基于人工肌肉的机器人驱动关节设计与研究

基于人工肌肉的机器人驱动关节设计与研究
基于人工肌肉的机器人驱动关节设计与研究

文章编号:1002 0446(2008)02 0142 05

基于人工肌肉的机器人驱动关节设计与研究

应申舜,秦现生,任振国,冯华山,王战玺

(西北工业大学机电学院,陕西西安 710072)

摘 要:提出一种基于人工肌肉的新型驱动关节设计方法,用于提高机器人的驱动性能.通过定义关节结构的笛卡儿坐标系统,建立了反映关节结构参数与工作空间、结构强度、动力学特性之间关系的数学模型.在上述分析的基础上,采用多目标规划算法对驱动关节进行优化设计,并给出相应的设计变量、目标函数、约束条件和求解方法.最后,将该方法应用于某四足机器人髋关节的设计过程.仿真结果表明,基于人工肌肉的新型驱动关节具有良好的强度、灵巧度和承载能力.

关键词:人工肌肉;驱动关节;多目标规划;运动解耦中图分类号: TP 242 文献标识码: A

D esi gn and R esearch of Robot Drivi ng Jo i nt Based on ArtificialM uscles

Y I N G Shen shun ,Q I N X ian sheng ,RE N Zhen guo ,FE NG H ua shan ,WANG Zhan x i

(School ofM echatronics ,N ort hw este rn Pol y te chnical Universit y ,X i an 710072,Ch i na )

Abstract :In orde r to i m prove the dr i v i ng perfo r mance o f ex isti ng robo t ,an artifi c i a l m usc l e based m ethod is proposed to

desi gn nove l dr i v i ng joints .F i rstl y ,the Cartesian coordi nate syste m of the jo i nt mechan i s m is defi ned ,and a m athe m atica l m ode l is constructed to express the re lati onshi ps a m ong the struc t ure para m eters ,wo rkspace ,struc t ure i n tensity ,and dy na m ica l fea t ures o f the dr i v i ng j o ints .Based on t hese analyses ,a m ulti ob j ec ti ve prog ramm i ng algor it h m i s then utilized to opti m ize the design o f the driving j o i n ts ,and such re levant facto rs as the design var i ables ,objecti v e f uncti on ,constraint conditi ons and so l u tion m ethod are presented in deta i.l F i nall y ,the proposed m et hod is app lied to the sc i a tic j o i nt desi gn o f a quadruped robot ,and the si m u l a ti on results prov e t he advantages of the a rtific i a l m uscle based dr i v i ng j o i nt i n ter m s o f streng th ,dex terity ,and ca rry i ng capac it y .

K eyword s :artific i a lm uscle ;dr i v i ng j o i nt ;mu lti objecti v e prog ra mm i ng ;movem ent decoupli ng

基金项目:国家自然科学基金资助项目(50775186);西北工业大学科技创新基金资助项目(2006CR09);国防基础科研项目(A2720060275).收稿日期:2007-05-06

1 引言(Introduction)

机器人的关节驱动系统是机器人的重要部件之一,仿袋鼠机器人、仿人型跑步机器人等都需要结构

紧凑、能提供爆发力的驱动关节.研究表明[1]

,仿人型跑步机器人起跳时腿关节所需力矩约为520N m ,而目前采用稀土永磁技术的L W X 型无刷直流力矩电动机(重14.5kg )只能产生约25N m 的力矩.与电机驱动配套的减速装置、传动装置使得机器人关节结

构复杂、效率低,还会引起噪音[1]

.

为了获得输出力矩大、结构简单、运动范围大、易于控制的机器人关节,国内外专家和学者纷纷展开研究,并取得了一系列成果.如,文[2]设计了一种新型的三自由度垂直相交运动解耦液压伺服关节,具有较

高能量密度,适用于机器人操作臂;文[3]应用交流伺服系统直接驱动技术,设计出高性能的机器人关节一体化驱动系统;文[4]提出形状记忆合金驱动的机器人关节驱动器,采用推挽式结构,有效利用两条相同的S MA 弹簧以产生较大的输出力和动作幅度,对形状合金机器人关节驱动器的控制进行了充分的理论论证;文[5]设计了一种3自由度的关节系统,其结构、强度、运动、工作空间都经过优化,可广泛应用于多冗余空间操作臂、机器人关节等场合;文[6]用一对镍钛形状记忆合金实现水底行走机器人关节的摆动,结构简单有效.可见,机器人驱动关节设计受到广泛重视,基于人工肌肉的关节设计成为研究热点.但是,采用人工肌肉驱动的机器人关节由于结构的限

第30卷第2期 2008年3月

机器人

ROBO T

V o.l 30,N o .2M arch ,2008

制,目前还只能提供单自由度和较小的输出力矩.本文在尽可能符合生物关节运动特性的基础上,采用人

工肌肉提供关节驱动力,进行机器人驱动关节的一体化设计,以增加关节的输出力矩和灵活度,简化结构和控制环节,提高机器人的综合性能.

图1 基于人工肌肉的驱动关节

F i g.1 R obot dr i v i ng j o i n t based on artific i a lm uscles

1.定铰链架

2.可调螺钉

3.K ev l a r T M连接用细绳

4.螺钉

5.人工肌肉

6.滑轮

7.滚动轴承

8.十字轴

9.动铰链架

2 关节结构设计(Design of joint m echa

nis m)

2.1 基本组成

图1(a)是基于人工肌肉的驱动关节结构示意图,结构主体为胡克铰机构,由定铰链架1、十字轴8、动铰链架9组成,滑轮6固接在十字轴上,人工肌肉5两端通过Kev lar TM被动细绳3与可调螺钉2、滑轮6连接,螺钉4连接关节与机器人主体.人工肌肉主动收缩时,拉动滑轮旋转,继而带动十字轴及动铰链架旋转,产生关节俯仰(pitch)、侧摆(ya w)及它们的复合运动.

2.2 坐标系与变量描述

驱动关节的主体结构是一个胡克铰,两铰链架沿着相互垂直的轴线有两个相对转动的自由度,如图1 (b)所示.在胡克铰的中心点O建立与位于下方的铰链架(以下简称定铰链架)固联的定坐标系Oxyz.x轴为其两侧壁圆孔中心连线方向,y轴与其底面平行且与x轴垂直,z轴与其底面垂直;同时建立与另一铰链架(以下简称动铰链架)固联的动坐标系O x y z,y 轴为其两侧壁圆孔中心连线方向,x轴与其底面平行且与y轴垂直,z轴与其底面垂直.初始状态下,两坐标系重合.胡克铰的运动可以描述为:铰链架2先绕动坐标系的x轴旋转 角,再绕动坐标系的y轴旋转

角.

设动铰链架底面中心点P到十字轴中心O距离为p,则P在坐标系Oxyz下的坐标为:

p x

p y

p z

=p

sin

sin cos

cos cos

(1) 、 反映了驱动关节两个自由度的运动幅度.给定 、 的值,就能根据式(1)求出P在任何位置的坐标;反过来,P要达到工作空间内任何一点的位置,都可以通过反向运动学求出 、 .

