电磁场与电磁波解读
电磁波和电磁场的关系
![电磁波和电磁场的关系](https://img.taocdn.com/s3/m/8ecc9ccffbb069dc5022aaea998fcc22bcd14386.png)
电磁波和电磁场的关系一、引言电磁波和电磁场是物理学中非常重要的概念,它们在现代科技中有着广泛的应用。
本文将从电磁波和电磁场的定义、特性以及它们之间的关系三个方面进行详细阐述。
二、电磁波的定义和特性1. 电磁波的定义电磁波是一种由振荡的电场和磁场相互作用而产生并在真空中传播的无质量粒子。
它们沿着垂直于彼此和传播方向的平面传播,并且具有固定速度(光速)。
2. 电磁波的特性(1)频率与能量成正比:根据普朗克定律,能量与频率成正比,因此频率越高,能量就越大。
(2)速度不变:无论在什么介质中传播,光速始终保持不变。
(3)横向振动:电场和磁场垂直于传播方向,并且也垂直于彼此。
(4)具有偏振性:只有一个特定方向上的振动才能产生偏振光。
三、电磁场的定义和特性1. 电磁场的定义电磁场是一种由电荷和电流产生的物理场。
它包括两个部分:电场和磁场。
电场是由电荷产生的,而磁场则是由运动的电荷(即电流)产生的。
2. 电磁场的特性(1)具有方向性:电场和磁场都具有方向性,它们垂直于彼此并且垂直于传播方向。
(2)相互作用:当一个物体中存在电荷或者电流时,就会产生相应的电磁场,这个场会影响到周围的其他物体。
(3)能量传递:电磁波是通过振荡的电磁场传递能量的。
四、电磁波和电磁场之间的关系1. 产生关系根据麦克斯韦方程组,一个变化的电流会产生一个变化的磁场,而一个变化的磁场也会产生一个变化的电场。
因此,在存在变化的电流或者变化的磁场时,就会同时存在相应大小和方向不同但彼此互相作用并最终形成一种新型物理现象——“辐射”。
2. 相互关系电磁场是产生电磁波的物理场,电磁波则是由振荡的电场和磁场相互作用而产生的。
因此,可以认为电磁波是一种在空间中传播的电磁场扰动。
3. 应用关系由于电磁波和电磁场之间的相互作用关系,我们可以通过控制电磁场来产生和控制电磁波。
这种技术被广泛应用于通信、雷达、医学和科学实验等领域。
五、结论总之,电磁波和电磁场是物理学中非常重要的概念,它们之间存在着密切的联系。
电磁场与电磁波揭示电磁场与电磁波的本质与关系
![电磁场与电磁波揭示电磁场与电磁波的本质与关系](https://img.taocdn.com/s3/m/4f4aa5525e0e7cd184254b35eefdc8d376ee14f0.png)
电磁场与电磁波揭示电磁场与电磁波的本质与关系电磁场和电磁波是描述电磁现象的两个重要概念。
电磁场是由电荷所构成的空间区域周围存在的物理场,它的存在和变化可以对其他电荷产生力的作用。
而电磁波则是电磁场在空间中的传播,具有波动性质,可以传递能量和信息。
本文将探讨电磁场与电磁波的本质以及它们之间的密切关系。
一、电磁场的本质电磁场是由电荷所激发产生的一种物理场。
根据库伦定律,电荷间的相互作用是通过电磁场传递的,这种传递是瞬时的,即时的。
电磁场存在于电荷周围的空间中,不仅与电荷的性质相关,也与电荷的运动状态有关。
电磁场的本质是一种信息媒介,它可以将电荷的信息传递给其他电荷,从而实现信息的传递和相互作用。
电磁场的强弱和方向是通过电场和磁场来描述的。
电场是由电荷产生的一种力场,它的本质是描述电荷对其他电荷产生力的作用。
磁场是由电流或者称为移动电荷的磁矩产生的一种力场,它的本质是描述电流对其他电荷产生力的作用。
电场和磁场相互垂直,并且彼此相互依赖、相互影响,共同构成了电磁场。
二、电磁波的本质电磁波是电磁场在空间中的传播。
当电荷发生变化时,电磁场会随之变化,产生扰动。
这种扰动以波的形式传播出去,形成电磁波。
电磁波是一种横波,具有电场和磁场相互垂直的振动分量。
电磁波的传播速度是光速,也是任何物质能传播的最大速度。
电磁波具有电磁场的性质,它们都是由电荷产生和激发的,并且都遵循麦克斯韦方程组来描述。
电磁波有三个基本特征:振幅、波长和频率。
振幅表示电场和磁场的最大值,波长表示波的周期性特征,频率表示波的振动次数。
这些特征决定了电磁波在空间中的传播性质,如波速、传播方向等。
三、电磁场与电磁波的关系电磁场和电磁波之间存在着密切的关系。
首先,电磁波是电磁场的传播形式,它是电磁场的集体运动状态,承载着电磁场的能量和信息。
电磁波的产生需要电场和磁场相互作用,并满足一定条件才能形成稳定的电磁波。
其次,电磁波可以通过电磁场的相互作用和传递来影响其他物体和介质。
