序,指示着主应力差(σ1 - σ2)的增加,并以红绿之间的深紫色交线为整数级条纹,观察时若采用单色光源如钠光,可提高测量精度。 四.实验步骤

1.观看光弹仪各部分,了解其名称和作用。

2.开启白光光源,检查两片四分之一波片的位置,若不在零度方位,则分别拔起两片四分之一波片的销子,将波片转至零度方位再放下销子,此时为平面偏振光场。单独旋转检偏镜,反复观察平面偏振光场的光强变化情况,正确布置出正交平面偏振光场。

3.将圆盘模型置于载荷架上,预载0.5Kg (或1Kg )砝码,使模型受压,此时,圆盘中心黑色等倾线应为正交十字线。

4.同步旋转两偏振镜轴,观察等倾线的变化及特点,尤其要注意圆盘边界处等倾线角度值

5.调整光路为正交圆偏振光场(将两片四分之一波片分别向左、向右旋转450),此时等倾线消除,逐级加载,观察等差线图案的变化情况,直至出现4~5级条纹为止。

6.调整光路为平行圆偏振光场(在正交圆偏振光场中,单独将检偏镜轴旋转900,使检偏

镜轴与起偏镜轴平行),观察等差线图案变化情况(此时观察到的是半数级等差线条纹图案)。

7.换用单色光源(钠光),重复5、6两步骤观察内容。

8.取下圆盘模型,换上弯曲梁模型,加载成四点弯曲(纯弯曲)和三点弯曲两种情况,重复5、6、7三步骤,观察等差线图案特点及变化情况。

9.依次再换圆环模型和有孔拉伸板试件,重复5、6、7三步骤,观察等差线图案特点及变化情况。

10.关闭光源,卸载后,取下模型,清理仪器。

五.实验报告

1.简述仪器调整过程,绘出正交平面偏振光场以及圆偏振光场布置简图。

2.简述不同偏振光场和不同光源下,观察到的模型中等差线条纹图案的特点。

3.记录(或拍摄)不同模型的受力条纹图,并简述条纹图的特点。

六.思考题

1.如何区分等差线和等倾线?

2.对径受压圆盘外圆边界处,等倾线角度有何特点?说明什么问题?

3.弯曲梁四个角点处(自由方角)等差线图案有何特点?表明该点处于何种应力状态?4.纯弯曲梁和三点横力弯曲梁等差线图案有何区别?原因何在?

七.注意事项

1.光弹仪镜片部分切勿用手去摸。

2.加载时,切勿使模型弹出,以免损坏光学元件。

力学实验报告

力学实验报告 篇一:工程力学实验(全) 工程力学实验学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验实验二金属材料的压缩试验实验三复合材料拉伸实验实验四金属扭转破坏实验、剪切弹性模量测定实验五电阻应变片的粘贴技术及测试桥路变换实验实验六弯曲正应力电测实验实验七叠(组)合梁弯曲的应力分析实验实验八弯扭组合变形的主应力测定实验九偏心拉伸实验实验十偏心压缩实验实验十二金属轴件的高低周拉、扭疲劳演示实验实验十三冲击实验实验十四压杆稳定实验实验十五组合压杆的稳定性分析实验实验十六光弹性实验实验十七单转子动力学实验实验十八单自由度系统固有频率和阻尼比实验 1 2 6 9 12 16 19 23 32 37 41 45 47 49 53 59 62 65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l =mm 实验前 2低碳钢弹性模量测定 E? 实验后 ?F?l = (?l)?A 屈服载荷和强度极限载荷 3载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。 4篇二:工程力学实验报告工程力学实验报告自动化12级实验班 1-1 金属材料的拉伸实验一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度ReH,下屈服强度ReL和抗拉强度Rm 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度Rm。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。三、试样 (a) (b) 图1-1 试样拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样

电测法应力分析实验

第二章 电测法应力分析实验 电测法是实验应力分析中应用最广泛和最有效的方法之一,广泛应用于机械、土木、水利、材料、航空航天等工程技术领域,是验证理论、检验工程质量和科学研究的有力手段。 第一节 矩形截面梁的纯弯曲实验 一、实验目的 1.熟悉电测法的基本原理和静态电阻应变仪的使用方法。 2.测量矩形截面梁在纯弯曲时横截面上正应力的分布规律。 3.比较正应力的实验测量值与理论计算值的差别。 二、实验设备和仪器 1.多用电测实验台。 2.YJ28A-P10R 型静态电阻应变仪。 3.SDX-I 型载荷显示仪。 4.游标卡尺。 三、实验原理及方法 实验装置如图2-1所示,矩形截面梁采用低碳钢制成。在梁承发生纯弯曲变形梁段的侧面上,沿与轴线平行的不同高度的线段22-、11-、00-、11'-'、 22'-'(00-线位于中性层上,22-线位于梁的上表面,22'-'线位于梁的下表面,11-和11'-'、22-和22'-'各距00-线等距,其距离分别用1y 和2y 表 示)上粘贴有五个应变片作为工作片,另外在梁的右支点以外粘贴有一个应变片作为温度补偿片。 将五个工作片和温度补偿片的引线以半桥形式分别接入电阻应变仪后面板上的五个通道中,组成五个电桥(其中工作片的引线接在每个电桥的A 和B 端,温度补偿片接在电桥的B 和C 端)。当梁在载荷作用下发生弯曲变形时,工作片的

电阻值将随着梁的变形而发生变化,通过电阻应变仪可以分别测量出各对应位置的应变值实ε。根据胡克定律,可计算出相应的应力值 实实εσE = 式中,E 为梁材料的弹性模量。 梁在纯弯曲变形时,横截面上的正应力理论计算公式为 z I y M ?=理σ 式中:2/Fa M =为横截面上的弯矩; 123/bh I z =为梁的横截面对中性轴的惯性矩;y 为中性轴到欲求应力点的距离。 图2-1 矩形截面梁的纯弯曲 四、实验步骤 1.测量矩形截面梁的各个尺寸,预热电阻应变仪和载荷显示仪。 2.将各种仪器连接好,各应变片按半桥接法接到电阻应变仪的所选通道上。 3.逐一调节各通道的电桥平衡。 4.摇动多用电测实验台的加载机构,采用等量逐级加载(可取kN 1=?F ),每增加一级载荷,分别读出各电阻应变片的应变值。 5.记录实验数据。 6.整理仪器,结束实验。 五、实验数据的记录与计算 实验数据的记录与计算见表2-1。 六、注意事项 1.加载时要缓慢,防止冲击。 2.读取应变值时,应保持载荷稳定。 3.各引线的接线柱必须拧紧,测量过程中不要触动引线,以免引起测量误差。