2.3 工作空间

驱动关节机构的工作空间分析,就是在考虑人工肌肉变形前提下,求关节所能达到的空间位置.

式(1)反映了点P坐标与 、 之间的关系,研究结果表明[7],胡克铰的工作空间与铰链架外侧壁间距、两内侧壁间距、底面宽、两孔轴线与铰链架底面外侧的距离、两孔轴线与铰链架底面内侧的距离有关,胡克铰用作驱动关节结构的主体框架,其工作空间还受肌肉变形量影响,肌肉纤维和滑轮还会与侧壁产生干涉,这使得用数学建模的方法求解 、 十分困难,本文采用!模型拟合法[8]?求驱动关节的工作空间,步骤如下:

(1)用UG构建驱动关节的零件实体并完成装配;

(2)利用Paraso li d接口技术,把装配体导入多体动力学分析软件ADAM S;

(3)添加肌肉驱动仿真模型;

(4)在定铰链架和地之间建立固定副,分别在动、定铰链架和十字轴之间建立转动副,在定、动铰链架之间添加接触,由此,构建完成基于人工肌肉的驱动关节的多体动力学系统;

(5)结合ADAM S传感器和测量器的使用,进行脚本控制仿真,取 =1,10,20,#,30?等一组值,求得定、动铰链架开始接触时的 值,同时记录P点的坐标;

图2 关节工作空间

F ig.2 W o rkpace of jo i nt

143

第30卷第2期 应申舜等: 基于人工肌肉的机器人驱动关节设计与研究

(6)用M atlab 函数polyfit 求 、 的最小二乘曲线拟合.

图2(a)是求得的关节两自由度角位移的最小二乘拟合曲线.图中曲线上的点表示 、 能够达到的最大值,曲线围成的部分是两自由度能达到的任意角位移.图2(b)是关节上P 点扫过的空间曲面,由图可见点P 能够达到以p 为半径的球冠上的任意位置.

3 关节结构的多目标规划(M ulti objective

progra mm ing of joint m echanis m )

3.1 动力学分析

如图1(a),驱动关节两个回转轴线交于一点(十字轴中心),前面的转动( )使得有关的回转轴线的位姿发生变化,而后面的转动( )按照已经发生变化的回转轴转动,按照文[9],仿生关节驱动器结构解耦而且运动解耦,即确定了两个运动位移 、 ,改变运动次序,关节到达相同的空间位置坐标.取一对人工肌肉、十字轴和一个铰链架组成一个单自由度力学模型,如图3所示,建立人工肌肉的力学特性、驱动关节结构尺寸和输出特性之间的关系.

T =r(F S MA -f S MA )

(2) =0

.05L r

(3)

式中,T 、 分别表示驱动关节单自由度输出的力矩和角位移,r 为十字轴的回转半径,F S MA 、f S MA 分别为单根人工肌肉在激活和松弛状态下的张力.人工肌肉在松弛状态下的张力与激活状态下张力相比很小,若忽略松弛状态下的张力,则式(2)为:

T =r F S MA

(4)

由于单根人工肌肉收缩时产生的回复力很小,为了提高肌肉力和产生爆发力,常把多根人工肌肉并联成束

[10]

,输出力矩为多根人工肌肉的总和

.

图3 单自由度驱动关节机构的驱动原理图F i g .3 Sche m e o f dr i v i ng pri nc i p l e for one

degree o f freedom j o i nt m echanis m

T =r NF S MA (5)

式中,N 为人工肌肉数目.

目前,被广泛采用的人工肌肉有形状记忆合金(S MA)、聚合物、气动肌肉驱动器(Pneum atic M usc le A ctuator ,P MA ),本文采用经过预应变处理的镍钛形状记忆合金丝作为驱动关节的类肌肉驱动;S MA 具有形状记忆效应,其特性与骨骼肌相似:给镍钛形状记忆合金丝通电流加热,热量使S MA 丝由奥氏体转变成马氏体,相变过程中S MA 丝产生回复张力,拉动杠杆机构产生关节运动.SMA 具有比压电陶瓷更大的应变,比P MA 更易于实现小型化,比聚合物更容易实现控制.文[6]在实验测定的基础上建立S MA 丝的一维本构模型:在任何给定马氏体率!下,应力?与应变#的关系可表示为:

?=(

!E m

+1-!E a )-1

(#-!#L )

(6)

其中#L 是残余塑性应变,E m 、E a 分别是马氏体、马氏体杨氏模量.马氏体率最小!=0时,S MA 丝应力最大.

?=E a #

(7)与此相对应,人工肌肉张力

F S MA =A ?

(8)

当S MA 丝最大应变取5%时,可以循环变形上百万次,故取#=5%,将式(7)、(8)代入式(5),得驱动关节的最大输出力矩:

T =NAE a #r =0.05NAE a r

(9)

可见,驱动关节最大输出力矩和最大输出角位移是结构参数r 、L 的函数.3.2 强度分析

驱动关节主要承受自重、负载和肌肉力,在十字轴中心处产生最大弯曲变形.十字轴载荷0.5F ,长2d ,简化为一根简支梁,危险截面最大弯矩为:

M max =0.5Fd

(10)

十字轴危险截面最大弯曲应力应小于材料最大

许用应力,即M max

W %?max ,其中W 为十字轴弯曲截面

系数,则W &

M max

?max

.十字轴半径:W =?r 3

4&M m ax ?max

,即:r &

3

4M m ax

??max (11)

把式(9)代入式(10),得:

)

144机 器 人2008年3月

式(12)反映了驱动关节在满足强度要求时,结构参数r、d必须满足的条件.

3.3 多目标规划

由以上分析可知,三个主要结构参数:十字轴半径r、十字长度2d、肌肉有效长度L(约等于两孔轴线与铰链架底面外侧的距离),决定了驱动关节强度、输出力矩、输出角位移等特性.设驱动关节输出力矩不小于T con,单自由度角位移不小于con,建立驱动关节结构主要参数的多目标优化设计数学模型:

T=0.05NAE a r&T con(13)

=0.05L

r

&con(14)式(12)是约束方程,式(13)、(14)是优化目标函数.利用M atlab优化工具箱的fgoa lattain函数解以上多目标优化问题,得到关节结构参数L、r、d的值,即完成驱动关节的多目标优化设计.

4 实例计算及分析(Calculation and analysis

of an exa m ple)

以某四足机器人(见图4(a))设计为例,采用上述方法设计髋关节.四足机器人对髋关节的设计要求见表1.

