弹塑性力学考试

合集下载

同济大学弹塑性力学试题和习题解答

同济大学弹塑性力学试题和习题解答

弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。

)(每小题2分)(1)物体内某点应变为0值,则该点的位移也必为0值。

( ) (2)可用矩阵描述的物理量,均可采用张量形式表述。

( ) (3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。

( ) (4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。

()(5)对于常体力平面问题,若应力函数()y x ,ϕ满足双调和方程022=∇∇ϕ,那么, 由()y x ,ϕ确定的应力分量必然满足平衡微分方程。

() (6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。

( ) (7)Drucker 假设适合于任何性质的材料。

( ) (8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。

( ) (9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。

( ) (10)塑性应变增量的主方向与应力增量的主方向不重合。

P107;226 ( )2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。

)(每小题2分)(1)设()4322241,y a y x a x a y x ++=ϕ,当321,,a a a 满足_______________________关系时()y x ,ϕ能作为应力函数。

(2)弹塑性力学是研究固体受外界因素作用而产生的______________________的一门学科。

(3)导致后继屈曲面出现平移及扩大的主要原因是材料______________________。

(4)π平面上的一点对应于应力的失量的______________________。

P65 (5)随动强化后继屈服面的主要特征为:___________________________________________。

弹塑性理论考试题及答案

弹塑性理论考试题及答案

弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。

答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。

塑性力学考试题及答案

塑性力学考试题及答案

塑性力学考试题及答案一、选择题(每题2分,共20分)1. 塑性变形与弹性变形的主要区别是()。

A. 塑性变形是可逆的B. 弹性变形是可逆的C. 塑性变形是不可逆的D. 弹性变形是不可逆的2. 材料在塑性变形过程中,其应力-应变曲线上的哪一点标志着材料的屈服点?A. 最大应力点B. 最大应变点C. 应力-应变曲线上的转折点D. 应力-应变曲线的起始点3. 下列哪项不是塑性变形的特征?A. 材料形状的改变B. 材料体积的不变C. 材料内部结构的不可逆变化D. 材料的弹性恢复4. 塑性变形的三个基本假设中,不包括以下哪一项?A. 材料是连续的B. 材料是各向同性的C. 材料是不可压缩的D. 材料是完全弹性的5. 塑性变形的流动法则通常采用哪种形式来描述?A. 线性形式B. 非线性形式C. 指数形式D. 对数形式二、简答题(每题10分,共30分)6. 简述塑性变形的三个基本假设及其物理意义。

7. 解释什么是塑性屈服准则,并举例说明常用的屈服准则。

8. 描述塑性变形过程中的加载和卸载路径,并解释它们的区别。

三、计算题(每题25分,共50分)9. 给定一个材料的应力-应变曲线,如果材料在达到屈服点后继续加载,求出在某一特定应变下的材料应力。

10. 假设一个材料在单轴拉伸条件下发生塑性变形,已知材料的屈服应力和弹性模量,求出在塑性变形阶段的应变率。

答案一、选择题1. 答案:C2. 答案:C3. 答案:D4. 答案:D5. 答案:B二、简答题6. 塑性变形的三个基本假设包括:- 材料是连续的:假设材料没有空隙和裂缝,是连续的均匀介质。

- 材料是各向同性的:假设材料在所有方向上具有相同的物理性质。

- 材料是不可压缩的:假设在塑性变形过程中材料的体积保持不变。

7. 塑性屈服准则是判断材料是否开始发生塑性变形的条件。

常用的屈服准则包括:- Von Mises准则:适用于各向同性材料,当材料的等效应力达到某一临界值时,材料开始发生塑性变形。

同济大学弹塑性力学试卷及习题解答.

同济大学弹塑性力学试卷及习题解答.

弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。

)(每小题 2 分)(1)物体内某点应变为0 值,则该点的位移也必为0 值。

(2)可用矩阵描述的物理量,均可采用张量形式表述。

3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。

()4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。

()5)对于常体力平面问题,若应力函数x,y 满足双调和方程 2 20,那么,由x,y 确定的应力分量必然满足平衡微分方程。

()(6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。

()(7)Drucker 假设适合于任何性质的材料。

()(8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。

()(9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。

()(10)塑性应变增量的主方向与应力增量的主方向不重合。

P107;226 ()2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。

)(每小题 2 分)(1)设x,y a1x a2x y a3y ,当a1,a2,a3满足_________________________________ 关系时x,y 能作为应力函数。