电磁场与电磁波
![电磁场与电磁波](https://img.taocdn.com/s3/m/9370005ffd4ffe4733687e21af45b307e871f90d.png)
电磁场与电磁波电磁场和电磁波是电磁学领域中的两个重要概念,它们在我们日常生活中起着重要的作用。
本文将从电磁场的基本概念、电磁波的传播和应用等方面进行详细论述。
一、电磁场的基本概念电磁场是一种物质周围或内部存在的一种物理场。
简单来说,电磁场是由电荷或电流所产生的一种力场。
根据麦克斯韦方程组,电磁场可以分为静电场和静磁场。
静电场是由电荷产生的力场,而静磁场则是由电流所产生的力场。
静电场在物质中以电场的形式存在,而静磁场则以磁场的形式存在。
电场和磁场之间存在一种相互作用的关系,即电场的变化会引起磁场的变化,而磁场的变化也会引起电场的变化。
这种相互作用产生了一个重要的现象,即电磁波的产生与传播。
二、电磁波的传播电磁波是电场和磁场以波的形式传播的现象。
电磁波可以分为射频波、微波、红外线、可见光、紫外线、X射线和γ射线等不同频率范围的波动现象。
电磁波的传播速度是光速,也就是299792458米每秒。
光速是一个宇宙常数,而且是真空中传播速度最快的物理量。
根据麦克斯韦方程组,电磁波的传播可以分为横波和纵波。
横波是指电场和磁场垂直于波的传播方向的波动,而纵波则是指电场和磁场与波的传播方向平行的波动。
电磁波的传播需要介质的存在,例如空气、水和固体等。
不同介质对电磁波的传播有不同的影响,例如折射、反射和散射。
这些现象广泛应用于光学、通信和雷达等领域。
三、电磁场和电磁波的应用电磁场和电磁波的应用范围非常广泛,涉及到许多领域。
首先是通信领域。
无线电和移动通信就是利用电磁波进行信息传输的技术。
我们日常使用的手机、无线网络和卫星通信等都是基于电磁波传播的原理。
其次是光学领域。
光是一种电磁波,光学就是研究光的传播和性质的学科。
光学应用非常广泛,例如光纤通信、显微镜、激光器等。
此外,电磁波还广泛应用于医学诊断和治疗。
X射线、核磁共振和放射治疗等技术都是基于电磁波的原理。
在材料科学领域,电磁场也起着重要的作用。
例如利用电磁场技术进行材料表面改性、溶液混合和催化反应等。
电磁场与电磁波
![电磁场与电磁波](https://img.taocdn.com/s3/m/8258290632687e21af45b307e87101f69e31fb08.png)
電磁場與電磁波电磁场与电磁波电磁场是指由电荷的运动而形成的一种物质周围的力场。
电磁场的概念由麦克斯韦方程组给出,它包括电场和磁场两部分。
电场是由电荷产生的力场,它描述了电荷对周围其他电荷产生的作用力。
磁场是由电流或者变化的电场产生的,它描述了电流对周围产生的作用力。
1. 电场在所有电荷周围都存在电场,电场的描述通过电场强度来实现。
电场强度是一个矢量量,大小表示电场的强弱,方向表示电场的作用方向。
在一个点处,电场强度的方向与正电荷相同,与负电荷相反。
电场强度的数学表达式为E = F / q,其中E表示电场强度,F表示电场力,q表示电荷的大小。
2. 磁场磁场是由电流或者变化的电场产生的,磁场的描述通过磁感应强度来实现。
磁感应强度是一个矢量量,大小表示磁场的强弱,方向垂直于电流的方向。
磁感应强度的数学表达式为B = μ0I / (2πr),其中B表示磁感应强度,μ0表示真空中的磁导率,I表示电流的大小,r表示电流到观察点的距离。
3. 麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程组,它由麦克斯韦提出。
麦克斯韦方程组包括四个方程式,分别描述了电场和磁场的生成和传播规律。
其中最重要的两个方程是电场和磁场的高斯定律和法拉第定律。
电场和磁场的高斯定律描述了电场和磁场的生成规律,法拉第定律描述了电磁场的传播规律。
4. 电磁波当电磁场中发生变化时,就会产生电磁波。
电磁波是指电场和磁场同时变化并传播的波动现象。
电磁波的产生和传播遵循麦克斯韦方程组。
电磁波分为不同的频率和波长,其中频率和波长之间有一个固定的关系,即c = λf,其中c表示光速,λ表示波长,f表示频率。
根据频率的不同,电磁波可以分为不同的类型,包括射线、微波、红外线、可见光、紫外线、X射线和γ射线。
总结:电磁场是由电荷和电流产生的力场,包括电场和磁场两部分。
电场描述了电荷对周围电荷的作用力,磁场描述了电流对周围物体的作用力。
麦克斯韦方程组是描述电磁场的基本方程组,用于描述电磁场的生成和传播规律。