实验应力分析考试试题及答案

共 1 页第 1 页

一、名词解释 1.电阻应变片 电阻应变片是利用电阻应变片受力后出现变形致使电阻值发生变化的原理来测量被测物理量的大小的一种传感器。 2.压电效应 物质在机械力作用理发生变形时,内部产生极化,而表面产生符号相反的电荷,而当外力消失时表面电荷也随之消失,这种现象称之为压电效应。 3.中间转换器 被测非电量参数经传感器变换后转化为电参量,通常必须经过再变换、放大、预处理等工作后才能进行显示、记录或由计算机进行数据处理。这些中间环节是测量系统不可缺少的组成部分,通称中间变换器。 4.D/A和A/D转换器 在检测与控制信号中,如位移、速度、温度等连续的物理量经传感器变换为连续的电压压或电流,通称为模拟量。在很多情况下仪表显示、数据处理要用数字来表示,这些用数字来代替的离散量称为数字量。测试仪器内将模拟量转为数字量装置即是A/D转换器,反之数字量转为模拟量装置即是D/A转换器。 5.最小二乘法 最小二乘法在误差理论中的基本含义是在具有多精度的多次测量中求最可靠(最可信赖)的值时,当各测量值的残差平方为最小时的结果。在所有拟合的方程的方法中,最小二乘法的误差最小。 6.热电偶 由两种不同的导体A和B两端相连组成回路。当两个接头端的温度不同时在回路中就有电流通过,即回路内出现了电动势,称为热电势。组成回路的A、B 导体称为热电极。整个回路则称之为热电偶。 7.电阻温度计 电阻温度计是根据导体或半导体的电阻值随温度变化而改变的性质,通过测试电阻的大小来了解温度变化的一种温度计。这种温度计可测量-200~5000℃的范围。尤其在低温测量方面性能更佳,最低可达1~3K。 8.随机振动

光弹性实验报告

光弹性实验报告 一、 实验目的 1. 了解光弹性仪各部分的名称和作用,掌握光弹性仪的使用方 法。 2. 观察光弹性模型受力后在偏振光场中的光学效应。 3. 掌握平面偏正光场和圆偏振光场的形成原理, 和调整镜片(起 偏镜、 检偏镜、1/4波片)的方法。 4. 通过圆盘对径受压测量材料条纹级数 f ,并通过实验求出两 端受压方片中心截面上的应力。 5. 用理论公式计算出方片中心截面上的应力,并与实验得出的 数据相 比对,判断实验数据的准确性。 二、 实验原理和方法 首先引入偏振光的概念,如光波在垂直于传播方向的平面内只在 某一个 方向上振动,且光波沿传播方向上所有点的振动均在同一个平 面内,则此种光波称为平面偏振光。 双折射:当光波入射到各向异性的晶体如方解石、云母等时,一 般会分 解为两束折射光线,这种现象称为双折射。 从一块双折射晶体上,平行于其光轴方向切出一片薄片,将一束 平面偏 振光垂直入射到这薄片上,光波即被分解为两束振动方向互相 垂直的平面偏振光,其中一束比另一束较快地通过晶体。于是,射出 薄片时,两束光波产生了一个相位差。这两束振动方向互相垂直的平 面偏振光,其传播方向一致,频率相等,而振幅可以改变。设这两束 平面偏振光为: u 1 a 〔sin ( t ) ( 1) u 2 a 2sin ( t ) (2) 式中 a i a 2 —振幅 —两束光波的相位差 将上述两方程(1)(2)合并,消去时间t ,即得到光路上一点的 合成光矢量末端的运动轨迹方程式,此方程式在一般的情况下是一个 椭圆方程,如果31 a 2 a , -,则方程式成为圆的方程: 2 U 2 u f a 2 (3) 光路上任一点合成光矢量末端轨迹符合此方程的偏振光称为圆 偏振光,

郑州大学实验力学报告

实验力学实验报告(郑州大学力学实验中心编制) 院系:力学与工程科学学院 专业:安全工程 年级:2012 班级: 1 姓名:周备堂 学号:20120690145 成绩:评阅老师:

目录 实验 1 应变计横向效应系数测定 实验 2 应变计灵敏系数测定和机械滞后 实验 3 薄壁圆管内力测定 实验 4 应变计的粘贴 实验 5 动态应变信号数据采集 实验 6 光弹性实验 实验7 实验8 实验9 实验10 实验11 实验12 ……… 1

实验 1 应变计横向效应系数测定 实验目的: 用等强度梁测定BX120-5AA、BZ120-5AA应变计横向效应系数H 实验设备: 等强度梁、应变计砝码 小组名单:周备堂朱全力陈恒啸 实验日期:2014年10月29 日 实验原理: 1、应变计的横向效应系数用来表征应变计横向效应的大小,定义为用同一单向应变分别作用于同一应变计的栅宽与栅长方向,前者与后者所得电阻变化率之比(百分数表示)称为应变计的横向效应系数,用H表示,即: H= ΔR h/R ΔR l/R ζ表示栅丝单位长度的电阻值,K L与Kt分别表示长度和宽度丝材的应变灵敏度,则经过推导可到: H= Bζt K t nLζL K L 2、如图粘贴应变计,则可推出: εd1= 1 1-μ0H (εL+HεB)εd2= 1 1-μ0H (εB+HεL) εL= 1-μ0H 1-H2(εd1-Hεd2)εB= 1-μ0H 1-H2(εd2-Hεd1) H= ε2+μ0ε1 ε1+μ0ε2 (本实验中μ0=0.3,R=120Ω,K=2.00) 原始记录: 纸基应变片分级加载三次实验所得数据如下表: 2

实验应力分析检测题[1]

