高中数学数列求和的常见方法
数列求和的七种基本方法
数列求和的七种基本方法在数学中,数列是一系列按一定规律排列的数值,求和则是将数列中的所有数值相加的运算。
数列求和是数学中非常重要的一部分,它不仅在数学中具有广泛的应用,也在其他学科如物理学、经济学等中发挥着重要的作用。
在数列求和问题中,有许多种基本的方法可以帮助我们解决问题。
一、综合物理方法(高中物理方法):物理学中,我们经常遇到等差数列求和的问题,例如计算平均速度。
我们可以利用物理公式来求解数列的和。
假设一个运动物体在时间t内以a的加速度匀加速运动,初速度为v0,则末速度v= at + v0。
利用等差数列的思想,将时间划分为无穷小时间片段dt,则位移ds= (at + v0)dt。
将位移累加起来,即可得到整个时间段内的位移S。
我们可以通过对时间积分求和来解决这个问题。
二、找到规律在数列求和的问题中,我们常常需要根据数列的规律来进行求和。
数列的规律可以通过观察数列的前几项,并进行逻辑推理来得出。
有时,根据数列的规律,我们可以将数列拆分成若干个简单的数列,从而方便我们进行求和。
例如,对于等差数列an = a1 + (n-1)d,我们可以将其拆分为两个数列,一个是由首项、末项构成的数列(an = a1 + (n-1)d),另一个是由末项、首项构成的数列(a1 = an - (n-1)d)。
我们可以对这两个数列进行求和,然后将结果相加,即可得到等差数列的和。
同样地,对于等比数列an = a1 * q^(n-1),我们可以将其拆分为两个数列,一个是由首项、末项构成的数列(an = a1 * q^(n-1)),另一个是由末项、首项构成的数列(a1 = an / q^(n-1))。
我们可以对这两个数列进行求和,然后将结果相加,即可得到等比数列的和。
三、利用前缀和前缀和也叫做累加和,是指从数列的第一项开始,逐项进行求和,得到的数列。
求和前缀和的过程可以通过递推公式来表示。
对于一个数列{a1, a2, a3, ..., an},它的前缀和表示为{S1, S2, S3, ..., Sn},其中Si表示数列的前i项的和。
数列求和常见的7种方法
数列求与得基本方法与技巧一、总论:数列求与7种方法:利用等差、等比数列求与公式错位相减法求与反序相加法求与分组相加法求与裂项消去法求与分段求与法(合并法求与)利用数列通项法求与二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法,三、逆序相加法、错位相减法就是数列求与得二个基本方法。
数列就是高中代数得重要内容,又就是学习高等数学得基础。
在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、一、利用常用求与公式求与利用下列常用求与公式求与就是数列求与得最基本最重要得方法。
1、等差数列求与公式:2、等比数列求与公式:3、4、5、[例1]已知,求得前n项与。
解:由由等比数列求与公式得(利用常用公式)===1-[例2]设S n=1+2+3+…+n,n∈N*,求得最大值、解:由等差数列求与公式得, (利用常用公式)∴===∴当,即n=8时,二、错位相减法求与这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn}得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。
[例3]求与:………………………①解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积设………………………。
②(设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列得求与公式得:∴[例4] 求数列前n 项得与、解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积设…………………………………①………………………………② (设制错位)①—②得 (错位相减)∴三、反序相加法求与这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。
高考数学专题—数列求前n项和的5种常用方法总结
高考数学专题——数列(求S n )求s n 的四种方法总结常考题型:共5种大题型(包含倒序相加法、错位相减法、裂项相消法、分组转化法、并项求和法。
1、倒序相加法:实质为等差数列求和。
例1、【2019·全国2·文T18】已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.【解析】(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0,解得q=-2(舍去)或q=4. 因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2. 2、错位相减法:实质为等差×等比求和。
错位相减法的万能公式及推导过程:公式:数列c n =(an +b )q n−1,(an +b )为等差数列,q n−1为等比数列。