公共基础知识电磁场与电磁波基础知识概述
![公共基础知识电磁场与电磁波基础知识概述](https://img.taocdn.com/s3/m/cf21488451e2524de518964bcf84b9d528ea2ccf.png)
《电磁场与电磁波基础知识概述》一、引言电磁场与电磁波是现代物理学的重要组成部分,在通信、电子、电力等众多领域都有着广泛的应用。
从无线电广播到手机通信,从雷达探测到卫星导航,电磁场与电磁波无处不在。
深入了解电磁场与电磁波的基础知识,对于理解现代科技的发展和应用具有重要意义。
二、电磁场的基本概念(一)电场1. 定义电场是电荷及变化磁场周围空间里存在的一种特殊物质。
电场对放入其中的电荷有作用力,这种力称为电场力。
2. 电场强度电场强度是描述电场强弱和方向的物理量,用 E 表示。
它的定义是单位正电荷在电场中所受的电场力。
电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。
3. 电场线电场线是为了形象地描述电场而引入的假想曲线。
电场线上每一点的切线方向表示该点电场强度的方向,电场线的疏密程度表示电场强度的大小。
(二)磁场1. 定义磁场是一种看不见、摸不着的特殊物质,它存在于磁体、电流和运动电荷周围。
磁场对放入其中的磁体、电流和运动电荷有力的作用。
2. 磁感应强度磁感应强度是描述磁场强弱和方向的物理量,用 B 表示。
它的定义是在磁场中垂直于磁场方向的通电导线,所受的磁场力 F 与电流 I 和导线长度 L 的乘积 IL 的比值。
磁感应强度是矢量,其方向与小磁针在该点静止时 N 极所指的方向相同。
3. 磁感线磁感线是为了形象地描述磁场而引入的假想曲线。
磁感线上每一点的切线方向表示该点磁感应强度的方向,磁感线的疏密程度表示磁感应强度的大小。
(三)电磁场1. 定义电磁场是有内在联系、相互依存的电场和磁场的统一体和总称。
变化的电场产生磁场,变化的磁场产生电场,两者相互激发,形成电磁场。
2. 麦克斯韦方程组麦克斯韦方程组是描述电磁场基本规律的一组方程,由四个方程组成。
它揭示了电场和磁场之间的内在联系,以及电磁波的产生和传播规律。
三、电磁波的基本概念(一)定义电磁波是由同相且互相垂直的电场与磁场在空间中衍生发射的振荡粒子波,是以波动的形式传播的电磁场。
111电磁场与电磁波解读
![111电磁场与电磁波解读](https://img.taocdn.com/s3/m/b0bc6b2e178884868762caaedd3383c4bb4cb4ac.png)
x(i )
32
电磁波的接收
mV
非匀强磁场能量求法
W 1 LI 2 m2
1 B2 1 BH 2 2
a: 任取体积元dV(在dV内B的分布均匀)
b: 计算dV内能量 dW dV 1 B2dV
m
m
2
c:
计算总能量
W m
V
dV m
V
1 B2dV 2 3
4
1820年奥斯特 1831年法拉第
电 产生 磁 磁 产生 电
变化的磁场 激发 电场
赫兹对人类文明作出了很大贡献,正当人们对 他寄以更大期望时,他却于1894年因血中毒逝世, 年仅36岁。为了纪念他的功绩,人们用他的名字来 命名各种波动频率的单位,简称“赫”。
21
一内外半径分别为R1和R2的均匀带电平面圆环, 电荷面
练 密度为 ,其中心有一半径为r的导体小环 R1 r ,
习 二者同心共面如图。设带电圆环以变角速度 (t)绕垂
B
dB
0
2
(R2
R1 )
选逆时针方向为小环回路为正方向,则小环中
BS
0
2
(R2
R1) r 2
i
d
dt
0
2
(R2
R1) r 2
d
dt
R2
r R1
i
i
R'
0
2R '
(R2
R1) r 2
d
dt
d 0,i与选定的正方向相反
dt
d 0,i与选定的正方向相同
23
dt
如图,在通有电流 I 的长直导线近旁,金属细杆a 端与长
dt dt
dt
变化的电场可以等效为一种电流。 I
电磁场与电磁波知识点
![电磁场与电磁波知识点](https://img.taocdn.com/s3/m/b68dd052f02d2af90242a8956bec0975f465a481.png)
电磁场与电磁波知识点在我们的日常生活中,电磁场与电磁波虽然看不见摸不着,但却无处不在,发挥着至关重要的作用。
从手机通讯到广播电视,从医疗设备到卫星导航,都离不开电磁场与电磁波的应用。
那么,究竟什么是电磁场与电磁波呢?让我们一起来探索一下相关的知识点。
首先,我们来了解一下电磁场。
电磁场是由电场和磁场组成的统一体。