表1 驱动关节设计要求

T ab le1 Design require m en t for join t m echan is m

单自由度角位移/?输出力矩

/N m

载重能

力/kg

机器人自

重/kg

结构尺寸

L/mm

-60~6030~6025~4025~30L%150

表2 F lexinol人工肌肉特性

T ab le2 Prop er ties of F l exinolm usc le w ire

直径/%m 横截面积

/%m2

肌肉最大回

复重量/kg

张紧状态回

复重量/kg

松弛状态回

复重量/kg

杨氏模量

E a[10]/GPa

15017700 1.0560.330.06248

图4 四足机器人的髋关节设计

F i g.4 D esign o f sc i a ti c joint f o r a quadruped robot

表3 驱动关节主要结构尺寸

Table3 D i m en sion of joi n t m echan is m

L/mm r/mm d/mm h1/mm h2/mm

148.27.1323866

关节材料采用45#钢;人工肌肉采用美国Dyna l loy公司的镍钛形状记忆合金丝F lex i n o l ,其参数见表2.设计得到的驱动关节如图4(b)所示,其结构尺寸见表3.

由式(3)、(9),计算得关节最大输出角位移、最大输出力矩:

T=0.05NAE a r

=0.05?200?48?109?17700?10-12?7.1?10-3 =60.3216(N m)

=0.05L

r

=(0.05?0.1482?180)((0.0071??)

=59.799(?)

髋关节的工作空间、输出力矩均满足四足机器人运动要求.

由式(12)得,F%

r3??max

2d

,45#钢最大许用应力?max=240?106(M Pa),则

F%0.00713???240?106)((2?0.032) =4216.5(N)

四足机器人自重加载重(25+30)kg,肌肉回复(0.33+0.062)?100?2kg,则每个髋关节质量最多能承受[4216.5(9.8-(0.33+0.062)?100?2]( (25+30)=6.4(倍)于四足机器人自重加载重的负荷.

5 结论(Conclusion)

提出一种基于人工肌肉的机器人驱动关节设计方案,该关节采用胡克铰作为主体框架,采用预应变的S MA丝人工肌肉提供驱动力.建立了驱动关节的三维几何模型并分析其工作空间,建立了计算关节机构输出力矩和角位移的动力学模型,并利用多目标规划方法对关节结构进行优化.最后通过一个四足机器人髋关节的设计实例验证了该方案的正确性.分析结果表明十字轴长度等三个主要结构参数决定了输出力矩等关节特性,胡克铰和SMA人工肌肉的结合使用使驱动关节满足大中型机器人对关节运动的需求.按照本文方法设计的机器人驱动关节,在不增加机器人腿部体积的前提下,增加输出力矩、自由度、灵活度

145

第30卷第2期 应申舜等: 基于人工肌肉的机器人驱动关节设计与研究

和步态的多样性,提高机器人的整体性能.

另一方面,S MA能量转换率较低,当人工肌肉由一组并联的SMA丝捆扎而成以产生爆发力时,由于材料特性和加工工艺的制约,实现小型化还有困难,随着高性能人工肌纤维的开发,基于人工肌肉的机器人驱动关节的整体性能可望显著提高.

参考文献 (R eferences)

[1]魏航信,刘明治.仿人型跑步机器人矢状面起跳运动的实现

[J].机械设计与研究,2006,22(3):36-39.

[2]朱兴龙,周骥平,颜景平.一种新型的三自由度垂直相交运动解

耦液压伺服关节的设计[J].中国机械工程,2002,13(21):

1824-1827.

[3]王宏,徐殿国,史敬灼.机器人一体化关节驱动系统[J].高技术

通讯,2004,14(6):47-50.

[4]张铁,李杞仪,姚国兴,等.形状记忆合金机器人关节驱动器的控

制系统[J].华南理工大学学报(自然科学版),1996,24(6):

102-106.

[5]Sha mm as E,W olfA,ChosetH.Th ree degrees of freedo m j o i nt f or

s pati al hyper redundan t robots[J].M echan is m and M ac h i n e Th eory,

2006,41(2):170-190.

[6]S afak K K,Ada m s G G.M odeli ng and s i m ulati on of an artifici al

m uscle and its app lication to b io m i m eti c robot posture control[J].

Robotics and Autono m ou s Syste m s,2002,41(4):225-243. [7]赵建文,杜志江,孙立宁.虎克铰干涉判定准则及其优化设计方

法的研究[J].机械设计,2004,21(11):45-48.

[8]孙立宁,于凌涛,杜志江,等.并联机器人胡克铰工作空间的研究

与应用[J].机械工程学报,2006,42(8):120-124.

[9]朱兴龙,周骥平.运动解耦机理分析与解耦关节设计[J].中国

机械工程,2005,16(8):674-677.

[10]M os l ey M J,M avroid i s C.Experi m en tal non li n ear dyna m i cs of a

s h ape m e mory all oy w ire bund l e actuat or[J].Jou rnal of Dyna m i c Syste m s,M eas u re m en t,and C ontrol(Transactions of the ASM E),

2001,123(1):103-112.

作者简介:

应申舜(1978 ),男,博士生.研究领域:基于人工肌肉的驱动关节系统.

秦现生(1962 ),男,博士,教授,博士生导师.研究领域:机电控制与自动化系统,数控技术,机械电子工程.

(上接第141页)

[7]M artinec D,Paj d l a T.Outli er d etecti on for f act oriz ati on bas ed recon

struction fro m perspective i m ages w i th occl u si ons[A].Proceed i ngs of t h e Photogra mm etri c C o m pu ter V ision(vo.l B)[C].TU G raz, 2002.161-164.

[8]刘侍刚,吴成柯,唐丽,等.一种存在遮挡的射影重建算法[J].

模式识别与人工智能,2007,20(4):565-570.

[9]刘侍刚,吴成柯,赵录刚,等.线性迭代子空间射影重建法[J].

电子与信息学报,2007,29(2):451-454.

[10]H artl ey R,Z i sser m an A.M u lti p le V ie w Geo m etry i n Co m puter V i

sion[M].Ca m bri dge,UK:C a m bri dge Un i versit y Press,2000.作者简介:

彭亚丽(1979 ),女,博士生.研究领域:计算机视觉,图像处理等.

刘 芳(1963 ),女,教授,博士生导师.研究领域:计算机视觉,智能算法等.

焦李成(1959 ),男,教授,博士生导师.研究领域:计算机视觉,机器学习等.

146机 器 人2008年3月

六轴关节机器人机械结构

六轴关节机器人机械结构 e y . <7>J4 akis motor <8>J5 axis / tiKi呂motor 说uation Mdr / Flhaw -U 」£: □nis rritx r crc .inTi * 12;、JE处也mn空 < 13 ■ J6 axis red jction gear ■ S J3 axi reduct ken / \<1t)〉J5 酣仪timi啊belt i < / /<1 1>J5 3ME Wrist hoqsine/ / r也[juGlidn 営凸mr <2>J1 axis n'dijnt rm 3" J? miG irctci: <4>J2 axis rrdi.nt nn £rn^ 上图为常见的六轴关节机器人的机械结构,六个伺服电机直接通过谐波减速器、同步带 轮等驱动六个关节轴的旋转,注意观察一、二、三、四轴的结构,关节一至关节四的驱动电机为空心结构,关节机器人的驱动电机采用空心轴结构应该不常见,空心轴结构的电机一般 较大。采用空心轴电机的优点是:机器人各种控制管线可以从电机中心直接穿过,无论关节轴怎么旋转,管线不会随着旋转,即使旋转,管线由于布置在旋转轴线上,所以具有最小的 旋转半径。此种结构较好的解决了工业机器人的管线布局问题。对于工业机器人的机械结构 设计来说,管线布局是难点之一,怎样合理的在狭小的机械臂空间中布置各种管线(六个电机的驱动线、编码器线、刹车线、气管、电磁阀控制线、传感器线等),使其不受关节轴旋 转的影响,是一个值得深入考虑的问题。 机器人的腕部结构常见有如下几种结构