前n 项和S n =(An +B )q n +C A =a q −1,B =b −Aq −1,C =−B S n =(a +b )+(2a +b )q +(3a +b )q 2+⋯[(n −1)a +b ]q n−2+(an +b )q n−1 ① qS n =(a +b )q +(2a +b )q 2+(3a +b )q 3+⋯[(n −1)a +b ]q n−1+(an +b )q n ② ②-①得:(q −1)s n =−(a +b )−a (q +q 2+⋯q n−1)+(an +b )q n=−(a +b )−a ⋅q(1−q n−1)1−q+(an +b )q n=(an +b −aq−1)q n −(b −aq−1)S n =(aq −1⋅n +b −a q −1q −1)⋅q n −b −aq −1q −1例2、【2020年高考全国Ⅰ卷理数】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得1232,a a a =+ 即21112a a q a q =+.所以220,q q +-= 解得1q =(舍去),2q =-. 故{}n a 的公比为2-.(2)设n S 为{}n na 的前n 项和.由(1)及题设可得,1(2)n n a -=-.所以112(2)(2)n n S n -=+⨯-++⨯-,21222(2)(1)(2)(2)n n n S n n --=-+⨯-++-⨯-+⨯-.可得2131(2)(2)(2)(2)n n n S n -=+-+-++--⨯-1(2)=(2).3n n n ---⨯-所以1(31)(2)99nn n S +-=-. 例3、【2020年高考全国III 卷理数】设数列{a n }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【解析】(1)235,7,a a == 猜想21,n a n =+ 由已知可得 1(23)3[(21)]n n a n a n +-+=-+, 1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯. ①从而23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯.②-①② 得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯,所以1(21)2 2.n n S n +=-+例4、【2020届辽宁省大连市高三双基测试数学】已知数列{}n a 满足:n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,2n n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(I )求12,a a 的值;(Ⅱ)试求数列{}n a 的前n 项和n S .【解析】(Ⅰ)方法一:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列 21221a a ∴=⨯ 214a a ∴=又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列 2121122a a ∴-=,解得1228a a =⎧⎨=⎩方法二:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列,1112,n n a n a n+∴=1(1)2n n n a a n ++∴=.①又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列, 11122n nn na a ++∴-=② 由①②解得:2nn a n =⋅1228a a =⎧⎨=⎩ (Ⅱ)1122,1n n n a a n -=⋅= 2n n a n ∴=⋅123n n S a a a a =+++⋅⋅⋅+1231222322n n =⋅+⋅+⋅+⋅⋅⋅+⋅ 234121222322n n S n +∴=⋅+⋅+⋅+⋅⋅⋅+⋅两式作差可得:23122222n n n S n +-=+++⋅⋅⋅+-⋅()1212212n n n n S +-=-⋅--1(1)22n n n S +=⋅---, 1(1)22n n S n +∴=-⋅+.例5、【2020届江西省吉安市高三上学期期末数学】数列{}n a 的前n 项和为n S ,且满足11a =,121n n a S +-=.(I )求{}n a 的通项公式;(Ⅱ)若3log n n b a =,数列2221n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,求证:12nT <.【解析】(I )当1n =时,由11a =,2121a a -=得23a =;当2n ≥时,121n n a S --=,两式相减得()1120n n n n a a S S +----=, 即13n n a a +=(2)n ≥,又2133a a ==, 故13n n a a +=恒成立,则数列{}n a 是公比为3的等比数列,可得13-=n n a . (Ⅱ)由(I )得313log log 31n n n b a n -===-,则22211111(21)(21)22121n n b b n n n n +⎛⎫==- ⎪⋅-⋅+-+⎝⎭,则111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭. 1021n >+ 11112212n ⎛⎫∴-< ⎪+⎝⎭ 故12n T <例6、【2017·天津·理T18】已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).【解析】(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2. 