(2)弹塑性力学是研究固体受外界因素作用而产生的______________________ 的一门学科。

(3)导致后继屈曲面出现平移及扩大的主要原因是材料_______________________ 。

(4)π 平面上的一点对应于应力的失量的 _____________________ 。

P65(5)随动强化后继屈服面的主要特征为:__________________________________________ 。

(6)主应力轴和主应变轴总是重合的材料为_______________________ 。

弹塑性力学历年考题(杨整理)

弹塑性力学历年考题(杨整理)

i, j x, y, z ,展开其中的 xy 。 (5 分)
三、 以图示平面应力问题为例,列出边界条件,叙述半逆解法的解题步骤。 (15 分) 。
四、 解释图示受内压 p 作用的组合厚壁筒(半径上的过盈量为 )的弹性极限载荷为何比 单层厚壁筒大。 (25 分)
五、 说明为何扭转问题可以进行薄膜比拟。计算边长为 a 的正方形截面,材料剪切屈服强 度为 s 的柱体扭转塑性极限扭矩。 (15 分) 六、 解释为何在用最小总势能原理和里兹法求解图示梁的挠度时,可以设位移函数 (15 分) w a1x 2 (l x) a2 x 2 (l 2 x 2 ) ... 取一项近似计算梁的挠度。
Ar 2 ( ) r 2 sin cos r 2 cos 2 tan ( A为常数)
能满足图示楔形悬臂梁问题的边界条件。并利用这个应力函数确定任一点的应力分量。
四、已知两端封闭的薄壁圆筒,半径为 R,壁厚为 t。圆筒由理想塑性材料制成,其屈服极 限为 s 。薄壁圆筒因受内压而屈服,试确定: (1)屈服时,薄壁筒承受的内压 p; (2) 塑性应力增量之比。 (20 分) 五、求解狭长矩形截面柱形杆的扭转问题:求应力分量和单位长度的扭转角。 (16 分) 六、试用能量法求解图示悬臂梁的挠度曲线。 (提示:设挠度函数为 y A1 cos 其中 A 为待定系数)




2 A r 2 4 sin cos 2(cos 2 sin 2 ) tan 2


2 2 A r 2 sin 2 2 sin cos ) tan r


满足协调方程:
4 (
应力分量:

弹塑性力学(专升本) 地质大学期末开卷考试题库及答案

弹塑性力学(专升本) 地质大学期末开卷考试题库及答案

弹塑性力学(专升本)一、单选题1. 在主应力空间的平面上(坐标原点除外)各点的应力状态均处于。

(5分)(A) 球应力状态;(B) 偏斜应力状态;(C) 应力状态;(D) 球应力状态不一定;参考答案:B2. 正八面体单元微截面上的正应力实际上就是:。

(5分)(A) 零;(B) 任意值;(C) 平均应力;(D) 极值;参考答案:C3. 一般认为在球应力张量作用下材料产生的变形是。

(5分)(A) 弹性变形;(B) 塑性变形;(C) 体变;(D) 畸变;参考答案:C4. 简化弹塑性力学问题的应力边界条件时,经常采用的一个重要原理是。

(5分)(A) 圣文南原理;(B) 剪应力互等定理;(C) 叠加原理;(D) 能量原理;参考答案:A5. 理论力学的研究对象是。

(5分)(A) 刚体;(B) 可变形固体;(C) 一维构件;(D) 连续介质;参考答案:A6. 承受均匀内压的厚壁圆环内壁上一点的应力状态是应力状态。

(5分)(A) 单向;(B) 二向;(C) 三向;(D) 零;参考答案:B7. 岩土材料的库伦(C.A.Coulomb)强度准则,能够解释的材料破坏类型是。

(5分)(A) 拉断裂;(B) 产生较大的塑形变形,最终导致拉断裂;(C) 压断裂;(D) 产生较大的塑形变形,最终导致剪断裂;参考答案:D8. 平衡微分方程是任意一个弹塑性力学问题所不满足的方程。

(5分)(A) 应力分量和应变分量;(B) 应力分量和面力分量;(C) 体力分量和应力分量;(D) 体力分量、面力分量和应力分量;参考答案:C9. 关于岩土材料,在三轴试验中,一般围压愈低,材料屈服强度也愈低,也愈明显。

(5分)(A) 弹性变形;(B) 塑性变形;(C) 强度极限;(D) 应变软化特征;参考答案:D10. 一般认为金属材料在球应力张量作用下材料产生的变形只有。

(5分)(A) 弹性变形;(B) 塑性变形;(C) 体变;(D) 畸变;参考答案:C二、计算题11. 已知受力物体内一点处应力状态为:(Mpa)且已知该点的一个主应力的值为2MPa。