电场是由电荷产生的,而磁场则是由电流或者变化的电场产生的。
电荷在其周围空间会产生电场,当电荷移动时,也就是形成电流,就会产生磁场。
电场的强度可以用电场强度这个物理量来描述。
它的单位是伏特每米(V/m),用来表示单位电荷在电场中所受到的力。
而磁场的强度则用磁感应强度来衡量,单位是特斯拉(T),描述的是单位电流元在磁场中所受到的力。
电磁波,简单来说,就是电磁场的一种运动形式。
当电场和磁场相互激发时,就会产生电磁波,并以光速在空间中传播。
电磁波具有波动性和粒子性双重性质。
电磁波的波动性可以通过波长、频率和波速这三个重要的参数来描述。
波长是指相邻两个波峰或者波谷之间的距离,单位通常是米(m)。
频率则是指电磁波在单位时间内振动的次数,单位是赫兹(Hz)。
波速是指电磁波在介质中传播的速度,在真空中,电磁波的波速约为3×10⁸米每秒。
它们之间存在着一个简单的关系:波速等于波长乘以频率。
电磁波的频率范围非常广泛,按照频率从低到高的顺序,可以分为无线电波、微波、红外线、可见光、紫外线、X 射线和伽马射线等。
不同频率的电磁波具有不同的特性和应用。
无线电波的频率较低,波长较长,常用于广播、电视和通信等领域。
微波的频率比无线电波高一些,在雷达、卫星通信和微波炉等设备中得到广泛应用。
红外线具有热效应,常用于遥控器、红外测温等。
可见光就是我们能够看到的光,它的频率和波长在一定范围内,使我们能够感知到丰富多彩的世界。
紫外线具有杀菌消毒的作用,但过量的紫外线对人体有害。
X 射线具有很强的穿透力,常用于医学成像和安检。
电磁场与电磁波知识点整理
![电磁场与电磁波知识点整理](https://img.taocdn.com/s3/m/ff4c359809a1284ac850ad02de80d4d8d15a01aa.png)
电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。
电荷会产生电场,而电流会产生磁场。
电场是由电荷产生的,它对处在其中的电荷有力的作用。
电场强度是描述电场强弱和方向的物理量,用 E 表示,单位是伏特每米(V/m)。
电场线可以形象地描绘电场的分布,其疏密程度表示电场强度的大小,切线方向表示电场的方向。
磁场是由运动电荷或电流产生的,对处在其中的运动电荷或电流有力的作用。
磁感应强度是描述磁场强弱和方向的物理量,用 B 表示,单位是特斯拉(T)。
磁感线可以形象地描绘磁场的分布,其疏密程度表示磁感应强度的大小,切线方向表示磁场的方向。
二、麦克斯韦方程组麦克斯韦方程组是电磁场理论的核心,它由四个方程组成,分别描述了电场和磁场的产生、变化和相互关系。
1、高斯定律:描述了电场的散度与电荷量之间的关系。
对于静电场,通过任意闭合曲面的电通量等于该闭合曲面所包围的电荷量除以真空中的介电常数。
数学表达式:∮E·dS = q /ε₀2、高斯磁定律:表明磁场的散度恒为零,即磁感线总是闭合的,没有磁单极子存在。
数学表达式:∮B·dS = 03、法拉第电磁感应定律:指出时变磁场会产生感应电场,感应电场的环流等于磁通量的变化率的负值。
数学表达式:∮E·dl =dΦ/dt4、安培麦克斯韦定律:修正了安培环路定律,不仅电流会产生磁场,时变电场也会产生磁场。
数学表达式:∮B·dl =μ₀(I +ε₀dΦₑ/dt)三、电磁波的产生与传播电磁波是由时变的电场和磁场相互激发而产生的,并在空间中以波动的形式传播。
变化的电流或电荷是电磁波的源。
电磁波的传播不需要介质,可以在真空中传播。
在真空中,电磁波的传播速度为光速 c,约为 3×10⁸米每秒。
电磁波具有波的特性,如波长、频率、波速之间的关系:v =fλ,其中 v 是波速,f 是频率,λ 是波长。
第3章电磁场与电磁波解读
![第3章电磁场与电磁波解读](https://img.taocdn.com/s3/m/75a6afcf49649b6648d74747.png)
式中 kc c
是一复数,称为复波数
◇ 定义传播常数
jkc j c j
2 1 1 2 2 1 1 2
E E0e jkez r
由麦氏方程可证明电场与传播方向垂直
在无源区内
E E 0 e jke z
而
E 0
r
E e
0
jk e z r
0
x P
e jkez
r
jkez ex x e y y ez z e e e x x y y z z e
E z, t e x E x z, t e x Em cos t kz xE
4 rad/m 3
Em 104 V/m
2f 2108 rad/s
k
?