所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8.①由S 11=11b 4,可得a 1+5d=16,②联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n, 故T n =2×4+5×42+8×43+…+(3n-1)×4n,4T n =2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n =3n -23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n -23×4n+1+83. 例7、【2020·石家庄模拟】设数列{a n }的前n 项和为S n ,且2S n =3a n -1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n . 解:(1)由2S n =3a n -1,① 得2S n -1=3a n -1-1(n ≥2),② ①-②,得2a n =3a n -3a n -1, 所以a n a n -1=3(n ≥2),又2S 1=3a 1-1,2S 2=3a 2-1, 所以a 1=1,a 2=3,a 2a 1=3, 所以{a n }是首项为1,公比为3的等比数列, 所以a n =3n -1.(2)由(1)得,b n =n3n -1,所以T n =130+231+332+…+n3n -1,③13T n =131+232+…+n -13n -1+n 3n ,④ ③-④得,23T n =130+131+132+…+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n ,所以T n =94-6n +94×3n . 3、裂项相消法:实质为a n =b n (n+a )形式的求和。
数列求和常见五法
数列求和常见五法一、公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求.①等差数列求和公式:()()11122n n n a a n n S na d +-==+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q qq ⎧=⎪=-⎨-=≠⎪--⎩ 二、倒序相加法:如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。
这一种求和的方法称为倒序相加法. 例1:设等差数列,公差为,求证:的前项和= 证明:...........① 倒序得:............②①+②得:又===...=针对训练:求值:222222222222123101102938101S =++++++++ 三、错位相减法:类似于等比数列的前n 项和的公式的推导方法。
若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法. 若n n n a b c =∙,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令112211n n n n n S b c b c b c bc --=++++ 则n qS =122311n n n n b c b c b c b c -+++++两式相减并整理即得例2、已知 12n n a n -=∙,求数列{a n }的前n 项和S n .解:01211222(1)22n n n S n n --=+++-+ ①12121222(1)22n n n S n n -=+++-+ ②②—①得01121222221n n n n n S n n -=---=-+小结:错位相减法的求解步骤:①在等式两边同时乘以等比数列{}n c 的公比q ;②将两个等式相减;③利用等比数列的前n 项和的公式求和.针对训练:、求和:()23230,1n n S x x x nx x x =++++≠≠四、裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。
数列求和的常见方法
数列求和的常见方法数列求和是高中数学中重要的概念之一,常见的数列求和方法有多种,包括等差数列求和公式、等比数列求和公式、Telescoping Series(直线和数列)等。
在本文中,我将介绍这些常见的数列求和方法,并给出相应的例子以加深理解。
一、等差数列求和公式等差数列是指一个数列中每个数与它的前一个数的差都相等的数列。
数列求和公式是指利用数列的首项、末项和项数等信息,直接求得数列的和的公式。
等差数列的求和公式为:Sn = (a1 + an)n/2,其中Sn表示数列前n项和,a1表示首项,an表示末项,n表示项数。
例1:求等差数列1,4,7,...,97的和。
解:这是一个等差数列,首项a1 = 1,末项an = 97,项数n =(an - a1)/d + 1 = (97 - 1)/3 + 1 = 33、代入公式Sn = (a1 + an)n/2,得到S33 = (1 + 97)× 33/2 = 1617二、等比数列求和公式等比数列是指一个数列中每个数与它前一个数的比都相等的数列。
数列求和公式是指利用数列的首项、末项和项数等信息,直接求得数列的和的公式。
等比数列的求和公式为:Sn=a1×(1-q^n)/(1-q),其中Sn表示数列前n项和,a1表示首项,q表示公比。
例2:求等比数列2,4,8,...,1024的和。