弹塑性力学考试及答案

弹塑性力学考试及答案

弹塑性力学考试及答案一、单项选择题(每题2分,共10分)1. 弹塑性力学中,应力状态的基本方程是()。

A. 平衡方程B. 几何方程C. 物理方程D. 相容方程答案:A2. 在弹塑性力学中,材料的屈服准则是()。

A. 弹性准则B. 塑性准则C. 强度准则D. 破坏准则答案:B3. 弹塑性力学中,描述材料塑性变形的物理方程是()。

A. 弹性方程B. 塑性方程C. 粘性方程D. 蠕变方程答案:B4. 在弹塑性力学中,描述材料在多轴应力状态下的屈服行为,通常采用()。

A. 单轴屈服准则B. 双轴屈服准则C. 多轴屈服准则D. 各向同性屈服准则答案:C5. 弹塑性力学中,描述材料在应力作用下体积变化的方程是()。

A. 体积模量方程B. 剪切模量方程C. 泊松比方程D. 屈服方程答案:A二、多项选择题(每题3分,共15分)6. 弹塑性力学中,应力状态描述包括()。

A. 应力分量B. 主应力C. 主应变D. 应力不变量答案:ABD7. 弹塑性力学中,材料的塑性变形特性包括()。

A. 塑性流动B. 塑性硬化C. 塑性软化D. 塑性变形的不可逆性答案:ABCD8. 弹塑性力学中,常用的屈服准则包括()。

A. 冯·米塞斯准则B. 特雷斯卡准则C. 德鲁克准则D. 莫尔-库仑准则答案:ABCD9. 弹塑性力学中,塑性变形的描述方法包括()。

A. 增量理论B. 总应变理论C. 塑性势理论D. 塑性极限分析答案:ABCD10. 弹塑性力学中,材料的本构关系包括()。

A. 弹性本构关系B. 塑性本构关系C. 粘弹性本构关系D. 蠕变本构关系答案:ABCD三、填空题(每题2分,共20分)11. 弹塑性力学中,材料的弹性模量用符号 ________ 表示。

答案:E12. 弹塑性力学中,材料的泊松比用符号 ________ 表示。

答案:ν13. 弹塑性力学中,材料的屈服应力用符号 ________ 表示。

答案:σy14. 弹塑性力学中,材料的塑性应变用符号 ________ 表示。

(完整版)弹塑性力学习题题库加答案

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。

塑性力学测试题及答案

塑性力学测试题及答案

塑性力学测试题及答案一、单项选择题(每题2分,共10分)1. 塑性力学中,材料的屈服强度是指材料在受到何种应力条件下开始产生塑性变形的应力值?A. 单轴拉伸应力B. 单轴压缩应力C. 多轴应力D. 任何应力条件下答案:A2. 塑性变形与弹性变形的主要区别是什么?A. 塑性变形是可逆的,弹性变形是不可逆的B. 塑性变形是不可逆的,弹性变形是可逆的C. 塑性变形和弹性变形都是可逆的D. 塑性变形和弹性变形都是不可逆的答案:B3. 根据塑性力学理论,下列哪种材料可以被视为理想塑性材料?A. 脆性材料B. 弹性材料C. 塑性材料D. 粘弹性材料答案:C4. 在塑性力学中, Tresca 屈服准则与 Von Mises 屈服准则的主要区别是什么?A. Tresca 屈服准则基于最大剪应力,Von Mises 屈服准则基于最大正应力B. Tresca 屈服准则基于最大正应力,Von Mises 屈服准则基于最大剪应力C. Tresca 屈服准则和 Von Mises 屈服准则都基于最大剪应力D. Tresca 屈服准则和 Von Mises 屈服准则都基于最大正应力答案:C5. 塑性力学中,材料的硬化指数 n 表示什么?A. 材料的弹性模量B. 材料的屈服强度C. 材料的塑性变形能力D. 材料的断裂韧性答案:C二、填空题(每题2分,共10分)1. 塑性力学中,材料的______是指材料在受到应力作用下,从弹性状态转变为塑性状态的应力值。