?3RS 在这三种手腕部的结构中,以第一种(RBR型)结构应用最为广泛,它适应于各种工作场合,后两种结构应用范围相对较窄,比如说3R型的手腕结构主要应用在喷涂行业等关节设计: 对于国外的工业机器人主要制造国家来说,六轴关节机器人的研发设计及制造已经有好几十 年的历史了,整个工业机器人的研发制造体系较为完善,他们的技术相对来说比较成熟,他们 在相互竞争中可以相互模仿、改善、不断推陈出新,他们的技术对于国内来说,近乎完美?而 国内目前这个行业还处在黎明前的黑暗阶段,虽然有不少公司有这个研发意图,或者正在研发途中,不管怎么说,浮出水面公布自己正在研发或者研发成功的公司应该说是极少数,即使宣布自己研发成功,也只是初步试验成功,真正产业化、商品化还有一段相当漫长的路要走?而更多的公司还停留在项目立项、技术评估、投入风险分析的阶段?由于国内做这个行业的 很少,相关的结构也没有什么可参考的,技术储备不足,少数的单位或个人有机会能够拆拆别 人的机器,拆个一知半解,更多的人只能在旁边看看了(比如说我,想拆都没机会A_A),还好了,网络资源丰富,今搜集到不少机械结构方面的图片,分享给大家参考,希望咱们做机械设计的(我应该也算是个机械工程师啊A_A毕竟我也是做机械的)少走点弯路,做出更好的机器? 六轴关节机器人的腕部关节设计较为复杂,因为在腕部同时集成了三种运动?小型的六轴关 节机器人的腕部关节主要采用谐波减速器?下面的图片较为详细的描述了常见的六轴关节机 器人的腕部结构?

机器人基础考试试题重点

(二)简答题 1.智能机器人的所谓智能的表现形式是什么? 答:推理判断、记忆 2.机器人分为几类? 答:首先,机器人按应用分类可分为工业机器人、极限机器人、娱乐机器人。 1)工业机器人有搬运、焊接、装配、喷漆、检验机器人,主要用于现代化的工厂和柔性加工系统中。 2)极限机器人主要是指用在人们难以进入的核电站、海底、宇宙空间进行作业的机器人,包括建筑、农业机器人。 3)娱乐机器人包括弹奏机器人、舞蹈机器人、玩具机器人等。也有根据环境而改变动作的机器人。 其次,按照控制方式机器人可分为操作机器人、程序机器人、示教机器人、智能机器人和综合机器人。 3. 机器人由哪几部分组成? 机器人由三大部分六个子系统组成。三大部分是机械部分、传感部分和控制部分。六个子系统是驱动系统、机械结构系统、感受系统、机器人一环境交换系统、人机交换系统和控制系统。 4. 什么是自由度? 答:人们把构建相对于参考系具有的独立运动参数的数目称为自由度。 5. 机器人技术参数有哪些?各参数的意义是什么? 答:机器人技术参数有:自由度、精度、工作范围、速度、承载能力 1)自由度:是指机器人所具有的独立坐标轴的数目,不包括手爪(末端操作器)的开合自由度。在三维空间里描述一个物体的位置和姿态需要六个自由度。但是,工业机器人的自由度是根据其用途而设计的,也可能小于六个自由度,也可能大于六个自由度。

2)精度:工业机器人的精度是指定位精度和重复定位精度。定位精度是指机器人手部实际到达位置与目标位置之间的差异。重复定位精度是指机器人重复定位其手部于同一目标位置的能力,可以用标准偏差这个统计量来表示,它是衡量一列误差值的密集度(即重复度)。 3)工作范围:是指机器人手臂末端或手腕中心所能到达的所有点的集合,也叫工作区域。 4)速度;速度和加速度是表明机器人运动特性的主要指标。 5)承载能力:是指机器人在工作范围内的任何位姿上所能承受的最大质量。承载能力不仅取决于负载的质量,而且还与机器人运行的速度和加速度的大小和方向有关。为了安全起见,承载能力这一技术指标是指高速运行时的承载能力。通常,承载能力不仅指负载,而且还包括机器人末端操作器的质量。 6. 机器人手腕有几种?试述每种手腕结构。 答:机器人的手臂按结构形式分可分为单臂式,双臂式及悬挂式按手臂的运动形式区分,手臂有直线运动的。如手臂的伸缩,升降及横向移动,有回转运动的如手臂的左右回转上下摆动有复合运动如直线运动和回转运动的组合。2直线运动的组合2回转运动的组合。手臂回转运动机构,实现机器人手臂回转运动的机构形式是多种多样的,常用的有叶片是回转缸,齿轮转动机构,链轮传动和连杆机构手臂俯仰运动机构,一般采用活塞油(气)缸与连杆机构联用来实现手臂复合运动机构,多数用于动作程度固定不变的专用机器人。 7. 机器人机座有几种?试述每种机座结构。 答:机器人几座有固定式和行走时2种 1)固定式机器人的级左右直接接地地面基础上,也可以固定在机身上 2)移动式机器人有可分为轮车机器人,有3组轮子组成的轮系四轮机器人三角论系统,全方位移动机器人,2足步行式机器人,履带行走机器人 8. 试述机器人视觉的结构及工作原理 答:机器人视觉由视觉传感器摄像机和光源控制计算器和图像处理机组成原理:由视觉传感器讲景物的光信号转换成电信号经过A/D转换成数字信号传递给图像处理器,同时光源控制器和32 摄像机控制器把把光线,距离颜色光源方向等等参数传递给图像处理器,图像处理器对图像数据做一些简单的处理将数据传递给计算机最后由计算器存储和处理。 9. 工业机器人控制方式有几种?