解:这是一个等比数列,首项a1 = 2,末项an = 1024,q = an/a1= 1024/2 = 512、项数n = logq(an/a1) + 1 = log512((1024/2)/2) +1 = 10。
代入公式Sn = a1 ×(1 - q^n)/(1 - q),得到S10 =2 ×(1 - 512^10)/(1 - 512) = 2046三、Telescoping Series(直线和数列)Telescoping Series是一种特殊的数列,其中每个项都可以通过其前一项和下一项抵消,最终只剩下首项和末项。
高中数学数列求和题解题方法技巧
高中数学数列求和题解题方法技巧数列求和的七种解法1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。
2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。
例如等差数列的求和公式,就可以用该方法进行证明。
3.错位相减:形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。
对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。
这种数列求和方式叫做错位相减。
4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。
5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。
6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。
7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜想证明起到了关键作用。
高中数学解题方法实用技巧1解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
高中数学数列求和的五种方法
⾼中数学数列求和的五种⽅法⼀、公式法求和例题1、设 {an} 是由正数组成的等⽐数列,Sn为其前 n 项和,已知 a2 · a4=1 , S3=7,则 S5 等于( B )(A) 15/2 (B) 31/4 (C) 33/4 (D) 17/2解析:∵ {an} 是由正数组成的等⽐数列 , 且 a2 · a4 = 1, q > 0 ,例题1图注:等⽐数列求和公式图例题2、已知数列 {an} 的前 n 项和 Sn = an^2+bn (a、b∈R), 且 S25=100 , 则a12+a14等于( B )(A) 16 (B) 8 (C) 4 (D) 不确定解析:由数列 {an} 的前 n 项和 Sn = an^2 + bn (a、b∈R), 可知数列 {an} 是等差数列,由S25= 1/2 ×(a1 + a25)× 25 = 100 ,解得 a1+a25 = 8,所以 a1+a25 = a12+a14 = 8。
注:等差数列求和公式图⼆、分组转化法求和例题3、在数列 {an} 中, a1= 3/2 ,例题3图(1)解析:例题3图(2)故例题3图(3)∵ an>1,∴ S < 2="">∴有 1 < s=""><>∴ S 的整数部分为 1。
例题4、数列例题4图(1)例题4图(2)解析:例题4图(3)三、并项法求和例题5、已知函数 f(x) 对任意 x∈R,都有 f(x)=1-f(1-x), 则 f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) 的值是多少?解析:由条件可知:f(x)+f(1-x)=1,⽽x+(1-x)=1,∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1,∴ f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) = 3。
高中数学 数列求和的常用方法
数列求和的常用方法(1)公式求和法:①等差数列、等比数列求和公式②重要公式:1+2+…+n=12n(n+1);12+22+…+n2=16n(n+1)(2n+1);13+23+…+n3=(1+2+…+n)2=14n2(n+1)2;(2)裂项求和法:将数列的通项分成两个式子的代数和,即a n=f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.用裂项法求和,需要掌握一些常见的裂项,如:a n=1(A n+B)(A n+C)=1C-B(1A n+B-1An+C);1n(n+1)=1n-1n+1;(3)错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错位相减法.a n=b n c n,其中{b n}是等差数列,{c n}是等比数列(4)倒序相加法:S n表示从第一项依次到第n项的和,然后又将S n表示成第n项依次反序到第一项的和,将所得两式相加,由此得到S n的一种求和方法.(5)通项分解法(分组求和法):有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.a n=b n±c n(6)并项求和法:把数列的某些项放在一起先求和,然后再求S n.如:1002-992+982-972+ (22)12的和.(7)利用通项求和法:先求出数列的通项,然后进行求和数列求和的其他方法(倒序相加,错位相减,裂项相加等)•数列求和的常用方法:1.裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和;2、错位相减法:源于等比数列前n项和公式的推导,对于形如的数列,其中为等差数列,为等比数列,均可用此法;3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。