由条件t=0,z=1/8 m时,电场等于其振幅值。 得 1 0 k xE 0 8 1 4 1 xE k rad 8 3 8 6
由以上的讨论,可得理想介质中的均匀平面波的传播特性。 ◇ 电场与磁场的振幅相差一个因子 ◇ 电场和磁场在空间相互垂直且都垂直于传播方向。E、H、n(波的传播方向) 呈右手螺旋关系 E
◇ 电场、磁场的时空变化关系相同。
◇ 电场、磁场的振幅不随传播距离增加而衰减。 z (5) 沿任意方向传播的均匀平面波 沿+z方向传播的均匀平面波其电场 矢量可一般表示为 E E0e jkz 相应的磁场矢量
设电场平行于x轴,且只是z的函数,即
E ex Ex z
电磁场与电磁波的基本概念
![电磁场与电磁波的基本概念](https://img.taocdn.com/s3/m/5e8f9c10b5daa58da0116c175f0e7cd1842518bd.png)
电磁场与电磁波的基本概念电磁场和电磁波是物理学中非常重要的概念,对于我们理解电磁现象和应用电磁技术有着至关重要的作用。
本文将从电磁场和电磁波的基本概念入手,探讨它们的特性和应用。
一、电磁场的概念电磁场是由电荷和电流所产生的一种物理现象。
我们知道,电荷之间的相互作用通过电场来实现,而电流则通过磁场来实现。
电磁场则是电场和磁场的统一体,它们相互作用,相互影响。
电磁场具有一些基本特性。
首先,电磁场是无处不在的,它存在于我们周围的每一个空间点。
其次,电磁场具有传播性,它可以在空间中传播。
最后,电磁场具有能量和动量,可以对物质产生作用。
电磁场的描述可以使用电场强度和磁感应强度来进行。
电场强度描述了电荷对周围空间的作用,磁感应强度描述了电流对周围空间的作用。
它们都是矢量量,具有大小和方向。
二、电磁波的概念电磁波是由电磁场所产生的一种波动现象。
当电磁场发生变化时,就会产生电磁波。
电磁波是一种横波,它的振动方向与传播方向垂直。
电磁波具有一些基本特性。
首先,电磁波是一种自由空间中的波动现象,不需要介质的存在。
其次,电磁波具有传播性,可以在空间中传播。
最后,电磁波具有波长、频率和速度等特性。
电磁波的波长和频率之间存在着一定的关系,即波速等于波长乘以频率。
在真空中,电磁波的速度是一个常数,即光速,约为3×10^8米/秒。
三、电磁场与电磁波的关系电磁场和电磁波是密不可分的。
电磁波是电磁场的一种表现形式,电磁场的变化会产生电磁波的传播。
电磁波是由电场和磁场相互耦合产生的。
当电场发生变化时,磁场也会发生变化,从而产生磁场的传播;当磁场发生变化时,电场也会发生变化,从而产生电场的传播。
这种电场和磁场的相互转换和传播形成了电磁波。
四、电磁场与电磁波的应用电磁场和电磁波的应用非常广泛。
电磁波是我们日常生活中使用的无线通信技术的基础,如手机、无线网络等。
电磁波还被广泛应用于雷达、卫星通信等领域。
电磁场的应用也非常广泛。
电磁场可以用于电力传输和电能转换,如变压器、发电机等。
电磁场与电磁波知识点整理
![电磁场与电磁波知识点整理](https://img.taocdn.com/s3/m/dced53b5185f312b3169a45177232f60dccce704.png)
电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是有内在联系、相互依存的电场和磁场的统一体。
电荷产生电场,电流产生磁场。
电场是存在于电荷周围,能传递电荷之间相互作用的物理场。
它的基本特性是对置于其中的电荷有力的作用。
电场强度是描述电场强弱和方向的物理量,用 E 表示。
单位是伏特每米(V/m)。
磁场是一种看不见、摸不着的特殊物质,能对放入其中的磁体、电流产生力的作用。
磁感应强度是描述磁场强弱和方向的物理量,用 B 表示。
单位是特斯拉(T)。
二、库仑定律与安培定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们距离的平方成反比。
其表达式为:$F =k\frac{q_1q_2}{r^2}$,其中 k 是库仑常量,约为$9×10^9N·m^2/C^2$ 。
安培定律则阐述了两个电流元之间的相互作用力。
电流元在磁场中所受到的安培力为$dF = I dl × B$ 。
三、麦克斯韦方程组麦克斯韦方程组是电磁场理论的核心,由四个方程组成。
高斯定律:$\oint_{S} E·dS =\frac{q}{ε_0}$,表明电场的散度与电荷量成正比。