答案:屈服强度2. 塑性变形与弹性变形的主要区别在于塑性变形是______的。

答案:不可逆3. 在塑性力学中,理想塑性材料是指在达到屈服点后,材料的应力______保持不变。

答案:不再增加4. Tresca 屈服准则认为,当材料的______达到一定值时,材料开始屈服。

答案:最大剪应力5. 塑性力学中,材料的硬化指数 n 越大,表示材料的______能力越强。

答案:塑性变形三、简答题(每题10分,共20分)1. 简述塑性力学中,塑性变形与弹性变形的主要区别。

塑性力学考试题及答案

塑性力学考试题及答案

塑性力学考试题及答案一、单项选择题(每题2分,共10分)1. 塑性力学中,材料的屈服准则是用来描述材料在何种条件下发生塑性变形的。

以下哪个选项是正确的屈服准则?A. 弹性准则B. 屈服准则C. 断裂准则D. 疲劳准则答案:B2. 在塑性力学中,理想塑性材料的特点是:A. 弹性模量无限大B. 屈服强度等于抗拉强度C. 弹性极限等于屈服强度D. 弹性极限大于屈服强度答案:C3. 塑性变形与弹性变形的主要区别在于:A. 塑性变形是可逆的B. 弹性变形是不可逆的C. 塑性变形是不可逆的D. 弹性变形是可逆的答案:C4. 塑性力学中,静水压力对材料的屈服强度有何影响?A. 增加屈服强度B. 减少屈服强度C. 无影响D. 先增加后减少答案:B5. 塑性力学中,材料的硬化指数n表示的是:A. 材料的弹性模量B. 材料的屈服强度C. 材料的硬化程度D. 材料的断裂韧性答案:C二、填空题(每空1分,共10分)1. 塑性力学中,材料的应力-应变曲线可以分为弹性阶段、屈服阶段和__________阶段。

答案:强化2. 根据塑性力学理论,当材料的应力达到__________时,材料开始发生塑性变形。

答案:屈服点3. 塑性力学中,材料的塑性变形通常伴随着__________的释放。

答案:能量4. 塑性力学中,材料的硬化模量是描述材料在塑性变形过程中__________变化的物理量。

答案:应力5. 在塑性力学中,材料的塑性变形通常会导致材料的__________下降。

答案:承载能力三、简答题(每题5分,共20分)1. 简述塑性力学与弹性力学的主要区别。

答案:塑性力学与弹性力学的主要区别在于材料变形的性质。

弹性力学研究的是材料在弹性极限内的可逆变形,即卸载后材料能恢复原状;而塑性力学研究的是材料超过弹性极限后发生的不可逆变形,即卸载后材料不能恢复原状。

2. 描述塑性力学中的三种基本变形模式。

答案:塑性力学中的三种基本变形模式包括:拉伸变形、压缩变形和剪切变形。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

厚壁筒应力问题
要点一
总结词
厚壁筒应力问题主要考察了弹塑性力学中厚壁筒结构的应 力分析和变形计算。
要点二
详细描述
厚壁筒应力问题涉及到厚壁筒结构在受到内压、外压或其 他复杂载荷作用时的应力分布和变形情况。在解题过程中 ,需要运用弹塑性力学的相关理论,如应力分析、应变分 析等,来求解结构的应力分布和变形情况。同时,还需要 考虑厚壁筒结构的特殊性,如不同材料的组合、多层结构 等,对结构应力和变形的影响。
02
弹塑性力学基础知识
应力和应变
基本概念
详细描述:应力和应变是弹塑性力学中的基本概念。应力表示物体内部相邻部分之间的相互作用力,而应变则表示物体在应 力作用下的变形程度。
屈服条件与应力-应变关系
屈服准则与流动法则
详细描述:屈服条件决定了材料在应力作用下的屈服点,是判断材料是否进入塑性状态的重要依据。 应力-应变关系则描述了材料在受力过程中应力与应变的变化规律。
弹塑性力学特点
弹塑性力学具有广泛的应用背景,涉及到众多工程领域,如结构工程、机械工 程、航空航天等。它既适用于脆性材料,也适用于塑性材料,并考虑了材料的 非线性特性。
弹塑性力学的基本假设
连续性假设
小变形假设
假设固体内部是连续的,没有空隙或 裂纹。
假设物体在外力作用下发生的变形是 微小的,不会影响物体内部应力分布。
弹塑性力学部分习题及答 案
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学典型习题解析 • 弹塑性力学部分习题的定义与特点
弹塑性力学的定义
弹塑性力学是一门研究固体在受到外力作用时,其内部应力、应变和位移之间 关系的学科。它主要关注材料在受力过程中发生的弹性变形和塑性变形。

工程弹塑性力学题库及答案

工程弹塑性力学题库及答案

解:刚塑性模型不考虑弹性阶段应变,因此刚塑性应力应变曲线即为

线,这不难由原式推得
而在强化阶段,
,因为这时
将 都移到等式左边,整理之即得答案。
其中
5.7 已知简单拉伸时的 变的比值
曲线由(5.1)式给出,考虑横向应变与轴向应
在弹性阶段,
为材料弹性时的泊松比,但进入塑性阶段后 值开
始增大最后趋向于 。试给出 解:按题设在简单拉伸时总有