实验应力分析检测题 测试卷一 (45分钟完成) 测1.1 如图所示的平板拉伸试样受轴向力F 作用,试样上如图a 粘贴两片应变片1R 、2R , 其应变值分别为1ε、2ε。由1R 、2R 组成图b 所示的半桥测量电路,这时应变仪读数为 。 A . 11εμ)(+; B .21εμ)(+; C .11εμ)(?; D .21εμ)(? 。 测1.2 圆轴受扭矩T 的作用,用应变片测出的是 。 A . 切应变; B .切应力; C .线应变; D . 扭矩。 测1.3 图示拉杆试件,弹性模量E 、泊松比μ、横截面面积A 已知,若用电阻应变仪测得杆表面任一点处两个互成90°方向的应变为a ε、b ε,试求拉力F 。 测 1.4 如图所示,矩形截面外伸钢梁在外伸端受横向力1F 、轴向力2F 作用,弹性模量 E =200 GPa ,泊松比μ=0.3,由实验测得A 支座截面的左边,中性轴D 点的应变 (a) 测 1.1 图 (b ) 测1.3图 A 测1.4图

63010203?°×?=ε,66010343?°×=ε。求D 点主应力大小及其方向。 测试卷二(45分钟完成) 测2.1一钢制圆轴受拉扭联合作用,已知圆轴直径d =20 mm ,材料的弹性模量E =200 GPa ,现采用直角应变花测得轴表面O 点的应变值为 ,10966?×?=a ε ,105656?×=b ε 610320?×=c ε,试求载荷F 和T 的大小。 测 2.2 承受偏心拉伸的矩形截面杆如图所示,现用电测法测得该杆上、下两侧面的纵向应变1ε和2ε,试证明偏心距e 与应变1ε和2ε在弹性范围内满足下列关系:6 2121h εεεεe ×+?=。 测 2.1 图 测2.2 图

弹塑性力学读书报告

应用弹塑性力学读书报告 刘艳 10076139019 河北工程大学土木工程学院建筑与土木工程专业 摘要:弹塑性力学是研究可变形固体受到外力作用或温度变化的影响而产生的应力、应变和位移及其分布变化规律。它由弹性理论和塑性理论组成。弹性理论研究弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变性固体在塑性阶段的力学问题。弹塑性力学就是研究经过抽象化的可变性固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。 关键字:弹塑性力学弹性阶段塑性阶段假设求解方法弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性变形阶段是指当外力小于某一限值(通常称为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,而固体只产生弹性变形的阶段称为弹性阶段。塑性变形阶段是外力一旦超过弹性极限荷载,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,从而这一阶段就称为塑性阶段。弹塑性力学也是连续介质力学的基础和一部分,它包括:弹塑性静力学和弹塑性动力学。

塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。工程上常把脆性和韧性也作为一种概念来讲,它们之间的区别在于固体破坏时的变形大小。若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 在塑性理论中,由于实际固体材料在塑性阶段的应力----应变关系过于复杂,若采用它进行理论研究和计算都非常复杂,因此,同样需要进行简化处理。常用的简化模型可分为两类:即理想塑性模型和强化模型。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型。 在单向应力状态下,强化模型的特征如图0.2所示。强化模型又分为:线性强化弹塑性模型、线性强化刚塑性模型、幂次强化模型。

圆筒内作用压力的应力分析实验报告

圆筒内作用压力的应力分析实验报告 圆筒内作用压力的应力分析实验报告 小组成员:焦翔宇1120190146 李雪枫1120190149 宋佳1120190152 一实验目的: 1.了解薄壁容器在内压作用下,筒体的应力分布情况;验证薄壁容器筒体应力计算的理论公式。 2.熟悉和掌握电阻应变片粘贴技术的方法和步骤。 3.掌握用应变数据采集测量仪器测量应变的原理和操作方法。 二实验原理:① 理论测量原理 如右图是圆筒内作用压力的压力传感器结构简图,在压力P1作用下,圆筒外表面的周向应力σy 和轴向应力σx 分别为: 周向应变和周向应变分别为: 由上式可见,圆筒外表面的周向应变比轴向应变打,亮着又均为正值。为了提高灵敏度,并达到温度补偿的目的,将两个应变敏感元件R1、R4安装在圆筒外壁的周向;两个应变敏感元件R2、R3安装在圆筒上,见右图。四个应变敏感元件的应变分别为: 采用恒压电桥电路。输出电压为: 由上式可知:在这种情况下,采用恒压电桥电路时,压力与输出电压之间存在非线性关系。采用双恒流源电路时,输出电压为: 由上式可见:在小变形情况下,采用双恒流源电路时,压力与输出电压之间为线性关系。在大变形情况下,赢考虑变形的影响,这是周向应变为: 圆筒内的径向压力使得圆筒的半径变大,周向力使圆筒的半径减小。可得到由于径向压力引起的圆筒半径变化为: 轴向力引起的直径变化为: 圆筒半径的变化量为: 变形后,两半径的比值为: 应变敏感元件R1、R4处的应变值为: 由上式可见:考虑圆筒变形的影响后,压力与圆筒外壁应变之间为非线性关系。由于 ,因此是递增非线性。