高斯磁定律:$\oint_{S} B·dS = 0$ ,说明磁场是无源场。
法拉第电磁感应定律:$\oint_{C} E·dl =\frac{d}{dt}\int_{S} B·dS$ ,揭示了时变磁场产生电场。
安培麦克斯韦定律:$\oint_{C} H·dl = I +\frac{d}{dt}\int_{S} D·dS$ ,指出时变电场产生磁场。
四、电磁波的产生与传播电磁波是由同相且互相垂直的电场与磁场在空间中衍生发射的振荡粒子波。
变化的电场和变化的磁场相互激发,形成在空间中传播的电磁波。
电磁波的产生通常需要一个振荡电路,比如 LC 振荡电路。
当电容器充电和放电时,电路中的电流和电荷不断变化,从而产生变化的电磁场,并向周围空间传播。
《电磁场和电磁波》 讲义
![《电磁场和电磁波》 讲义](https://img.taocdn.com/s3/m/048ea026326c1eb91a37f111f18583d048640f30.png)
《电磁场和电磁波》讲义一、什么是电磁场在我们生活的世界中,电磁场是一种无处不在但又常常被我们忽略的存在。
简单来说,电磁场就是由带电粒子的运动所产生的一种物理场。
想象一下,当一个电子在空间中移动时,它的周围就会产生一个电场。
这个电场会对周围的其他带电粒子产生力的作用。
与此同时,如果这个电子在移动的过程中还在不断地改变速度,那么就会产生磁场。
电场和磁场就像是一对好兄弟,它们总是同时出现,相互关联,并且相互影响。
这种相互作用的结果就是我们所说的电磁场。
电磁场的强度和方向可以用数学上的向量来描述。
电场强度用 E 表示,磁场强度用 B 表示。
它们的大小和方向会随着带电粒子的运动状态以及空间位置的变化而变化。
二、电磁场的特性电磁场具有一些非常重要的特性。
首先,电磁场可以在空间中传播。
这就像我们扔一块石头到水里,会产生一圈圈的水波向外扩散一样,电磁场也能以电磁波的形式在空间中传播能量和信息。
其次,电磁场遵循一定的规律。
比如,库仑定律描述了两个静止点电荷之间的电场力作用;安培定律则描述了电流与磁场之间的关系。
再者,电磁场具有能量。
当电磁场发生变化时,能量会在电场和磁场之间相互转换。
这也是电磁波能够传播的一个重要原因。
三、电磁波的产生电磁波的产生通常需要一个源,比如一个加速运动的电荷或者一个变化的电流。
以天线为例,当电流在天线中快速变化时,就会产生迅速变化的电磁场,并向周围空间发射出去,形成电磁波。
另外,原子内部的电子在不同能级之间跃迁时,也会释放出电磁波。
这种电磁波的频率和能量与电子跃迁的能级差有关。
四、电磁波的性质电磁波具有波动性和粒子性双重性质。
从波动性的角度来看,电磁波和其他波一样,具有波长、频率、振幅等特征。
波长是相邻两个波峰或波谷之间的距离;频率则是单位时间内波振动的次数;振幅表示波的能量大小。
电磁波的频率范围非常广泛,从极低频率的无线电波到高频率的伽马射线。
不同频率的电磁波在性质和应用上有着很大的差异。
《电磁场与电磁波》 讲义
![《电磁场与电磁波》 讲义](https://img.taocdn.com/s3/m/bc0bb643ae45b307e87101f69e3143323968f597.png)
《电磁场与电磁波》讲义一、引言在我们的日常生活中,电磁场与电磁波无处不在。
从手机通信到无线网络,从电力传输到医疗诊断,电磁场与电磁波在现代科技中扮演着至关重要的角色。
然而,对于大多数人来说,电磁场与电磁波的概念可能仍然显得神秘而陌生。
本讲义旨在为您揭开电磁场与电磁波的神秘面纱,帮助您理解其基本原理、特性以及在实际生活中的应用。
二、电磁场的基本概念1、电场电场是由电荷产生的一种物理场。
当一个电荷存在时,它会在周围空间产生电场,其他电荷在这个电场中会受到力的作用。
电场的强度可以用电场强度矢量 E 来描述,其单位是伏特每米(V/m)。
2、磁场磁场是由电流或运动电荷产生的。
类似于电场,磁场也有其强度,称为磁感应强度 B,单位是特斯拉(T)。
3、电磁场电磁场是电场和磁场的统一体。
当电荷运动或电流变化时,电场和磁场会相互激发、相互影响,形成电磁场。
麦克斯韦方程组是描述电磁场规律的基本方程。
三、电磁波的产生电磁波的产生通常需要一个源,比如加速运动的电荷或变化的电流。
当电荷加速运动时,会产生变化的电场,这个变化的电场又会产生变化的磁场,如此反复,就形成了电磁波向外传播。