(2)纯剪切应力状态,

故 7.10 如何利用与 Tresca 屈服条件相关联的流动法则?
第八章 理想刚塑性的平面应变问题
8.1简述滑移线的概念: 解:在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移 线。 剪切应力是最大剪应力。 平衡方程——沿线: 2k=C 或 =2k ;
沿线: +2k=C 或 = 2k ; 速度方程——沿线:dv v d=0;
对,
,代入得
对,
,代入得
对,
,代入得
1.10当
时,证明
成立。
解: 由
,移项之得
证得
第五章 简单应力状态的弹塑性问题
5.1 简述 Bauschinger 效应: 解:拉伸塑性变形后使压缩屈服极限降低的现象
5.2 在拉杆中,如果 和 为试件的原始截面积和原长,而 和 为拉伸后的截
面积和长度。则截面收缩率为 时,有这样的关系: 证明: 体积不变,则有

中:
沿
线,
中: ,
中:
,


, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。

(完整版)弹塑性力学习题题库加答案.docx

(完整版)弹塑性力学习题题库加答案.docx

第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。

己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。

解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。

x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。

弹塑性力学试卷

弹塑性力学试卷

二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。

(参照oxyz直角坐标系)。

2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。

三、选择题(每小题有四个答案,请选择一个正确的结果。

每小题4分,共16分。

)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。

裂纹展布的方向是:_________。

A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。

该板危险点的最大拉应力是无孔板最大拉应力__________倍。

A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。

)则在该点处的应变_________。

A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。

A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。

)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。

2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。

为平均应力。

并说明这样分解的物理意义。

3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。

若选取=ay2做应力函数。

试求该物体的应力解、应变解和位移解。

(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。

)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。

弹塑性力学综合测试答案

弹塑性力学综合测试答案

综合测试试题一二、填空题第1个为6第2个为平衡微分方程三、选择题 1 A 2 B 3 B 4 C四1、;;;2、五、计算题1、解:已知该点为平面应变状态,且知:k为已知常量。

则将应变分量函数代入相容方程得:2k+0=2k 成立,故知该应变状态可能存在。

2、解:球应力张量作用下,单元体产生体变。

体变仅为弹性变形。

偏应力张量作用下单元体只产生畸变。

塑性变形只有在畸变时才可能出现。

关于岩土材料,上述观点不成立。

3、解:,满足,是应力函数。

相应的应力分量为:,,;①应力边界条件:在x = h处,②将式①代入②得:,故知:,,;③由本构方程和几何方程得:④积分得:⑤⑥在x=0处u=0,则由式⑤得,f1(y)= 0;在y=0处v=0,则由式⑥得,f2(x)=0;因此,位移解为:4、解:据题意知一点应力状态为平面应力状态,如图示,且知,则,且= 0。

代入Mises屈服条件得:即:解得:200 MPa;轴力:P== 2×50×10-3×3×10-3×200×106=188.495kN扭矩:M== 2×502×10-6×3×10-3×200×106=9.425 kN·m综合测试试题二二、填空题第1个为9 5 2第2个为Tresca 屈服条件Mises屈服条件三、选择题 1 C 2 C 3 A 4 D四1、2、五、计算题1、解:应力解应再满足平衡微分方程即为弹性力学平面应力问题可能的应力解,代入平衡微分方程得:则知,只要满足条件a=-f,e=-d,b和c可取任意常数。

若给出一个具体的弹性力学平面应力问题,则再满足该问题的应力边界条件,该组应力分量函数即为一个具体的弹性力学平面应力问题的应力解。

2、解:由式(2—19)知,各应力不变量为、,代入式(2—18)得:也即(1)因式分解得:(2)则求得三个主应力分别为。

弹塑性力学题库与答案(可编辑)

弹塑性力学题库与答案(可编辑)

弹塑性力学题库与答案第二章应力理论和应变理论2―3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa)并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。

…解:在右图示单元体上建立xoy坐标,则知σx -10 σy -4 τxy -2(以上应力符号均按材力的规定)代入材力有关公式得:代入弹性力学的有关公式得:己知σx -10 σy -4 τxy +2 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。

2―6. 悬挂的等直杆在自重W作用下(如图所示)。

材料比重为γ弹性模量为 E,横截面面积为A。

试求离固定端z处一点C的应变εz与杆的总伸长量Δl。

解:据题意选点如图所示坐标系xoz,在距下端(原点)为z处的c点取一截面考虑下半段杆的平衡得:c截面的内力:Nz γ??A??z ;c截面上的应力:;所以离下端为z处的任意一点c的线应变εz为:;则距下端(原点)为z的一段杆件在自重作用下,其伸长量为:;显然该杆件的总的伸长量为(也即下端面的位移):;(W γAl)2―9.己知物体内一点的应力张量为:σij应力单位为kg/cm2 。