采用恒压电桥电路时,输出电压为: 由上式可见:考虑圆筒变形的影响后,采用双恒流源电路也存在着压力与输出电压之 间的非线性。 下图是圆筒内作用压力的一种压力传感器的结构图: ② 用电阻应变仪测量应变原理: 电阻应变测量法是测定压力容器筒壁应变的常用方法之一。其测量装置由三部分组成:即电阻应变片,连接导线和电阻应变仪。常用的电阻应变片是很细的金属电阻丝粘 于绝缘的薄纸上而成。见图一所示,将此电阻片用特殊的胶合剂贴在容器壁欲测之部位。当容器受内压作用发生变形时,电阻丝随之而变形。电阻丝长度及截面的改变引起其电 阻 值的相应改变,则可以用电阻应变仪测出电阻的改变,再换算成应变,直接由应变 仪上读出。 电阻丝的应变与电阻的改变有如下的关系: 由于电阻丝的电阻R 和K 值对于一定的电阻片为一已知值,故只要测得Δ R (电阻丝电阻改变)就可以求出ε值。电阻应变仪是采用电桥测量原理测出Δ R 并换成με(即为)的 变形量。 三实验步骤: 1.了解试验装置(包括管路、阀门、容器、压力自控泵等在实验装 置中的功能和操作方法)及电阻片粘贴位置,测量电气线路,转换旋钮等。 2. 制作实验用圆筒,截下一段pvc 塑料管,在两端用哥俩好胶水粘合金属块使圆筒 形成内部气密舱。再两端金属块打孔,一段装入气压计,另一端安装打气孔,粘合使其不 漏气。 3. 应变片的安装: (1)根据选择的测点位置,用砂纸打光;再按筒体的经线和纬线方向用划针或铅笔 划出测点的位置及方向;以后再用棉球、丙酮等除去污垢。 (2)测量电阻应变片的电阻值,记录电阻片的灵敏系数,以便将应变仪灵敏系数点 放在相应的位置上(实验室已准备好)。 (3)将“502”胶液均匀分布在电阻片的背面(注意:胶液均均匀涂在电阻片反面, 不可太多,引出线须向上)。随即将电阻片粘贴在欲测部位,并用滤纸垫上,施加接触 压力,挤出贴合面多余胶水及气泡(注意:电阻丝方向应与测量方向一致,用手指按紧 一至两分钟)。(4)在电阻片引出线下垫接线端子(用胶液粘贴),用于电阻应变片的

偏振光实验报告

实验1. 验证马吕斯定律 实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振 光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸 收o 光,通过e 光),这种对线偏振光的强烈的选择吸收性质,叫 做二向色性。具有二向色性的晶体叫做偏振片。 偏振片可作为起偏器。自然光通过偏振片后,变为振动面平行 于偏振片光轴(透振方向),强度为自然光一半的线偏振光。如图1、图2所示: 图1中靠近光源的偏振片1P 为起偏器,设经过1P 后线偏振光 振幅为0A (图2所示),光强为I 0。2P 与1P 夹角为θ,因此经2P 后 的线偏振光振幅为θcos 0A A =,光强为θθ20220cos cos I A I ==, 此式为马吕斯定律。 实验数据及图形: P 1 P 2 线偏光 单色自然光 线偏光 图1 P 1 P 2 A 0 A 0cos θ θ 图2

从图形中可以看出符合余弦定理,数据正确。 实验2.半波片,1/4波片作用 实验原理:偏振光垂直通过波片以后,按其振动方向(或振 动面)分解为寻常光(o 光)和非常光(e 光)。它们具有相同的 振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投 影到同一方向,就能满足相干条件,实现偏振光的干涉。 分振动面的干涉装置如图3所示,M 和N 是两个偏振片,C 是 波片,单色自然光通过M 变成线偏振光,线偏振光在波片C 中分 解为o 光和e 光,最后投影在N 上,形成干涉。 考虑特殊情况,当M ⊥N 时,即两个偏振片的透振方向垂直时,出射光强为:)cos 1)(2(sin 420δθ-= ⊥I I ;当M ∥N 时,即两个偏振片的透振方向平行时,出射光强为:M N 图3 分振动面干涉装置 I 0 波片 偏振片 偏振片 单色自然光

平面光弹性实验

平面光弹性实验 一:实验目的 (1)学会绘制等倾线图。 (2)用剪应力差法计算标准模型中某一截面上的应力分布。 二:实验步骤 (1)安装好数码光弹仪。 (2)调整好光弹仪各镜轴位置,使之成为正交平面偏振布置。 (3)调整加载架,安装标准试件。 (4)按一定角度间隔小心旋转加载架,观察等倾线图。 (5)绘制等倾线图,安装标准试件。 (6)调整光弹仪各镜轴位置,在双正交圆偏振布置下绘制等差线图,并确定条纹级数。 三:数据分析 1:绘制剪应力图。 第一步先跟据不同角度拍摄的图片,帮等倾线画出来。由于对径受压圆环对称轴是两条等倾线,我选这两条等倾线为坐标轴,我采取的方式是将在白光照射时应力很小时的图片都放在ps中,将所有的图片都旋转到同一个角度(由于做实验的时候模型在旋转),之后根据不同图片等倾线直接绘制等倾线图。 2:根据剪应力差法计算一截面上的应力分布。 在圆偏振布置红色光线照射下的图片上选取线OK作为要计算的截面,在OK 上等距的选取六个等分点从左到右分别为0,1,2,3,4,5,6填入下面剪应力差法计算表格第一列,再选取俩辅助截面AB,CD,与OK的距离都是dy/2。其中

dx/dy=2,且将AB ,CD 也5等分,如下图所示。 有上面等差线和等倾线条纹图,测量OK ,AB ,CD 截面上各分点的等差线条纹级数N 和等倾线角度θ。不过θ是σ1与x 轴的夹角还是σ2与x 轴的夹角还是待定,不过由于竖直的等倾线上点θ=0.水平θ=90,则很容易判断θ的大小。

τxy=Nfsin2θ/2h 这里f是需要通过计算得到。Δσ=σ1-σ2=Nf/h, 其中圆盘中心的的应力为Δσ=σ 1-σ 2 =8P/(πDh) 则f=8P/(πDN),其中N=3.2(红光入射),P=,D=50mm,则f=25000 N/m 通过上面公式就可以计算截面和参考面的τ xy 。 之后就是计算σ x 和σ y 。根据(σ x ) i =(σ x ) i-1 -Δτ xy |i i-1 Δx/Δy可以算出截面 每一点的σ x ,之后再根据 σy=σx-Nfcos2θ/h 则σ y 可以算得 四:误差分析 本实验由于测量精度不是很高,导致实验数据误差可能很大。 误差有: 1:角度不能连续测量造成的误差。 2:画等倾线时由于相邻区域内主应力角变化不是很大,导致等倾线不是很准确。 3:试件不是完全的各向同性,导致结果出现误差。