常见的电磁波产生方式包括:1、天线中的电流振荡在无线电通信中,天线中的电流以特定的频率振荡,从而产生电磁波。
2、原子和分子的跃迁在原子和分子的内部,电子在不同能级之间跃迁时会释放或吸收电磁波。
四、电磁波的特性1、波长和频率电磁波的波长和频率是其两个重要的特征参数。
波长是电磁波在一个周期内传播的距离,频率则是单位时间内电磁波的周期数。
它们之间的关系可以用公式:光速=波长×频率来表示。
2、偏振电磁波的电场和磁场振动方向可以是任意方向的。
当它们的振动方向在特定方向上具有一致性时,就称为偏振。
偏振在光学和通信等领域有着重要的应用。
3、能量和动量电磁波具有能量和动量,其能量密度与电场强度和磁场强度的平方成正比。
五、电磁波的传播1、在真空中的传播电磁波在真空中以光速传播,不需要任何介质。
电磁场与电磁波ppt完美版课件
![电磁场与电磁波ppt完美版课件](https://img.taocdn.com/s3/m/2b3a5627ae1ffc4ffe4733687e21af45b307fe1e.png)
探究一
探究二
随堂检测
画龙点睛变化的磁场周围产生电场,与是否有闭合电路存在无关。
2.对麦克斯韦电磁场理论的理解
探究一
探究二
随堂检测
实例引导例1根据麦克斯韦电磁场理论,下列说法正确的是( )A.有电场的空间一定存在磁场,有磁场的空间也一定能产生电场B.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场C.均匀变化的电场周围一定产生均匀变化的磁场D.周期性变化的磁场周围空间一定产生周期性变化的电场解析:根据麦克斯韦电磁场理论,只有变化的电场才能产生磁场,均匀变化的电场产生恒定的磁场,非均匀变化的电场产生变化识
自我检测
1.正误判断。(1)电磁波也能产生干涉、衍射现象。( )答案:√(2)电磁波的传播不需要介质,可以在真空中传播。答案:√2.探究讨论。为什么电磁波是横波?答案:根据麦克斯韦电磁场理论,电磁波在真空中传播时,它的电场强度和磁感应强度是相互垂直的,且二者均与波的传播方向垂直。因此,电磁波是横波。
探究一
探究二
随堂检测
规律方法理解麦克斯韦的电磁场理论的关键掌握四个关键词:“恒定的”“均匀变化的”“非均匀变化的”“周期性变化的(即振荡的)”,这些都是对时间来说的,是时间的函数。
探究一
探究二
随堂检测
变式训练1如图所示的四种电场中,哪一种能产生电磁波( )
解析:由麦克斯韦电磁场理论,当空间出现恒定的电场时(如A图),由于它不激发磁场,故无电磁波产生;当出现均匀变化的电场时(如B、C图),会激发出磁场,但磁场恒定,不会激发出电场,故也不会产生电磁波;只有振荡的电场(即周期性变化的电场)(如D图),才会激发出振荡的磁场,振荡的磁场又激发出振荡的电场……如此周而复始,便会形成电磁波。答案:D
电磁场与电磁波的教学内容概述
![电磁场与电磁波的教学内容概述](https://img.taocdn.com/s3/m/ac9c2f532379168884868762caaedd3383c4b5c1.png)
电磁场与电磁波是电磁学的重要内容,是进入现代物理的基础知识。
它是我们了解电子学、信息科学、电力工程、电磁兼容等领域的理论基础。
本文将从电磁场与电磁波的概念、数学表示及其应用等方面进行全面的阐述,共分为以下几个部分。
一、电磁场的概念与基本特性电磁场是指在电荷或电流存在的情况下,在空间中发生的电场和磁场的相互作用。
它是一个连续的场,具有能量、动量、角动量等物理量。
电磁场的基本特性有:1)超距作用;2)场的线性性;3)场的可加性;4)场的相互作用。
二、电磁场的数学表示电磁场的数学表示主要有两种方法:一是使用麦克斯韦方程式,它包括麦克斯韦电场定律、麦克斯韦磁场定律、法拉第电磁感应定律和安培电流定律。
二是利用应用数学中的向量分析,包括向量导数、散度和旋度等。
三、电磁波的概念与基本特性电磁波是由电场和磁场相互作用而产生的一种波动现象。
它具有电场和磁场的可旋转、垂直并互相垂直、传播方向垂直于电场和磁场的特点。
电磁波分为许多不同的频率和波长,其中包括无线电波、光波、X射线、γ射线等。
四、电磁波的数学表示电磁波的数学表示主要有两种方法:一是通过电磁场的数学表示导出电磁波的运动方程,即麦克斯韦方程组。
二是通过电磁波本身的性质进行数学建模,如用傅里叶分析法,将电磁波表示为谐波和完整的谱等。
五、电磁场与电磁波的应用电磁场与电磁波在各个领域均有着广泛的应用。