试确定外法线为ni{,,}(也即三个方向余弦都相等)的微分斜截面上的总应力、正应力σn及剪应力τn 。

解:首先求出该斜截面上全应力在x、y、z三个方向的三个分量:n’ nx ny nzPx n’Py n’Pz n’所以知,该斜截面上的全应力及正应力σn、剪应力τn均为零,也即:Pn σn τn 02―15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为:σx ax+by,σy cx+dy-γy ,τxy -dx-ay;试根据直边及斜边上的边界条件,确定常数a、b、c、d。

解:首先列出OA、OB两边的应力边界条件:OA边:l1 -1 ;l2 0 ;Tx γ1y ; Ty 0 则σx -γ1y ;τxy 0代入:σx ax+by;τxy -dx-ay 并注意此时:x 0得:b -γ1;a 0;OB边:l1 cosβ;l2 -sinβ,Tx Ty 0则:………………………………(a)将己知条件:σx -γ1y ;τxy -dx ;σy cx+dy-γy代入(a)式得:化简(b)式得:d γ1ctg2β;化简(c)式得:c γctgβ-2γ 1 ctg3β2―17.己知一点处的应力张量为试求该点的最大主应力及其主方向。

同济大学弹塑性力学试卷及习题解答(完整资料).doc

同济大学弹塑性力学试卷及习题解答(完整资料).doc

【最新整理,下载后即可编辑】弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。

)(每小题2分)(1)物体内某点应变为0值,则该点的位移也必为0值。

( )(2)可用矩阵描述的物理量,均可采用张量形式表述。

( )(3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。

( )(4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。

( )(5)对于常体力平面问题,若应力函数()y x ,ϕ满足双调和方程022=∇∇ϕ,那么,由()y x ,ϕ确定的应力分量必然满足平衡微分方程。

( )(6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。

( )(7)Drucker 假设适合于任何性质的材料。

( )(8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。

( )(9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。

( ) (10)塑性应变增量的主方向与应力增量的主方向不重合。

P107;226 ( )2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。

)(每小题2分)(1)设()4322241,y a y x a x a y x ++=ϕ,当321,,a a a 满足_______________________关系时()y x ,ϕ能作为应力函数。

(2)弹塑性力学是研究固体受外界因素作用而产生的______________________的一门学科。

(3)导致后继屈曲面出现平移及扩大的主要原因是材料______________________。

(4)π平面上的一点对应于应力的失量的______________________。

P65(5)随动强化后继屈服面的主要特征为:___________________________________________。

弹塑性力学试题

弹塑性力学试题

考试科目:弹塑性力学试题班号 研 班 姓名 成绩一、 概念题(1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。

(2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。

(3)这些力到所设原点的距离分别为i y ,试求应力xy y x τσσ,,的一般表达式。

解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为:故由叠加原理,n 个集中力构成的力系在点(x ,y )处产生的应力为:四、一端固定,另一端弹性支承的梁,其跨度为l ,抗弯刚度EI 为常数,弹簧系数为k ,承受分布荷载)(x q 作用。

试用最小势能原理导出该梁以挠度形式表示的平衡微分方程和静力边界条件。

解:第一步:全梁总应变能为:dx dx w d EI wdv U l v 202221⎰⎰⎥⎦⎤⎢⎣⎡== 外力做功为:⎰=-=l l x kw qwdx T02|21总势能为:l x l l kw qwdx dxw d EI T U =+-⎥⎤⎢⎡=-=∏|112222 其中 u T R R σσ===其中b 时的解答,然后在此基础上导出无限大体中有球形孔洞,半径为,内壁受有均匀压力时的解答。

解:(1)相应空心球受均匀内外压b a q q ,时的边界条件为:a R =:a R q -=σb R =:b R q -=σ将上述边界条件代入得: 可解得:故空心球受均匀内外压b a q q ,时的解为:(2)∞→,则可得: 六、已知解:由ijε代入,j ij σ而kj k u ,δλ由因为j u ,证明:(1(()s iF 、并在全部边界条件上满足力的边界条件:第二状态全用几何量(()()k ik iju ,ε)来描述。

它在域内满足几何方程且要求全部边界位移等于域内所选位移场在边界处的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹塑性力学考试————————————————————————————————作者:————————————————————————————————日期:二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。