光弹性实验

全息光弹性法- 正文 将全息照相和光弹性法相结合而发展起来的一种实验应力分析方法。在全息光弹性法中,用单曝光法能给出反映主应力差的等差线;用双曝光法能给出反映主应力和的等和线。根据测得的等差线和等和线的条纹级数,便可计算出模型内部的主应力分量。 20世纪60年代后期,M.E.福尔内、J.D.奥瓦内西翁等人将全息照相用于光弹性实验,获得了等和线条纹以及等和线和等差线的组合条纹。后来,许多学者应用组合条纹分析平面应力问题。 此法所用的全息光弹性仪,其光路(图1)中布置有偏振元件,能获得具有偏振特性的物光和参考光。 透过模型的物光和参考光,在全息底片上干涉而成包含着物光波阵面信息的全息图,经过曝光、显影和定影以后的全息底片,再用参考光照射,便可再现物光波阵面。如经两次曝光,将模型承受应力和不受应力两种状态的物光波阵面记录在同一张全息底片上,再现时便可以同时再现承受应力和不受应力两种状态的物光,并获得反映应力分布的两组物光干涉而得的条纹。 全息光弹性法常用的方法有: 单曝光法设模型不受应力时,物光波阵面ω0为平面,模型承受应力之后,透过的物光会在模型的两个主应力方向分解成两束平面偏振光,其波阵面为ω1和ω2(图2)。对承受应力的模型进行单次曝光全息照相后,用参考光照射全息底片,可以再现物光波阵面ω1和ω2。由于这两个光波具有和参考光相同的偏振特性,故产生干涉,所形成的干涉条纹反映两个光波ω1和ω2的光程差⊿c=⊿2-⊿1,其光强度为: 式中K为常数,N c为等差线条纹级数。 双曝光法在全息底片上,对模型加载前后两种状态进行两次曝光,可以在一张全息底片上,同时记录下模型不受应力时的物光ω0和承受应力后的物光ω1和ω2。用参考光照射这张全息底片,便可以同时再现ω0、ω1和ω2三个物光的波阵面,并互相干涉而形成组合干涉条纹。这种组合条纹,可看作是这三种光波中任何一对光波的干涉条纹的组合。两次曝光获得的干涉条纹同主应力差和主应力和都有关,它是由等和线条纹和等差线条纹调制而成的组合条纹。 双模型法上法获得的是组合条纹,如作定量分析,还须将等差线和等和线分离开来。一种简便易行的分离方法是双模型法,即用具有光学灵敏性的材料制作的模型,通过单曝光法获得等差线,再用不具有光学灵敏性的材料(如有机玻璃)制成同样的模型,通过双曝光法获得等和线。这种方法的优点是光路系统比较简单,缺点是两个模型的几何尺寸和加载条件不容易完全一致而发生误差。 旋光器法另一种常用的方法是采用旋光器。第一次通过模型的物光可以看作是两束互相垂直的平面偏振光。两束光通过旋光器,它们的偏振面都会旋转90°,当它们再由半反射镜反射而第二次通过模型时,原来快轴方向的偏振光转为慢轴方向,而慢轴方向的偏振光转为快轴方向。因此,这两束光在第二次通过模型时会产生符号相反的相对光程差,使最后总的相对光程差为零,等差线消失。而等和线的条纹级数则由于物光两次通过模型而增加一倍。此外,由于采用半反射镜,可以同时用普通照相机拍摄第一次透过模型后的物光而获得等差线。常用的旋光器有两种:采用离轴光路的石英旋光器和采用同轴光路系统的法拉第效应旋光器(图3)。 用途全息光弹性法可用于静态应力测量, 还可用于动态应力测量。采用脉冲激光器作光源进行的全息光弹性实验,可以同时记录动态载荷作用下瞬态的等和线和等差线,为分离动态的主应力分量提供了新的途径。将全息光弹性用于测量热应力问题时,不仅能获得等和线,便于主应力的分离,且能获得和模型厚度变化相关联的温度场分布。此外,应用此法还可通过等和线测定裂纹尖端的应力强度因子。 参考书目

现代固体实验技术实验5光弹性实验

实验报告 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求(必填) 1、了解光弹仪的构造并掌握其基本的使用方法; 2、观察人工双折射材料制作的受力模型在特定偏振光场中的光学效应; 3、掌握绘制和识别等色线(等差线)、等倾线的方法,观察各种特征点的表现形式; 4、掌握材料条纹值f 的测量方法; 5、掌握光弹性方法判断压力分布规律的基本原理; 6、掌握应力集中系数计算、应力强度因子计算的试验方法; 7、掌握剪应力差法计算任一界面的应力分量的方法。 二、实验内容和原理(必填) 光弹性应力分析曾经是复杂结构应力分析的重要方法。在有限元方法高度发展的背景下,光弹性方法测试应力分布的手段已经逐渐淡化,但是对于研究应力分布规律还是具有独特的魅力。其特点为:可以直接测量应力的大小和方向;可显示全场应力分布,进行全场分析可测内部应力及其3向应力场。 在偏振光场中,各向同性的光弹性模型在载荷作用下会产生暂时双折射效应,其主折射率和主应力有关,主折射率又可由相应的光程差来确定,因此可用光程差来确定主应力。一束自然光通过起偏镜后,会产生平面偏振光。它垂直透射一个受载荷的平面模型时,沿着模型的一点的两个主应力 和 的方向分 解成两束速度不同的平面偏振光,它们通过模型后,产生一个相对光程差⊿。实验表明,模型的主应力和与光程差⊿之间的关系如下:即。(式中为等差线(又称等 色线)条纹级数;为光弹性材料条纹值;δ为光弹性模型的厚度;λ为光源的波长; 为 应力光学常数。) 根据光弹理论,在正交圆偏振光场暗场下得到整数级的等差条纹,在平行圆偏振光场明场下得到半数级等差条纹图。正交圆偏振光场下采用白光光源,可得到彩色条纹并确定条纹级数,黄—红—蓝—绿指示着光程差即主应力差增加的方向,并以红蓝间的绀色作为整数条纹位置。但因高级次彩色条纹不够清晰,故在描绘等差线图时可实用单色光源如钠光以提高测量精度。 而在平面偏振光场下,模型中凡主应力方向与偏振镜轴重合的点都将消光干涉形成黑条纹即等倾线,换句话说,同一条等倾线上个点的主应力方向相同。俩偏振轴垂直、水平正交时对应0o (90o )等倾线, 专业: 日期: 地点: 课程名称: 现代固体实验技术 指导老师: 成绩: 实验名称: 实验五梁截面应力光弹测量 同组学生姓名学号: 令狐烈