水平多关节机器人总体及腰臂部设计

目录 1 前言 (1) 1.1 课题来源与分析 (1) 1.2 国内外发展及研究现状 (1) 1.3 本课题要解决的主要问题及设计总体思路 (3) 2 关节型机器人的总体设计 (4) 2.1 确定基本技术参数 (4) 2.1.1 机械结构类型的选择 (4) 2.1.2 额定负载 (4) 2.1.3 操作机的驱动系统设计 (5) 2.1.4 确定关节型机器人手臂的配置形式 (5) 2.2 关节型机器人本体方案设计 (6) 3 关节型机器人腰部及大臂部设计 (8) 3.1 电动机的选择 ........................................................................... 错误!未定义书签。 3.2 计算传动装置的总传动比和分配各级传动比 ....................... 错误!未定义书签。 3.3 基座及腰部轴的设计计算 ....................................................... 错误!未定义书签。 3.3.1 计算各轴转速、转矩和输入功率 ....................................... 错误!未定义书签。 3.3.2轴的结构设计 ..................................................................... 错误!未定义书签。 3.4 肘关节轴的设计计算 ............................................................... 错误!未定义书签。 3.5 齿轮设计计算 ........................................................................... 错误!未定义书签。 3.5.1基座处齿轮设计计算 ............................................................ 错误!未定义书签。 3.5.2肘关节处齿轮设计计算 ........................................................ 错误!未定义书签。 3.6轴承的选择和计算 .................................................................... 错误!未定义书签。 3.7 壳体设计 ................................................................................... 错误!未定义书签。 3.7.1 箱体的主要功能 ................................................................... 错误!未定义书签。 3.7.2 箱体设计的问题和要求 ....................................................... 错误!未定义书签。 3.7.3 壳体结构的设计 ................................................................... 错误!未定义书签。 3.7.4 箱体结构参数的选择 ........................................................... 错误!未定义书签。 4 关节型机器人的位姿分析..................................................... 错误!未定义书签。 4.1 机器人的位姿与运动分析 ....................................................... 错误!未定义书签。 4.2关节型机器人的广义连杆变换齐次矩阵 ............................... 错误!未定义书签。5结论...................................................................................... 错误!未定义书签。参考文献.................................................................................. 错误!未定义书签。致谢 ................................................................................... 错误!未定义书签。附录.................................................................................. 错误!未定义书签。

工业机器人结构设计

1绪论 1.1工业机器人概述 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力。从某种意义上说它也是机器进化过程的产物,它是工业以及非工业领域的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。机械手是模仿人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械手”。工业机械手可以提高生产的自动化水平和劳动生产率;可以减轻劳动强度、保证产品质量、实现安全

生产,尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,由它代替人进行正常的工作,意义更为重大。因此,工业机械手在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的应用。工业机械手的结构形式开始比较简单专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的应用。 1.2工业机器人的组成和分类 1.2.1工业机器人的组成 机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等组成。各系统相互之间的关系如方框图1.1所示。 图1.1机器人组成系统

基于Android的智能聊天机器人的设计与实现

基于An droid 的智能聊天机器人的设计与实现 学院名称: 业: 级: 号: 名: 任课教师: 安卓智能聊天机器人开发(一) 这个聊天机器人有点像前段时间很火的一个安卓应用一一小黄鸡 应用的实现其实很简单,网上有许多关于智能机器人聊天的接口, 我们只需要去 调用对应的接口,遵守它的 API 开发规范,就可以获取到我们想要的信息 开发步骤: 首先我们需要到这个图灵机器人的官网去注册一个账号,他会给我们一个唯一 Key ,通过这个Key 和对应的API 开发规范,我们就可以进行开发了。 然后在这个(/cloud/access api.jsp )网址里可以找到相关的开发介绍 比如:请求方式,参数,返回参数,包括开发范例,一些返回的编码等信息 这里是官方提供的一个调用小案例(JAVA ),这里我也顺带贴一下 这里我使用的接口是 图灵机器人(/) 这个接口给我们返回的是 就 可以实现这个应用。 Json 字符串,我们只需要对它进行Json 字符串解析,

/** 调用图灵机器人平台接口 * 需要导入的包: commons-logging- httpclient- */ public static void main(String[] args) throws IOException { String INFO = URLEncoder.encode(" 北京今日天气 ", "utf-8"); String requesturl = "/api?key= Apikey&info="+INFO; HttpGet request = new HttpGet(requesturl); HttpResponse response = HttpClients.createDefault().execute(request); //200 即正确的返回码 if(response.getStatusLine().getStatusCode()==200){ String result = EntityUtils.toString(response.getEntity()); "返回结果: "+result); 第一篇讲下关于如何调用接口,从网上获取数据,包括解析 Json 字符串 第二篇会把这些获取的数据嵌入到安卓应用 首先,先写一个工具类, 这个工具类是用来获取用户输入的信息并返回服务器提 供的数据的 这里面用到了一个第三方提供的JAR 包,Gson 它是谷歌提供给我们用来使Json 数据序列化和反序列化的 关于Gson 的使用我之前写过一篇笔记,不熟悉的朋友可以看看: Gson 简要使 用笔记(/p/3987429.html ) 代码如下:具体看注释 Package ; import ; import ; import ; 注册激活返回的 好了, 接下来开始实战吧,这个应用我打算写成两篇文章

一种取件式平面多关节机械手的研究与计算

第1章绪论 1.1 引言 工业机器人的出现和高速发展是社会、经济发展的必然,是为提高社会的生产水平和人类的生活质量,让机器人替人们干那些人们不愿干、干不了、干不好的工作。我国对于工业机器人的定义为:“一种自动化的机器,所不同的这种机器具备一些与人或者生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。1920年捷克作家卡雷尔·查培克在其剧本《罗萨姆的万能机器人》中最早使用机器人一词,剧中机器人“Robot”这个词的本意是苦力,即剧作家笔下的一个具有人的外表,特征和功能的机器,是一种人造的劳力。它是最早的工业机器人设想。 20世纪40年代中后期,机器人的研究与发明得到了更多人的关心与关注。50年代以后,美国橡树岭国家实验室开始研究能搬运核原料的遥控操纵机械手,如图0.2所示,这是一种主从型控制系统,主机械手的运动。系统中加入力反馈,可使操作者获知施加力的大小,主从机械手之间有防护墙隔开,操作者可通过观察窗或闭路电视对从机械手操作机进行有效的监视,主从机械手系统的出现为机器人的产生为近代机器人的设计与制造作了铺垫。 1954年美国戴沃尔最早提出了工业机器人的概念,并申请了专利。该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人。现有的机器人差不多都采用这种控制方式。1959年,美国发明家英格伯格与德沃尔制造出世界上第一台工业机器人Unimate以来,从此工业机器人在现代化社会工业生产的环节中的占比与日俱增。同时伴随着新一轮工业革命及科技革命的到来,各国对于工业现代化都提出了更高的要求,德国提出了“工业4.0”美国提出了“先进制造业国家战略计划”,并采取多种措施“吸引制造业回流”,英国提出了“高价值制造业战略”,日本提出了“产业复兴计划”、法国提出了“新工业法国”等。中国作为全球制造业中心,更要做好充分准备,提升中国制造业的国际竞争新优势,打造中国的工业现代化、做大做强中国制造,对此,我国提出了“中国制造2025”战略。在这场全球聚焦的科技革命中,机器人由于其安全,高效,智能,高精度及稳定性必将在这场革命中发挥巨大的作用。