4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。
高中数学数列求和方法
高中数学数列求和方法数列是数学中常见的概念之一,它是由一系列有序的数所构成的集合。
数列求和是数列中的重要问题之一,可分为等差数列和等比数列求和两类。
一、等差数列求和1.表达式法对于等差数列,其通项公式为an=a1+(n-1)d,其中a1表示首项,d表示公差。
若已知数列的首项、末项和项数,则可以根据求和公式Sn=n(a1+an)/2来求和,其中Sn表示数列的和。
这种方法适用于已知数列的前n项求和。
2.规律法有些等差数列存在规律,可通过分组进行求和。
例如,对于等差数列1,4,7,…,97,可将其分解为(1+97)+(4+94)+(7+91)+…+(49+49),共有25组,每组的和都是98、因此,该数列的和等于25×98=2450。
3.差分法等差数列的求和还可以利用差分法进行求解。
首先将数列的前n项依次相减得到一个新的数列,然后再对新数列进行求和,即可得到原数列的和。
例如,对于等差数列1,2,3,…,100的和,首先得到的差分数列为1,1,1,…,1,接着对差分数列进行求和,得到的和等于100。
二、等比数列求和1.通项公式法等比数列的通项公式为an=a1×q^(n-1),其中a1表示首项,q表示公比。
已知数列的首项、末项和项数时,可以利用求和公式Sn=a1(q^n-1)/(q-1)来求和。
这种方法适用于已知数列的前n项求和。
2.等比中项法对于等比数列,若首项和第三项已知,则可以求出公比q=(第3项/首项)^(1/2),从而求得数列的和。
这种方法适用于已知数列的首项和第三项求和。
3.分组求和法对于一些等比数列,可以通过合理的分组求和来得到数列的和。
例如,对于等比数列1,3,9,…,6561,可以发现这个数列可以分解为(1+3)+(3+9)+(9+27)+…+(2187+6561),共有10组,每组的和为4、因此,该数列的和等于10×4=40。
三、求和公式的推导1.等差数列求和公式的推导我们将等差数列的前n项分别记作a1,a2,…,an。
数列求和方法总结
数列求和方法总结数列求和是数学中一个非常常见且重要的问题,它出现在各个领域的数学问题中,并且在高中数学及以上的学习中经常遇到。
在解决数列求和问题时,我们可以通过多种方法,其中包括代入法、消元法、几何法、差分法、数学归纳法等等。
下面我将对这些方法进行详细的总结与说明。
1. 代入法:代入法是一种常见的求和方法。
我们可以通过代入来求和项的个数和具体数值。
首先,我们需要确定数列的通项公式,然后将要求和的项数具体代入到通项公式中,求出每一项的数值,最后再将这些数值相加即可得到所求的数列的和。
例如,要求等差数列1、3、5、7、9的前n项和,我们可以先找到通项公式为an=2n-1,然后代入每一项的数值,得到1、3、5、7、9,最后相加得到的和为(1+9)*5/2=25。
2. 消元法:消元法是一种常用的数学方法,在求和问题中也有广泛应用。
通过对求和式进行变形,我们可以通过消除多项式的常数项、控制变量项或者引入新的变量来简化求和的步骤,从而得到更简单的表达式。
例如,要求等差数列1、2、3、4、5的前n项和,我们可以通过对求和式进行变形,得到Sn=(n+1)*n/2。
3. 几何法:几何法是一种求解数列求和的常见方法,它通常适用于等比数列求和问题。
当数列的各项之间的比值存在规律时,我们可以通过将数列的各项代入到几何模型中来计算求和的方法。
例如,要求等比数列1、2、4、8、16的前n项和,我们可以将这些数列代入等比数列的几何模型中,即1、2、2^2、2^3、2^4,可见,这是一个以2为公比的等比数列。
根据等比数列的求和公式Sn=a1*(r^n-1)/(r-1),代入数值可得到所求的和。
4. 差分法:差分法是一种通过对数列进行差分来求和的方法。
它通常适用于数列之间的差为常数或规律的数列,通过对数列进行差分可以简化求和的过程。
例如,要求等差数列1、3、5、7、9的前n项和,我们可以通过差分法来解决,即将数列进行差分得到2、2、2、2,可以发现这是一个公差为2的等差数列。
数列求和公式方法总结
数列求和公式方法总结数列求和是高中数学中的重要内容之一,也是许多学生难以消化的内容。
不同的数列有不同的求和公式,本文将总结数列求和的常见方法和公式,助力学生更好地掌握数列求和的技巧。
一、等差数列的求和公式:等差数列是最常见的数列之一,其特点是每个项之间的差值是相等的。
设首项为a₁,公差为d,末项为aₙ,则等差数列的求和公式为:Sₙ=(a₁+aₙ)×n÷2Sₙ=(a₁+aₙ)×(n+1)÷2其中,Sₙ表示前n项和。
二、等比数列的求和公式:等比数列是指数列中任意两个相邻项之间的比值相等的数列。
设首项为a₁,公比为q,末项为aₙ,则等比数列的求和公式为:Sₙ=(a₁×(qₙ-1))÷(q-1)其中,Sₙ表示前n项和。
三、二次数列的求和公式:二次数列是指每个项与前一个项之间的关系满足一次方程的数列。
设首项为a₁,公差为d,末项为aₙ,则二次数列的求和公式为:Sₙ=(2a₁+(n-1)d)×n÷2Sₙ=(2a₁+d(n-1))×n÷2其中,Sₙ表示前n项和。