应力集中系数的光弹性测定

实验十一应力集中系数的光弹性测定 一、实验目的 1.了解光弹性实验原理和光弹仪的使用方法; 2.用光弹法测定带孔拉板(或带槽拉板)的应力集中系数α。 二、光弹性实验的基本原理与方法 光弹性实验法是实验应力分析中的重要方法之一,在设计产品或科研中有着广泛的应用。它有许多种方法,例如模型法,贴片法等,这里着重介绍模型法。模型法是利用透明的塑料制成构件模型,其尺寸与构件几何相似,所加载荷也与实际构件上所受载荷相似,当模型受载时,模型中任一点沿其两个主应力方向的折射率不同,即产生暂时双折射现象。当此种受力模型置于偏振光场中,就会观察到由于这种暂时双折射而引起的干涉条纹。研究表明,这些干涉条纹与各点的主应力差及主应力方向有关,因而通过对这些条纹图(称为应力光图)的观察并借助于一些辅助手段可以测得模型内的应力,然后,由相似理论可将模型应力换算成实际构件中的应力。 1.光弹性实验仪的光路如图16所示,光源发出的光束经准光镜变为平行光。通过起偏振镜后,变成只在一个平面内振动的平面偏振光,再通过第一个1/4波片,成为圆偏振光。模型后面依次为第二个1/4波片、检偏振镜、成象透镜、滤色镜、光栏等,最后在屏幕上成像。通常起偏振镜与检偏振镜的偏振轴是正交的,而相应的两个1/4波片的快、慢轴分别与偏振镜的偏振轴成±45°角。这样组成正交圆偏振光场,在屏幕上光场背景是暗的,称为暗场,若两偏振镜的偏振轴相平行,此时背景是亮的,称为明场。 图16 光弹仪光路 2.光弹性实验基本原理 当图16中的一对1/4波片取下时,模型处于平面偏振光场中,起偏振镜后的平面偏振光入射受力模型某点时,光波将沿着该点的两个主应力方向分解为两支平面偏振光,而且这两支平面偏振光传播的速度不相等(此即暂时双折射现象),因此,在通过模型后,这两支平面偏振光波使产生了光程差δ如图17。 -31-

光弹性实验

光弹性实验 实验指导(for students) 一、实验目的 (一)认识光弹仪各部件的名称和作用,初步了解光弹性实验的基本原理和方法。 (二)观察光弹性模型受力后在偏振光场中的光学效应。 二、预习要求 在实验前,阅读教材中有关光弹性实验的内容,了解光弹性实验的基本原理。 三、仪器设备及工作原理 (一)实验设备:光弹仪(409—Ⅲ型) (二)试件: 1. 带孔平板拉伸试件; 2.圆盘压缩试件; 3.纯弯曲梁试件; 4.伞齿轮三维切片试件。 (三)光弹仪构造及工作原理 1.光弹仪构造 光弹仪由光源、准直透镜、起偏振镜、1/4波片、加载架、1/4波片、检偏振镜、视场透镜、屏幕或相机等部件组成。 2.光弹仪工作原理 光源发出的单色光,经过起偏振镜后,变成一束平面偏振光,其振动方向与起偏振镜的偏振轴一致。此偏振光通过受力模型的某一点时将产生双折射现象,即入射的偏振光沿两个主应力(σ1,σ2)方向分解为两束相互垂直的偏振光,而且分解后的两束偏振光在模型内的传播速度不同,所以它们离开模型时就产生了光程差△,经推导可知,光程差△与主应力差σ1-σ2,模型厚度h,以及模型材料本身的光学常数C有关:△=Ch(σ1-σ2),此式称为应力——光学定律。 为了测量△,需要把两束出射光波变成在一个方向上振动的光波,才能产生光的干涉,因此在模型后面放入另一个偏振镜,其偏振轴与起偏镜的偏振轴相互垂直,称为检偏振镜。这样,两束出射光波通过检偏振镜后将在一个面上振动(沿检偏镜的偏振轴方向),当两束光波相位相同时,光强得到加强;当两束光波相位相反时,光强将减弱。因而形成明暗相间的干涉条纹。根据这些条纹(等差线、等倾线)可以得到该点的主应力差和主方向,再配合其他方法(如剪应力差法、斜射法)即可求得该点的两个主应力及对应的主方向。 四、实验过程 (一)接通电源,使光弹仪处于工作状态。 (二)将模型(试件)置于加载架上,给定载荷进行实验。 1. 观察带孔平板受拉伸时的等差线图,判别等差线条纹级数的大小,观察孔边应力集中现象。 2. 观察对径受压圆盘的等差线、等倾线图,同步旋转偏振镜观察等倾线的变化。 3.观察纯弯曲梁的等差线图。 4.观察伞齿轮三维切片的等差线图,了解三维光弹性应力分析原理。

郑州大学实验力学报告(2)

实验 6 光弹性实验 实验目的: 1. 测定光弹性材料条纹值。 2. 测定偏心拉试样边界应力。 3. 了解光弹性基本原理与方法。 实验设备: 光弹仪、环氧树脂模型 小组名单: 实验日期: 2011 年 12 月 16 日 实验原理: 1. 永久双折射和暂时双折射:晶体的双折射性质是晶体的固有特性,这种双折射叫永 久双折射;有些光学各向同性透明材料,如环氧树脂、赛璐璐、玻璃等是不具有双折射性质的,但是当他们受荷载作用时,也会产生双折射现象,而当荷载卸除后,双折射现象又随即消失,这种双折射叫暂时双折射。 2.光弹仪