六自由度工业机器人设计

六自由度工业机器人 对于工业机器人的设计与大多数机械设计过程相同;首先要知道为什么要设计机器人?机器人能实现哪些功能?活动空间(有效工作范围)有多大?了解基本的要求后,接下来的工作就好作了。 首先是根据基本要求确定机器人的种类,是行走的提升(举升)机械臂、还是三轴的坐标机器人、还是六轴的机器人等。选定了机器人的种类也就确定了控制方式,也就有了在有限的空间内进行设计的指导方向。 接下来的要做的就是设计任务的确定。这是一个相对复杂的过程,在实现这一复杂过程的第一步是将设计要求明确的规定下来;第二步是按照设计要求制作机械传动简图,分析简图,制定动作流程表(图),初步确定传动功率、控制流程和方式;第三步是明确设计内容,设计步骤、攻克点、设计计算书、草图绘制,材料、加工工艺、控制程序、电路图绘制;第四步是综合审核各方面的内容,确认生产。 下面我将以六轴工业机器人作为设计对象来阐明这一设计过程: 在介绍机器人设计之前我先说一下机器人的应用领域。机器人的应用领域可以说是非常广泛的,在自动化生产线上的就有很多例子,如垛码机器人、包装机器人、转线机器人;在焊接方面也有很例子,如汽车生产线上的焊接机器人等等;现在机器人的发展是非常的迅速,机器人的应用也在民用企业的各个行业得以延伸。机器人的设计人才需求也越来越大。

六轴机器人的应用范筹不同,设计形式也各不相同。现在世界上生产机器人的公司也很多,结构各有特色。在中国应用最多的如:ABB、Panasonic、FANUK、莫托曼等国外进口的机器人。 既然机器人的应用那么广泛,在我国却没有知名的生产公司。对于作为中国机械工程技术人员来说是一个值得思考的问题!有关机器人技术方面探讨太少了?从业人员还不能成群体?虽然在很多地方可以看到机器的论术,可是却没有真正形成普及的东西。 即然是要说设计,那我就从头一点一点的说起。力求讲的通俗简明一些,讲得不对的地方还请各位指正! 六轴机器人是多关节、多自由度的机器人,动作多,变化灵活;是一种柔性技术较高的工业机器人,应用面也最广泛。那么怎样去从头开始的设计它呢?工作范围又怎样去确定?动作怎样去编排呢?位姿怎样去控制呢?各部位的关节又是有怎么样的要求呢?等等。。。。。。让我们带着众多的疑问慢慢的往下走吧! 首先我们设定:机器人是六轴多自由度的机器人,手爪夹持二氧气体保护焊标准焊枪;完成点焊、连续焊等不同要求的焊接部件,工艺要求、工艺路线变化快的自动生线上。最大伸长量:1700mm;转动270度;底座与地平线水平固定;全电机驱动。 好了,有了这样的基本要求我们就可以做初步的方案的思考了。 首先是全电机驱动的,那么我们在考虑方案的时候就不要去考虑液压和气压的各种结构了,也就是传动机构只能用齿轮齿条、连杆机构等机械机构了。 机器人是用于焊接方面的,那么我们就去考察有人工行为下的各种焊接手法和方法。这里就有一个很复杂的东西在里面,那就是焊接工艺;即然焊艺定不下来,我们就给它区分一下,在常用焊接里有单点点焊、连续断点点焊、连续平缝焊接、填角焊接、立缝焊接、仰焊、环缝焊等等。。。。。。 搞清了各种焊方法,也就明白了要实现这些复杂的动作就要有一套可行的控制方式才行;在机械没有完全设计出来之前可以不做太多的控制方案思考,有一个大概的轮廓概念就行了,待机械结构做完,各方面的驱动功率确定下来之后再做详细的程序。 焊枪是用常用的标准的焊枪,也就是说焊枪是随时可以更换下来的,也就要求我们要做到对焊枪的夹持部分进行快速锁定与松开。 焊枪在焊接过程中要进行各种焊接姿态调整,那么机械手腕就要很灵活,在各个方位角度上都可调节。

工业机器人的五大机械结构和三大零部件解析

工业机器人的五大机械结构和三大零部件解析 根据国际机器人联合会(International Federation of Robotics;简称IFR)定义,机器人分为工业机器人(Industrial Robots)及服务型机器人(Service Robots)。其中,目前工业机器人又佔全球机器人80%的市佔率,远高于服务型机器人。 若以机械结构来看,工业机器人可区分为单轴机器人、座标机器人、水平多关节机器人(SCARA)、垂直多关节机器人以及并联式机器人(DELTA)等,以下依序就这五种类型来说明。 一、工业机器人之五大机械结构 1. 单轴机器人 单轴机器人一般分为两种传动方式,一为滚珠螺杆传动,二为同步齿形带(简称:同步带)传动,两种皆是以直线导轨做为导向,并配合伺服电机或步进电机,来实现不同应用领域的定位、移载、搬运等等。透过不同的组合样式,还可以实现两轴、三轴、龙门式的组合。单轴机器人的应用领域涵盖半导体、家电、医疗、汽车、包装、点胶机、焊接、切割、检测等自动化应用领域,而台湾的上银科技在单轴机器人的市场名列全球前三。 2. 直角座标机器人 直角座标机器人是基于X、Y、Z直角座标,在各座标的长度范围内进行工作或运动,适用于搬运、取放等作业,可应用的领域包括射出成型机取出用手臂、移动并定位、堆迭、锁螺丝、切割、装夹、压入、插取、装配、自动药房等。 台湾机器人相关业者数量约有80家,现有40家以上的业者可从事座标机器人相关设备的设计开发,所使用的关键零组件国产化程度较高。在射出成型机取出用机械手臂中,天行自动化(Alfa)与台湾精锐(Apex)为该领域之领先业者,并在中国大陆具有一定的市场佔有率。 3. 水平多关节(SCARA)机器人

最新六轴关节机器人机械结构(精品收藏)

六轴关节机器人机械结构 上图为常见的六轴关节机器人的机械结构,六个伺服电机直接通过谐波减速器、同步带轮等驱动六个关节轴的旋转,注意观察一、二、三、四轴的结构,关节一至关节四的驱动电机为空心结构,关节机器人的驱动电机采用空心轴结构应该不常见,空心轴结构的电机一般较大.采用空心轴电机的优点是:机器人各种控制管线可以从电机

中心直接穿过,无论关节轴怎么旋转,管线不会随着旋转,即使旋转,管线由于布置在旋转轴线上,所以具有最小的旋转半径。此种结构较好的解决了工业机器人的管线布局问题。对于工业机器人的机械结构设计来说,管线布局是难点之一,怎样合理的在狭小的机械臂空间中布置各种管线(六个电机的驱动线、编码器线、刹车线、气管、电磁阀控制线、传感器线等),使其不受关节轴旋转的影响,是一个值得深入考虑的问题.?机器人的腕部结构常见有如下几种结构:?