四、调和数列的求和公式:调和数列是指数列的倒数数列,每个项与前一个项之间的差异与常数成反比的数列。
设首项为a₁,公差为d,末项为aₙ,则调和数列的求和公式为:Sₙ=(n×(2a₁+(n-1)d))÷2其中,Sₙ表示前n项和。
五、费波纳西数列的求和公式:费波纳西数列是指数列中每个项都是前两个相邻项之和的数列。
设首项为a₁,公差为d,末项为aₙ,则费波纳西数列的求和公式为:Sₙ=(a₁+a₂)×(aₙ+aₙ₊₁)÷2Sₙ=(a₁+a₃)×(aₙ+aₙ₋₂)÷2其中,Sₙ表示前n项和。
六、其他数列的求和公式:除了上述常见的数列类型外,还存在其他特殊的数列,其求和公式需要通过推导和递推等方法得到。
比如,输出数列、幂和数列、等差几何数列等。
数列求和的九种方法
两边分别乘以公比a得:
aS =a+3a +5a +…+(2n-3)a +(2n-1)a …………②
①-②得:(1-a)S =1+2a+2a +2a +…+2a -(2n-1)a
=1-(2n-1)a + ,
于是S = - +
五:裂项求和法
数列求和的九种方法
汉川二中数学组万小艳
数列是高中代数的重要内容。在高考和各种数学竞赛中都占有重要地位。数列求和是数列的重要内容之一,除了等差数和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。下面介绍求一个数列的前 n 项和的几种方法:运用公式法,倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法,通项分析法,分类讨论法,数学归纳法等。
四、错位相减法求和
这种方法主要用于数列{a ·b }的前n项和,其中{a },{b }分别是等差数列和等比数列,且{b }的公比不为1。
例4、求和:1+3a+5a +7a +…+(2n-1)a (a≠0)
解:数列{(2n-1)·a }是由等差数列{2n-1}和等比数列{a }的相应项乘积组成。
当a=1时,S =1+3+5+…+(2n-1)= = n
下面我们再来看一下并项求和法与分类讨论法
求和时,先分n为奇,偶数进行讨论,后考虑并合。
所以:
当n≤601时;
此类题需根据通项确定各项的正、负,再去掉绝对值。
上面讨论的八种方法灵活运用,多样结合就可解决常见的数列求和问题。对于数学归纳法求和,涉及到观察、猜想、归纳、证明等步骤,并且其关键在于猜想得出和式,在此就不作论述了。在数列求和过程中,根据数列的特点,采用适当的 方法,定能较快、准确的解题。
数列求和的七种方法
数列求和的七种方法数列求和是数学中非常基础的概念之一,它在高中数学中被广泛讨论和应用。
在数学中,我们经常遇到需要求解数列的和的问题,这样的问题可以通过不同的方法和技巧来解决。
在这篇文章中,我们将讨论七种常见的数列求和方法,并深入探讨它们的原理和应用。
第一种方法是等差数列的求和方法。
等差数列是指一个数列中每一项与其前一项之差保持恒定的数列。
对于一个等差数列,我们可以通过使用求和公式来求解其总和。
具体来说,对于首项为a,公差为d的等差数列,其前n项和可以通过公式Sn = (n/2)(2a + (n-1)d)来计算,其中n表示项数。
这种方法适用于各种等差数列,无论是正数还是负数的等差数列。
第二种方法是等比数列的求和方法。
等比数列是指一个数列中每一项与其前一项之比保持恒定的数列。
对于一个等比数列,我们可以通过使用求和公式来求解其总和。
具体来说,对于首项为a,公比为r的等比数列,其前n项和可以通过公式Sn = (a(1-r^n))/(1-r)来计算,其中n表示项数。
需要注意的是,公比不能为0或1,否则求和公式将无法使用。
第三种方法是利用等差数列的性质进行求和。
等差数列具有很多性质,其中一个重要的性质是数列的和等于首项与末项乘以项数的一半。
具体来说,对于首项为a,末项为b,项数为n的等差数列,其总和可以通过公式Sn = (a + b) * n / 2来计算。
这种方法在一些情况下更加简便和直观,特别是当我们只关注数列的总和而不关心具体的项时。
第四种方法是利用等比数列的性质进行求和。
等比数列也具有一些特殊的性质,其中一个重要的性质是当公比小于1时,数列的和可以表示为首项与末项的差除以1减去公比。
具体来说,对于首项为a,公比为r的等比数列(其中|r|<1),其总和可以通过公式Sn = (a -ar^n)/(1-r)来计算。
这种方法在一些情况下也更加简洁和有效。
第五种方法是使用递归关系进行求和。
递归关系是数列中的每一项与前一项之间存在一定规律的关系。
高中数列求和方法大全(配练习及答案)
数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+- 的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=nnn x x x x x x S n xx x x x x n n 2)111()(242242++++++++=(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
史上高中阶段最全的数列求和(10种)
2021/6/30
1
一.公式法:即 直 接 用 求 和 公 式 , 求 数 列 的 前 n 和 S n
①等差数列的前n项和公式:Snn(a12 an)na1n(n 2 1)d
②等比数列的前n项和公式 ③ 123 n1n(n1)
Sn
naa1(11(qqn1)) 1q
a1 anq(q1) 1q
把数列的每一项分成若干项,使其转化为等差或 等比数列,再求和.