(参照oxyz直角坐标系)。

2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。

三、选择题(每小题有四个答案,请选择一个正确的结果。

每小题4分,共16分。

)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。

裂纹展布的方向是:_________。

A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。

该板危险点的最大拉应力是无孔板最大拉应力__________倍。

A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。

)则在该点处的应变_________。

A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。

A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。

)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。

2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。

为平均应力。

并说明这样分解的物理意义。

3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。

若选取=ay2做应力函数。

试求该物体的应力解、应变解和位移解。

(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。

)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。

设管内各点处的应力状态均相同,且设在加载过程中始终保持,(采用柱坐标系,r为径向,θ为环向,z为圆管轴向。

)材料的屈服极限为=400MPa。

试求此圆管材料屈服时(采用Mises屈服条件)的轴向载荷P和轴矩M s。

(提示:Mises屈服条件:;)填空题6平衡微分方程选择ABBC1、解:已知该点为平面应变状态,且知:k为已知常量。

则将应变分量函数代入相容方程得:2k+0=2k 成立,故知该应变状态可能存在。

2、解:球应力张量作用下,单元体产生体变。

体变仅为弹性变形。

偏应力张量作用下单元体只产生畸变。

塑性变形只有在畸变时才可能出现。

关于岩土材料,上述观点不成立。

3、解:,满足,是应力函数。

相应的应力分量为:,,;①应力边界条件:在x = h处,②将式①代入②得:,故知:,,;③由本构方程和几何方程得:④积分得:⑤⑥在x=0处u=0,则由式⑤得,f1(y)= 0;在y=0处v=0,则由式⑥得,f2(x)=0;因此,位移解为:4、解:据题意知一点应力状态为平面应力状态,如图示,且知,则,且= 0。

代入Mises屈服条件得:即:解得:200 MPa;轴力:P== 2×50×10-3×3×10-3×200×106=188.495kN扭矩:M== 2×502×10-6×3×10-3×200×106=9.425 kN·m综合测试试题二二、填空题:(每空2分,共10分)1、关于正交各向异性体、横观各向同性体和各向同性体,在它们各自的弹性本构方程中,独立的弹性参数分别只有-------个、--------个和-------个。

2、判别固体材料在复杂应力状态作用下,是否产生屈服的常用屈服条件(或称屈服准则)分别是------和-------。

三、选择题(每小题有四个答案,请选择一个正确的结果。

每小题4分,共16分。

)1、受力物体内一点处于空间应力状态(根据OXYZ坐标系),一般确定一点应力状态需______独立的应力分量。

A、18个B、9个C、6个D、2个2、弹塑性力学中的几何方程一般是指联系____________的关系式。

A、应力分量与应变分量B、面力分量与应力分量C、应变分量与位移分量D、位移分量和体力分量3、弹性力学中简化应力边界条件的一个重要原理是____________。

A、圣文南原理B、剪应力互等定理C、叠加原理D、能量原理4、一点应力状态一般有三个主应力。

相应的三个主应力方向彼此______。

A、平行B、斜交C、无关D、正交四、试根据下标记号法和求和约定展开下列各式(式中i、j = x、y、z):(共10分)①;②;五、计算题(共计54分。

)1、在平面应力问题中,若给出一组应力解为:,,,式中a、b、c、d、e和f均为待定常数。

且已知该组应力解满足相容条件。

试问:这组应力解应再满足什么条件就是某一弹性力学平面应力问题的应力解。

(15分)2、在物体内某点,确定其应力状态的一组应力分量为:=0,=0,=0,=0,=3a,=4a,知。

试求:(16分)①该点应力状态的主应力、和;②主应力的主方向;③主方向彼此正交;3、如图所示,楔形体OA、OB边界不受力。

楔形体夹角为2α,集中力P与y轴夹角为β。

试列出楔形体的应力边界条件。

(14分)题五、3图4、一矩形横截面柱体,如图所示,在柱体右侧面上作用着均布切向面力q,在柱体顶面作用均布压力p。

试选取:做应力函数。

式中A、B、C、D、E为待定常数。

试求:(16分)(1)上述式是否能做应力函数;(2)若可作为应力函数,确定出系数A、B、C、D、E。

(3)写出应力分量表达式。

(不计柱体的体力)题五、4图5、已知受力物体内一点处应力状态为:(Mpa)且已知该点的一个主应力的值为2MPa。

试求:(15分)①应力分量的大小。

②主应力、和。

9 5 2 Tresca 屈服条件Mises屈服条CCAD1、解:应力解应再满足平衡微分方程即为弹性力学平面应力问题可能的应力解,代入平衡微分方程得:则知,只要满足条件a=-f,e=-d,b和c可取任意常数。