在这三种手腕部的结构中,以第一种(RBR型)结构应用最为广泛,它适应于各种工作场合,后两种结构应用范围相对较窄,比如说3R型的手腕结构主要应用在喷涂行业等。?关节设计:?对于国外的工业机器人主要制造国家来说,六轴关节机器人的研发设计及制造已经有好几十年的历史了,

整个工业机器人的研发制造体系较为完善,他们的技术相对来说比较成熟,他们在相互竞争中可以相互模仿、改善、不断推陈出新,他们的技术对于国内来说,近乎完美。而国内目前这个行业还处在黎明前的黑暗阶段,虽然有不少公司有这个研发意图,或者正在研发途中,不管怎么说,浮出水面公布自己正在研发或者研发成功的公司应该说是极少数,即使宣布自己研发成功,也只是初步试验成功,真正产业化、商品化还有一段相当漫长的路要走.而更多的公司还停留在项目立项、技术评估、投入风险分析的阶段.由于国内做这个行业的很少,相关的结构也没有什么可参考的,技术储备不足,少数的单位或个人有机会能够拆拆别人的机器,拆个一知半解,更多的人只能在旁边看看了(比如说我,想拆都没机会^_^),还好了,网络资源丰富,今搜集到不少机械结构方面的图片,分享给大家参考,希望咱们做机械设计的(我应该也算是个机械工程师啊^_^毕竟我也是做机械的)少走点弯路,做出更好的机器.?六轴关节机器人的腕部关节设计较为复杂,因为在腕部同时集成了三种运动.小型的六轴关节机器人的腕部关节主要采用谐波减速器。下面的图片较为详

管道机器人结构设计

φ700mm-φ1000mm管道机器人结构设计 在工农业生产及日常生活中,管道作为一种重要的物料运输手段,其应用范围极为广泛。管道在使用过程中,由于各种因素的影响,会产生各种各样的管道堵塞与管道故障和损伤。如果不及时的管道进行检测、维修及清理就可能产生事故,造成不必要的损失。然而,管道所处的环境往往是不易直接达到或不允许人们直接进入的,检测及清洗难度很大。因此最有效的方法之一就是利用管道机器人来实现管道内的在线检测、维修和清洗。管道机器人在我国处于发展阶段,具有广阔的市场前景。管道机器人相对于人工操作来说,有无可比拟的优势。管道机器人在计算机控制下,可进行采样、检测等动作。而单片机技术的发展,为管道机器人的方便应用提供了一个良好的基础技术。利用单片机,可以实现管道机器人的控制,是管道机器人设计中较好的选择。 通过对国内外管道机器人研究现状分析,总体看来,国内外已经在管内作业机器人领域取得了大量的成果,主要应用在管道检测、维修及空调通风管道的清洗等方面。但对于金属冶炼厂烟气输送管道中烟灰堆积层的清理这种特殊管内作业的自动化装置研究目前少有报道。因此研制适应于金属冶炼厂烟气管道烟灰清理的管道清灰机器人将具有重大的现实意义。 此次设计的管道机器人主要应用在金属冶炼厂、化工企业等烟气输送管道烟灰堆积层的清理,作为载体,通过安装不同的设备可实现排水管道的监测、清理。 编辑:林冰宁波广强机器人科技有限公司管道检测机器人是由控制器、爬行器、高清摄像头、电缆等组成。在作业的时候主要是由控制器控制爬行器搭载检测设备进入管道进行检测。检测过程中,管道机器人可以实时传输管道内部情况视频图片以供专业维修人员分析管道内部故障问题。 使用管道检测机器人的优势: 1.安全性高。使用广强管道机器人进入管道查明管道内部情况或排除管道隐患,如果是人工作业的话,往往存在较大的安全隐患,而且劳动强度高,不利于工人的健康。广强管道机器人智能作业可有效提高作业的安全性能。 2.节省人工。管道检测机器人小巧轻便,一个人即可完成作业,控制器可装载在车上,节省人工,节省空间。 3.提高效率和品质。广强管道机器人智能作业定位准确,可实时显示出日期时间、爬行器倾角(管道坡度)、气压、爬行距离(放线米数)、激光测量结果、方位角度(选配)等信息,并可通过功能键设置这些信息的显示状态;镜头视角时钟显示(管道缺陷方位定位)。 4.防护等级高,摄像头防护等级IP68,可用于5米水深,爬行器防护等级IP68,可用于10米水深,均有气密保护,材质防水防锈防腐蚀,无需担心质量问题,因为广强只做国内 最好的管道机器人。 5.高精度电缆盘,收放线互不影响,可选配长度。

工业机器人毕业设计

工业机器人 摘要 在当今大规模制造业中,企业为提高生产率,保障产品质量,普遍重视生产过程的自动化程度,工业机器人作为自动化生产线上重要的成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平。目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动程度极大的工作,工作方式一般采取示教在线的方式。 本文将设计一台圆柱坐标型的工业机器人,用于给冲压设备运送物料。首先,本文将设计机器人的大臂、小臂、底座和机械手的结构,然后选择合适的传动方式、驱动方式,搭建机器人的结构平台:在此基础上,本文将设计该机器人的控制系统,包括数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、以及控制元件的设计,重点加强控制软件的可靠性和机器人运行过程的安全性,最终实现的目标包括:关节的伺服控制和制动问题、实时监测机器人的各个关节的运动情况、机器人的示教编程和在线修改程序、设置参考点和回参考点。

目录 摘要 1绪论 (1) 1.1 工业机器人研究的目的和意义 (1) 1.2 工业机器人在国内外的发展现状与趋势…………………….. 1.3 工业机器人的分类 1.4 本课题研究的主要内容 2 总体方案的确定 2.1 结构设计概述 2.2 基本设计参数 2.3 工作空间的分析 2.4 驱动方式 2.5 传动方式确定 3 搬运机器人的结构设计 3.1 驱动和传动系统的总体结构设计 3.2 手爪驱动气缸设计计算 3.3 进给丝杠的设计计算 3.4 驱动电机的选型计算

3.5 手臂强度校核 4 搬运机器人的控制系统 4.1 机器人控制系统分类 4.2 控制系统方案分析 4.3 机器人的控制系统方案确定 4.4 PLC及运动控制单元选型 5 结论与展望 致谢

基于Android的智能聊天机器人的设计与实现

基于Android的智能聊天机器人的设计与实现 学院名称: 专业: 班级: 学号: 姓名: 任课教师: 安卓智能聊天机器人开发(一) 这个聊天机器人有点像前段时间很火的一个安卓应用——小黄鸡

应用的实现其实很简单,网上有许多关于智能机器人聊天的接口,我们只需要去调用对应的接口,遵守它的API开发规范,就可以获取到我们想要的信息 这里我使用的接口就是——图灵机器人(、tuling123、com/openapi/)

这个接口给我们返回的就是Json字符串,我们只需要对它进行Json字符串解析,就可以实现这个应用。 开发步骤: 首先我们需要到这个图灵机器人的官网去注册一个账号,她会给我们一个唯一Key,通过这个Key与对应的API开发规范,我们就可以进行开发了。 然后在这个(、tuling123、com/openapi/cloud/access_api、jsp)网址里可以找到相关的开发介绍 比如:请求方式,参数,返回参数,包括开发范例,一些返回的编码等信息

这里就是官方提供的一个调用小案例(JAVA),这里我也顺带贴一下 /** 调用图灵机器人平台接口 * 需要导入的包:commons-logging-1、0、4、jar、httpclient-4、3、1、jar、httpcore-4、3、jar */ public static void main(String[] args) throws IOException { String INFO = URLEncoder、encode("北京今日天气", "utf-8"); String requesturl = "、tuling123、com/openapi/api?key= 注册激活返回的Apikey&info="+INFO;