四、并项求和
例如求1002-992+982-972+…+22-12的和.
五、裂项相消法求和
把数列的通项拆成两项之差、正负相消,剩下首
尾若干项.
2021/6/30
5
六。倒序相加法:
如果一个数列{an},与首末两项等距的两项之和等 于首末两项之和(都相等,为定值),可采用把正着
2021/6/30
12
例3.
已知数列1,3a,5a2,…,(2n-1)an-1(a≠0), 求其前n项和.
2021/6/30
13
错位相减法:
如果一个数列的各项是由一 个等差数列与一个等比数列 对应项乘积组成,此时求和 可采用错位相减法.
既{anbn}型
等差
2021/6/30
等比
16
变式探究
2. 设数列{an} 满足a1+3a2+32a3+…+
)
2 6n+1
因此,使得
1 (1-
1
m )<
(n∈N*)成立的m必
2 6n+1 20
须满足 1 ≤ m ,即m≥10.
2 20
故满足要求的最小正整数m为10.
2021/6/30
22
列项求和法:
高中数列求和方法总结
高中数列求和方法总结
数列求和是高中数学中的重要知识点之一,下面总结几种常见的数列求和方法。
1. 等差数列求和公式:
对于等差数列$a_1, a_2, a_3, ..., a_n$,其中公差为d。
则求
和公式为:
$S_n = \frac{n}{2}(a_1 + a_n)$
其中,$S_n$表示前n项和。
2. 等比数列求和公式:
对于等比数列$a_1, a_2, a_3, ..., a_n$,其中公比为q(不为零)。
则求和公式为:
$S_n = \frac{a_1(1-q^n)}{1-q}$
其中,$S_n$表示前n项和。
3. 部分和公式:
当数列不是等差或等比数列时,可以考虑使用部分和公式。
如果数列的通项表达式为$f(n)$,则前n项和为$S_n = f(1) +
f(2) + f(3) + ... + f(n)$。
例如,对于数列$1, 4, 7, 10, ...$,通项表达式为$a_n = 3n-2$,则前n项和为$S_n = \sum_{i=1}^{n}(3i-2)$。
4. 偶数项和与奇数项和:
当数列为周期性的时候,可以考虑分别计算偶数项和与奇数
项和,然后相加得到总和。
例如,对于数列$1, -2, 3, -4, 5, -6, ...$,可以将它分为偶数项
$-2, -4, -6, ...$与奇数项$1, 3, 5, ...$,分别计算偶数项和与奇数项和,然后相加得到总和。
以上是常见的数列求和方法总结。
掌握这些方法可以帮助我们更快地计算数列的和。
数列求和的8种常用方法(最全)
数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。
解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。
本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。
尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。
二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,3,5,7,9$ 的和。
分析:此数列的首项为1,公差为2,总共有5项。
解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。
2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$2,4,8,16,32$ 的和。
分析:此数列的首项为2,公比为2,总共有5项。
解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。
3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。
分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。
高中数学数列求和及通项的求法
数列通项公式的求法
观察法 累差法 积商法 利用前n项和 构造等差、等比数列
例1 求数列
解:
的通项公式。
注意:最后一个式子出现
,必
须验证 。此时
,适合上式,
故
例2 求数列 的通项公式
利用 与 的关系
利用
可解决许多
已知 与 的关系题目中的
例3 已知数列 满足
,
求通项公式
6)数列 {an}满足:a1=2,a2=5,且 an+2-3an+1+2an=0,求通项公式.
3:数列{an}的前n项和Sn=2an+1, 求通项公式.