若给出一个具体的弹性力学平面应力问题,则再满足该问题的应力边界条件,该组应力分量函数即为一个具体的弹性力学平面应力问题的应力解。

2、解:由式(2—19)知,各应力不变量为、,代入式(2—18)得:也即(1)因式分解得:(2)则求得三个主应力分别为。

设主应力与xyz三坐标轴夹角的方向余弦为、、。

将及已知条件代入式(2—13)得:(3)由式(3)前两式分别得:(4)将式(4)代入式(3)最后一式,可得0=0的恒等式。

再由式(2—15)得:则知;(5)同理可求得主应力的方向余弦、、和主应力的方向余弦、、,并且考虑到同一个主应力方向可表示成两种形式,则得:主方向为:;(6)主方向为:;(7)主方向为:;(8)若取主方向的一组方向余弦为,主方向的一组方向余弦为,则由空间两直线垂直的条件知:(9)由此证得主方向与主方向彼此正交。

同理可证得任意两主应力方向一定彼此正交。

3、解:楔形体左右两边界的逐点应力边界条件:当θ=±α时,=0,=0;以半径为r任意截取上半部研究知:4、解:据结构的特点和受力情况,可以假定纵向纤维互不挤压,即:;由此可知应力函数可取为:(a)将式(a)代入,可得:(b)故有:; (c)则有:; (d)略去中的一次项和常数项后得:(e)相应的应力分量为:(f)边界条件:①处,,则; (g)②处,,则; (h)③在y = 0处,,,即由此得:,再代入式(h)得:;由此得:(i)由于在y=0处,,积分得:(j),积分得:(k)由方程(j ) (k)可求得:,投知各应力分量为:(l)据圣文南原理,在距处稍远处这一结果是适用的。

5、解:首先将各应力分量点数代入平衡微分方程,则有:得:显然,杆件左右边界边界条件自动满足,下端边界的边界条件为:,,,,。

即:或:三一、问答题:(简要回答,必要时可配合图件答题。

每小题5分,共10分。

)1、简述弹塑性力学的研究对象、分析问题解决题的根本思路和基本方法。

2、简述固体材料塑性变形的主要特点。

二、选择题(每小题有四个答案,请选择一个正确的结果。

每小题4分,共16分。

)1、一点应力状态的主应力作用截面上,剪应力的大小必定等于____________。

A、主应力值B、极大值C、极小值D、零2、横观各向同性体独立的弹性常数有________个。

A、2B、5C、9D、213、固体材料的波桑比μ(即横向变形系数)的取值范围是:________。

A、B、C、D、4、空间轴对称问题独立的未知量是应力分量和应变分量,分别________个,再加上________个位移分量,一共________个。

A、3B、6C、8D、10三、试据下标记号法和求和约定,展开用张量符号表示的平衡微分方程:(10分)(i,j = x,y,z)式中为体力分量。

四、计算题(共计64分。

)1、已知一弹性力学问题的位移解为:(13分);;;式中a为已知常数。

试求应变分量,并指出它们能否满足变形协调条件(即相容方程)。

2、设如图所示三角形悬臂梁,只受自重作用,梁材料的容重为。

若采用纯三次多项式:作应力函数,式中A、B、C、D为待定常数。

试求此悬臂梁的应力解。

(15分)题四、2图3、试列出下列各题所示问题的边界条件。

(每题10分,共20分。

)(1)试列出图示一变截面薄板梁左端面上的应力边界条件,如图所示。

题四、3、(1)图题四、3、(2)图(2)试列出半空间体在边界上受法向集中P作用——Boussinesq问题的应力边界条件,如图所示。

4、一薄壁圆筒,承受轴向拉力及扭矩的作用,筒壁上一点处的轴向拉应力为,环向剪应力为,其余应力分量为零。

若使用Mises屈服条件,试求:(16分)1)材料屈服时的扭转剪应力应为多大?2)材料屈服时塑性应变增量之比,即:∶∶∶∶∶。

已知Mises屈服条件为:选择DBCD三、1、解:将位移分量代入几何方程得:;;;由于应变分量是x的线性函数,固知它们必然满足变形协调条件:2、解:将式代入知满足,可做应力函数,相应的应力分量为:(已知Fx=0,Fy=γ)边界条件:①上边界:,,,代入上式得:A = B =0,②斜边界:,,,,则:得:;于是应力解为:题四、2图3、解:(1)左端面的应力边界条件为:据圣文南原理题四、3、(1)图(2)上边界:①当时,;②当时,;③当时,;在此边界上已知:,,;④当设想时,截取一平面,取上半部研究,则由平衡条件知:,已知:,对称性4、解:采用柱坐标,则圆筒内一点的应力状态为:则miss条件知:解得:;此即为圆筒屈服时,一点横截面上的剪应力。

相关文档
最新文档