水平多关节机器人设计 毕业设计开题报告

本科生毕业设计(论文) 开题报告 学生姓名: 沈维堂 学号: 14021217 班级: 140212 专业: 机械工程及自动化 指导教师: 张宏颖

开题报告 课题名称:水平多关节型工业机器人设计 ——机身与大臂结构及控制系统设计一、课题介绍: 课题背景: 据有关专家介绍,机器人充分体现了人和机器的各自优长,它比传统机器具有更大的灵活性和更广泛的应用范围。机器人的出现和应用是人类生产和社会进步的需要,是科学技术发展和生产工具进化的必然。 在制造业中诞生的工业机器人是继动力机、计算机之后而出现的全面延伸人的体力和智力的新一代生产工具,作为现代制造业的主要自动化装备在制造业中广泛应用,并将在未来的制造企业中扮演越来越重要的角色。 机器人及其自动化成套装备已成为目前国内外极受重视的高新技术应用领域。机器人及其自动化成套装备是指以机器人为核心,以信息技术和网络技术为媒介,将所有设备连接到一起而形成的大型自动化生产线。它是先进制造装备的典型代表,是发展先进制造技术实现生产线的数字化、网络化和智能化的重要手段。 据介绍,机器人及其成套设备的应用将使现代制造业产生变革,对改变传统生产模式,全面提升企业的综合竞争力具有重大作用。机器人及其自动化成套装备的拥有量和水平是衡量一个国家制造综合实力的重要标志之一。 在机器人中,人(操作者)是不可缺少的重要组成部分,在用这种装置完成一项操作任务的整个过程中,自始至终都必须有人的参加。同时,人通过观察系统对从动部件的工作情况及其周围环境保持直接或间接的视觉监视,从而能充分的依靠人的感觉和智力及时做出判断和决策,以适应工作对象或其周围环境的变化,随机应变地完成那些较为复杂的、或者事先难以预料的操作任务。 目前,机器人已经越来越多、越来越广泛地应用于生产生活的各个方面。金字塔探密,机器人功不可没。美国攻打伊拉克,机器人也发挥了重要作用。中国神州五号的成功发射,充分显示了我国在机器人某个领域的实力。 我国现代工业机器人技术发展现状的研究 1、工业机器人技术概念 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。

工业机器人的基本工作原理,工业机器人结构系统

工业机器人的基本工作原理,工业机器人结构系统 机器人是最典型的机电一体化数字化装备,技术附加值高,应用范围广,作为先进制造业的支撑技术和信息化社会的新兴产业,将对未来生产和社会发展起越来越重要的作用。从20世纪下半叶起,世界机器人产业一直保持着稳步增长的良好势头。根据发达国家产业发展与升级的历程和工业机器人产业化发展趋势,到2015年中国机器人市场的容量约达十几万台套。 1工业机器人的基本工作原理 工业机器人是一种生产装备,其基本功能是提供作业所须的运动和动力.其基本工作原理是通过操作机上各运动构件的运动.自动地实现手部作业的动作功能及技术要求。因此在基本功能及基本工作原理上,工业机器人与机床有相同之处:二者的末端执行器都有位置变化要求,而且都是通过坐标运动来实现末端执行器的位置变化要求。当然机器人也有其独特的要求,是按关节形式运动为主,同时机器人的灵活性要求很高,其刚度、精度要求相对较低。 2工业机器人结构系统 2.1工业机器人构造 从功能角度分析可将机器人分解成四个部分:操作机、末端执行器、传感系统、控制器。操作机:是由机座、手臂和手腕、传动机构、驱动系统等组成.其功能是使手腕具有某种工作空间,并调整手腕使末端执行器实现作业任务要求的动作。末端执行器:也叫工业机器人的手部,它是安装在工业机器人手腕上直接抓握工件或执行作业的部件。感器系统:是指要机器人与人一样有效的完成工作。必须对外界状况进行判断的感觉功能。与机器人控制最紧密相关的是触觉。视觉适合于检测对象是否存在,检测其大概的位置、姿势等状态。相比之下,触觉协助视觉.能够检测出对象更细微的状态。控制器:机器人控制系统是机器人的大脑,是决定机器人功能和性能的主要因素。主要是控制工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等。具有编程简单、软件菜单操作、友好的人机交互界面、在线操作提示和使用方便等特点。在机器人中采

履带式机器人结构设计

摘要 在微小型履带机器人方面美国走在了世界的前列,代表机器人有Packbot机器人,Talon机器人,NUGV等。 我国微小型机器人的研究和开发晚于西方的一些发达国家,我国是从20世纪80年代开始机器人领域的研究的。其中具有代表性的有中国科学院研制的复合移动机器人“灵晰-B”型排爆机器人,“龙卫士Dragon Guard X3B 反恐机器人”,“JW-901 排爆机器人”等。 此设计的目的设计结构新颖,能实现过坑、越障等动作。通过在机器人机架上加装其他功能的模块来实现不同的使用功能,本研究的意义是为机器人提供一个动力输出平台,为开发各种功能的机器人提供基础平台。 此设计移动方案的选择是采用了履带式驱动结构。结构整体使用模块化设计,以便后续拆卸维修,可以适应于各种复杂的路面,并可主动控制前后两侧摇臂的转动来调节机器人的运动姿态,从而达到辅助过坑、越障等动作。经过合理的设计后机器人将具有很好的环境适应能力、机动能力并能承受一定的掉落冲击,此设计的移动机构主要由四部分组成:主动轮减速机构、翼板转动机构、自适应路面执行机构、履带及履带轮运动机构。 关键词:履带机器人;履带移动机构;模块化设计

Abstract In terms of micro small crawler robots walk in the forefront of the world in the United States, on behalf of the robot has disposal robot, Talon robot, NUGV, etc. Miniature robot research and development in our country later than some developed western countries, our country from the 1980 s began to research in the field of robot. One of the typical composite mobile robot developed by the Chinese academy of sciences \"norm of spirit - B\" type eod robots, \"Dragon Guard Dragon Guard X3B anti-terrorism robot\", \"JW - 901 eod robot\", etc. The design is novel, the purpose of this design can achieve pit, surmounting obstacles. Through in the robot arm with other function modules to realize different use function, the significance of this study is to provide a power output for robot platform, provides the basis for the development of all sorts of function of robot platform. This design is the choice of mobile solutions adopted crawler drive structure. Structure of the overall use of modular design, in order to follow-up maintenance, removal can be adapted to various complicated road, and can turn on either side of the rocker arm before and after active control to regulate the robot's motion, so as to achieve auxiliary pit, surmounting obstacles. After reasonable design robots will have good environmental adaptability, mobility and can absorb a certain amount of drop impact, this design of the mobile mechanism is mainly composed of four parts: the driving wheel deceleration institutions, wing rotating mechanism, adaptive pavement actuators, track and track wheel motion mechanism. Keywords: tracked robot; tracked mobile mechanism;the modular design

相关文档
最新文档