1 3.偏振光场的布置与调整 (1)平面偏振场: (2)圆偏振场: 3.等倾线与等差线 等倾线:由主应力方向相同的点构成的线。 等差线:由主应力差相同的点构成的线,类似于等高线。 4.应力光性定律 n h f σ σσ= -21;其中σf 为应力条纹值。 5.塔尔迪补偿法 正向旋转检偏镜,使测点O 附近的n 级等差线移到该点,若此时检偏镜转角为n β,则测点O 处的非整数级条纹级次为 180 n o n n β+ =;若反向旋转检偏镜,使n+1级等差线移至 O 点,设检偏镜转角为1+n β,则该点处的非整数等差线级次为 180 11 +- +=n o n n β 原始记录: 实验得到的现象如图片所示,其中图一为等倾线,有十张图片,从左到右从上到下依次分别对应0到90度角。图二为等差线,左边是暗场,右边是亮场。在偏心拉实验中得到的n β为18度,且n=2。

2 图一:等倾线 图二:等差线 数据处理: 把十张等倾线的图叠加到一起则得到了图三所示的等倾线图;图四和图五分别为暗场和亮场的等差线图,图六为这两个图的叠加。由n β和n 的值算得偏心拉实验中材料边缘点的非整数级条纹级次为 180n o n n β+ ==2.1 等差线(暗场) 等差线(亮场)

光弹性实验报告

陈汭 5080109117 光弹性实验报告 实验目的:1、测定材料条纹值; 2、学习应力集中系数的光弹性测法。 实验器材:光弹性仪 实验原理: 1、双正交圆偏振场的光路 在暗场中,单色光通过起偏镜后成为平面偏振光,该光波沿四分之一波片的快、慢轴分解成两束平面偏振光: 12sin cos 45sin sin 45u a t u a t ωω=???=? ? 经过四分之一波片后,沿快、慢轴产生相位差为2 π的两束光: 12cos sin 2 u t u a t ωω?'=????'=?? 这两束光合成圆偏振光,圆偏振光在到达模型上的O 点时沿主应力12σσ、的方向分解且通过模型后,产生相位差δ的两束光,即 12cos()sin()2 u t u a t σσωβδωβ?'=-+????'=-?? 式中,β为主应力1σ与第一块四分之一波片的快轴的夹角。 到达第二块四分之一波片时,这两束光波又沿此波片的快、慢轴分解,且通过第二块四分之一波片后,产生相位差为2 π的两束光,即 [ ][]34cos()cos sin()sin cos()sin sin()cos 2 u a t t u a t t ωβδβωββωβδβωββ?'=-+--????'=-+--?? 这两束光通过检偏镜后产生偏振光: 534()cos 45sin cos(2)22u u u a t δδ ω?''=-?=++

在明场中,只是检偏镜的偏振轴旋转90?,从检偏镜射出的合成光为 cos cos()22 u a t δδω=- 2、测定材料条纹值 使用纯拉伸时间,宽度为b ,长度为l ,在轴向拉伸载荷P 作用下,试件中任意点的应力为12,0P bh σσ==。测得纯拉伸区域的等差线条纹级数为n ,则材料条纹值为 P f bn = 3、应力集中系数 开孔平板的最大应力在孔边,为 max max N f t σ= 其中t 为试件厚度。而拉伸平板最小截面上的名义应力为 ()n P b D t σ=- 其中b 为试件宽度,D 为中心孔直径,故理论应力集中系数为 max max ()n N f b D P σασ-== 实验数据记录及数据处理:

实验应力分析考试试题及答案

共1 页第1 页 合肥工业大学土木工程学院研究生考试试题 考试科目:实验应力分析 、名词解释(每题 1.电阻应变片 3 ?中间转换器 5. 最小二乘法 7 .电阻温度计 9 .偶然误差 .压电效应 .D/A 和A/D 转换器 .热电偶 .随机振动 .温度补偿 、问答题(每题10分,共60 分) 1.非电参量测法具有哪些优点? 2 .在测量过程中产生误差的原因有哪几方面? 3 .常用的电阻应变片有哪几类? 4 .传感器有什么作用和如何分类? 5.应变片的粘结剂应满足哪些要求? 6 .应变仪由哪几个主要组成部分,各有哪些功能? 4分,共40 分) 10

一、名词解释 1.电阻应变片 电阻应变片是利用电阻应变片受力后出现变形致使电阻值发生变化的原理来测量被测物理量的大小的一种传感器。 2.压电效应物质在机械力作用理发生变形时,内部产生极化,而表面产生符号相反的电荷,而当外力消失时表面电荷也随之消失,这种现象称之为压电效应。 3.中间转换器被测非电量参数经传感器变换后转化为电参量,通常必须经过再变换、放大、预处理等工作后才能进行显示、记录或由计算机进行数据处理。这些中间环节是测量系统不可缺少的组成部分,通称中间变换器。 4.D/A和A/D转换器 在检测与控制信号中,如位移、速度、温度等连续的物理量经传感器变换为连续的电压压或电流,通称为模拟量。在很多情况下仪表显示、数据处理要用数字来表示,这些用数字来代替的离散量称为数字量。测试仪器内将模拟量转为数字量装置即是A/D 转换器,反之数字量转为模拟量装置 即是D/A转换器。 5.最小二乘法 最小二乘法在误差理论中的基本含义是在具有多精度的多次测量中求最可靠(最可信赖)的值时,当各测量值的残差平方为最小时的结果。在所有拟合的方程的方法中,最小二乘法的误差最小。 6.热电偶 由两种不同的导体A和B两端相连组成回路。当两个接头端的温度不同时在回路中就有电流通过,即回路内出现了电动势,称为热电势。组成回路的A、B 导体称为热电极。整个回路则称之为热电偶。 7.电阻温度计 电阻温度计是根据导体或半导体的电阻值随温度变化而改变的性质,通过测试电阻的大小来了解温度变化的一种温度计。这种温度计可测量-200?5000C的范围。尤其在低温测量方面性能更佳, 最低可达1?3K。 8.随机振动 随机振动是振动随时间变化过程(振动时间历程)没有确定的规律,没有确定的振动周期和频 率,各瞬时的振幅也完全不同。因此随机振动不能用时间的确定函数来表示,只能用统计特性来描述。 9.偶然误差在测试工作中有些误差可以避免,有些误差则不能避免。对于不能避免的误差称作偶然误差,或随机误