练1:{an}的前n项和Sn=2an+ n , 求通项公式. 练2:a1=1,an=
作业:
1、 写出下列数列的一个通项公式
1)
2)
2、
求数列的通项式。
3 、 {an}是首项为1的正项数列,且
(n+1)a2n+1-nan2+an+1an=0(n∈N+)求an 4 、 {an}首项为1,a1a2a3···an=n2(n∈N+), 求an
数列求和的常用方法: 公式法、倒序相加法、 错位相减法、裂项相消法。 尤其是要求掌握用拆项法、裂项 法和错位法求一些特殊的数列的 前n项和。
熟记公式常用数列的前n项和:
(1)等差数列求和公式
(2)等比数列求和公式
例题讲解
拆项法: 例一、求数列
的前n项和。
裂项法:
1.求数列
前n项和
2.求数列
前n项和列
3. 求和:
前n项和
(5050) 4. 求和:1×4 + 2×5 + 3×6 + ……+ n×(n + 3)
高中数学数列求和的七种方法
高中数学数列求和的七种方法
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差等比)、公式法、迭加法。
下面是小编给大家带来的数列求和的七种方法,希望能够帮助到大家!
高中数学数列求和的七种方法
1、倒序相加法
倒序相加法如果一个数列{an}满足与首末两项等距离的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。
2、分组求和法
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
3、错位相减法
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。
4、裂项相消法
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
5、乘公比错项相减(等差等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种
方法主要用于求数列{anbn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
6、公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
7、迭加法
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和的常见方法
数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种方法进行系统探讨。
一 、公式求和法
通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式求和,或者利用前n 个正整数和的计算公式等直接求和。
因此有必要熟练掌握一些常见的数列的前n 项和公式.
正整数和公式有:
()();2
13211+=++++n n n ()()();6
121212222++=+++n n n n
()().212132
3
3
3
⎥⎦
⎤⎢⎣⎡+=+++n n n
例1 设S n =1+2+3+…+n ,n ∈N *,求1
)32()(++=
n n
S n S n f 的最大值.
解:由等差数列求和公式得 )1(21+=
n n S n , )2)(1(2
1
++=n n S n (利用常用公式) ∴ 1)32()(++=
n n S n S n f =64
342++n n n
=
n
n 64
341+
+=
50
)8(12+-
n
n 50
1≤
∴ 当 8
8-
n ,即n =8时,501)(max =n f
【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题.
二、分组求和法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如:
①{}n n b a +,其中{}{}⎩⎨⎧是等比数列;是等差数列;n
n b a ②()()⎩⎨⎧∈=-==*
N k k n n g k n n f a n ,2,,12, 例2 已知数列{}n a 的通项公式为,132-+=n a n n 求数列{}n a 的前n 项和.
分析:该数列的通项是由一个等比数列{}n 2与一个等差数列{}13-n 组成的,所以可将其转化为一个等比数列与一个等差数列进行分组求和. 【解析】()()()132********-+++++=++=n a a a S n n n
=()()[].13522222
1
-++++++n n
=()
()[]2
13221212-++--n n n
=.22
1
23221-+++n n n
【能力提升】在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别构成等差数列或等比数列,那么我们就可以用此方法求和.
三、错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求和. 例3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 解:(Ⅰ)由已知,当n ≥1时,
111211[()()()]n n n n n a a a a a a a a ++-=-+-+
+-+
21233(222)2n n --=++
++
2(1)12n +-=。
而 12,a =所以数列{n a }的通项公式为212n n a -=。
(Ⅱ)由212n n n b na n -==⋅知
35211222322n n S n -=⋅+⋅+⋅+
+⋅ ①
从而
23572121222322n n S n +⋅=⋅+⋅+⋅++⋅ ②
①-②得
2352121(12)22222n n n S n -+-⋅=+++
+-⋅ 。
即 211
[(31)22]9
n n S n +=-+
点评:本题主要考察由递推关系求数列通项的方法以及运用错位相减法求数列的和。
熟练数列的基础知识是解答好本类题目的关键。
【能力提升】错位相减法适用于数列{}n n b a ,其中{}n a 是等差数列,{}n b 是等比数列.若等比数列{}n b 中公比q 未知,则需要对公比q 分11≠=q q 和两种情况进行分类讨论.
四、倒序相加法
如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.
例4求证:n n
n n n n
n C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设n
n n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①
把①式右边倒转过来得
113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-
(反序)
又由m
n n m n C C -=可得
n
n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..
②
①+②得 n n
n n n n n
n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-。