光弹实验报告

光弹实验报告 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

光弹性应力测试 实验报告 指导教师:王美芹 学院: 班级: 学号: 姓名: 一、实验内容与目的 1.了解光弹性试验的基本原理和方法,认识偏光弹性仪; 2.观察模型受力时的条形图案,认识等差线和等倾线,了解主应力差和条纹值得测量; 3.利用图像处理软件,对等倾线和等差线条纹进行处理。 二、实验设备与仪器 1.由环氧树脂或聚碳酸酯制作的试件模型一套; 2.偏光弹性仪及加载装置。 三、实验原理 光弹性实验主要原理是根据光的这一特性:光在各项同性材料中不发生双折射,而在各向异性的材料中发生双折射,且光学主轴与应力主轴重 合。模型材料在受力前为各向同性材料,受力后部分区域变成各向异性,然后再根据光的干涉条件可知,在正交平面偏振场中,当光程差为波长整数倍时(等差线)或者模型应力主轴与偏振轴重合时(等倾线)光的强度

为零,相应地显示出来的条纹为暗条纹,而在平行平面偏振场中,根据干涉条件可知,在正交平面偏振场中的暗纹条件恰好为平行平面偏振场亮纹的条件。然而,等倾线和等差线在一个图像上显示,难免会使图像不清晰,为了改进实验,我们在实验中把平面偏振场改为圆偏振场,这样就可以得到清晰的等倾线,它与平面偏振场的区别是在装置的模型两侧分别加了一个四分之一波片,当然了,也可以通过快速旋转正交偏振轴,快到应力模型上不同度数等倾线的取代过程用肉眼分辨不出来来消除等倾线的影响。 应力模型所使用的仪器为偏光弹性仪,由光源(包括单色光源和白光光源)、一对偏振镜、一对四分之一波片以及透镜和屏幕等组成,其装置简图1。 正交时开成暗场,通常调整一偏振镜轴为竖直方向,另一为水平方向。当两偏振镜轴互相平行时,则呈亮场。M是四分之一波片,若把四分之一波片的快慢轴调整到与偏振片的偏振轴成45o的位置,就可以得到圆偏振光场。 (1)平面光弹性的应力—光学定律

光测技术实验报告

光测技术实验报告 实验一:光弹仪认识、实验二:材料条纹值的测定、实验三:平面应力光弹实验

实验一:光弹仪认识 一、实验目的 1.了解光弹仪各部分的名称和作用,掌握光弹仪的使用方法。 2.观察光弹性模型受力后在偏振光场中的光学效应。 二、仪器设备 1.光弹性仪。 2.光弹性模型。 三、实验步骤 1.观看光弹性仪各个部分,了解其名称和作用。 2.调整光源及各镜片和透镜的高度,使它们的中心线在同一条水 平线上。 3.正交平面偏振布置的调整:首先,卸下两块四分之一波片(将四分之一波片转动到0 度),旋转一个偏振片,使呈现暗场,表示它们的偏振轴正交。然后, 开启白光光源,将一个标准试件放在加载架上,是试件平面与光路垂直,并使其承受铅垂方向的径向压力。同步起偏镜及检偏镜,直至圆盘模型上出现正交黑十字形。 4.双正交圆偏振布置的调整:在调整好的正交平面偏振布置中,先旋转一个四分之一波片,使检偏镜后看到的光场最暗。然后将四分之一波片任意方向旋转45 度,在将另外一个四分之一波片旋转,使光场再次最黑。这时,两块四分之一波片是相互正交的。 5.施加载荷后,从中间出现黑色条纹,增大载荷,条纹向两边扩散,出现多级条纹。

实验二:材料条纹值的测定 一、实验目的 1.学会测定光弹性材料条纹值 二、实验原理 1.对径受压圆盘条纹值的测定 圆盘半径为D ,厚度为h ,载荷为P ,则材料条纹值为 8P f DN π= 三、实验步骤 1.调整光弹仪各镜轴位置,呈正交平面偏振布置。 2.调整加载架,安装试件。 3.记录等差线图 4.算出标准试件的材料条纹值。 四、实验原始数据 N=1, P=23.

光弹性实验

光弹性实验 一.实验目的 1.光弹性实验是一种光学的应力测量方法,是材料力学实验的重要组成部分。通 过该实验熟悉光弹性等色条纹级次的判定方法。 2.理解材料条纹的力学意义 二.实验原理 塑料、玻璃等非晶体在通常情况下是各向同性而不产生双折射现象的。但是当它们受到应力的时候,就会变成各向异性而显示出双折射性质,这种现象称为光弹性效应。 光弹性法的光源有单色光和白光两种,单色光是只有一种波长的光;白光则是由红、橙、黄、绿、青、蓝、紫等七种单色光组成的。发自光源的自然光是向四面八方传播的横振动波。当自然光遇到偏振片时,就只有振动方向与偏振轴平行的光线才能通过,这就形成平面偏振光,其振动方程为 vt A u λ π 2sin = (1) 式中A 为光波的振幅,λ为单色光的波长,v 为光波的传播速度,t 为时间。根据光学原理,偏振光的强度与振幅A 的平方成正比,即 2 KA I = (2) 比例常数K 是一个光学常数。 用具有双折射性能的透明材料(如环氧树脂塑料或聚碳酸脂塑料)制成与实际构件相似的模型,并将它放在起偏镜和检偏镜之间的平面偏振光场中(见图1)。当模型不受力时,偏振光通过模型并无变化。如模型受力,且其某一单元的主应力为1σ和2σ,则偏振光通过这一单元时,又将沿1σ和2σ的方向分解成互相垂直,传播速度不同的两束偏振光,这种现象称为双折射。由于两束偏振光在模型中的传播速度并不相同,穿过模型后它们之间产生一个光程差?。实验结果表明,?与该单元主应力差()21σσ-和模型厚度h 成正比,即 ()21σσ-=?Ch (3) 式中比例常数C 与光波波长和模型材料的光学性质有关,称为材料的光学常数。公式(3)称为应力光学定律。光弹性法的实质,是利用光弹性仪测定光程差?的大小,然后根据应力光学定律确定主应力差。 三.平面偏振布置 P A Ψ σ 1 σ 2 u u 1,u ‘ 1 u 2,u ‘ 2 o 图2偏振轴与应力主轴的相对位置 图1 受力模型在正交平面偏振布置中 光源 起偏镜 模型 检偏镜 P A

相关文档
最新文档