在电子学领域,电磁场在电磁管、电子束匀器及微波电路等设备的设计与优化中发挥着重要的作用。
在信息科学领域,电磁波被广泛用于通信技术中的无线传输、卫星通讯等。
在电力工程领域,电磁场在电气设备的设计、制造、维护等方面起着至关重要的作用。
此外,在医学、地质、环境、天文学等领域,电磁场与电磁波也有着广泛的应用。
电磁场与电磁波是电磁学的基础,是现代科学技术的重要组成部分。
本文从电磁场与电磁波的概念、数学表示及其应用等角度进行了概述,希望能够对读者理解和应用电磁场与电磁波有所帮助。
《电磁场与电磁波》 讲义
![《电磁场与电磁波》 讲义](https://img.taocdn.com/s3/m/6d9cf774876fb84ae45c3b3567ec102de3bddf1d.png)
《电磁场与电磁波》讲义在我们的日常生活中,电磁场与电磁波无处不在,从手机通信到广播电视,从微波炉加热食物到 X 射线的医疗应用,它们都在默默地发挥着重要作用。
那么,什么是电磁场与电磁波呢?这就是我们接下来要深入探讨的内容。
首先,让我们来了解一下电磁场。
电磁场是由带电物体产生的一种物理场。
电荷的存在会导致周围空间产生电场,而当电荷运动时,就会产生磁场。
电场和磁场相互关联、相互作用,形成了电磁场。
想象一下,一个静止的电荷会在其周围产生一个静电场,就像一颗石子投入平静的湖面,引起的涟漪向外扩散一样。
而当电荷开始移动,比如电流在导线中流动时,就会产生磁场,这个磁场就像是围绕着导线的一圈圈“磁力线”。
电磁波则是电磁场的一种运动形式。
当电场和磁场以一定的规律变化时,就会产生电磁波,并以光速向周围空间传播。
电磁波具有很宽的频谱,包括无线电波、微波、红外线、可见光、紫外线、X 射线和伽马射线等。
不同频率的电磁波具有不同的性质和应用。
例如,无线电波常用于通信,像我们熟悉的广播、电视和手机信号都是通过无线电波来传输的。
微波则在雷达、微波炉等设备中得到应用。
红外线具有热效应,常用于遥控器和热成像仪。
可见光让我们能够看到周围的世界。
紫外线可以用于杀菌消毒。
X 射线在医学成像和工业检测中发挥着重要作用。
伽马射线则具有很强的穿透力,常用于医疗放疗和放射性检测。
那么,电磁波是如何产生的呢?一种常见的方式是通过电荷的加速运动。
比如,在天线中,电流的快速变化会产生电磁波。
另外,原子和分子内部的电子跃迁也会产生电磁波。
例如,当一个原子中的电子从高能级跃迁到低能级时,就会释放出光子,也就是电磁波。
接下来,我们来看看电磁波的传播特性。
电磁波在真空中以光速传播,速度约为 3×10^8 米/秒。
在介质中传播时,电磁波的速度会变慢,并且会发生折射、反射和衍射等现象。
折射就像是光线从空气进入水中时发生的弯曲;反射则类似于光线照在镜子上被反弹回来;衍射则是指电磁波在遇到障碍物时,会绕过障碍物继续传播。
《电磁场与电磁波》 讲义
![《电磁场与电磁波》 讲义](https://img.taocdn.com/s3/m/e1df98a64128915f804d2b160b4e767f5bcf8018.png)
《电磁场与电磁波》讲义一、什么是电磁场与电磁波在我们的日常生活中,电和磁的现象无处不在。
从电动机的转动到手机的通信,从微波炉的加热到卫星的导航,都离不开电磁场与电磁波的作用。
电磁场,简单来说,就是由带电物体产生的一种物理场。
电荷的运动或者静止都会产生电场,而电流的流动则会产生磁场。
当电场和磁场相互作用、相互影响时,就形成了电磁场。
电磁波呢,则是电磁场的一种运动形态。
它是由同相且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面。
二、电磁场的基本原理要理解电磁场,首先得了解库仑定律和安培定律。
库仑定律描述了两个静止点电荷之间的电场力的大小和方向,它表明电场力与两个电荷的电荷量成正比,与它们之间的距离的平方成反比。
安培定律则阐述了电流元之间的磁场相互作用规律。
通过这两个定律,我们可以初步认识到电场和磁场的产生和作用方式。
麦克斯韦方程组是电磁场理论的核心。
这组方程由四个方程组成,分别描述了电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律和安培麦克斯韦定律。
电场的高斯定律表明,通过一个闭合曲面的电通量等于这个闭合曲面所包围的电荷量除以真空介电常数。
磁场的高斯定律指出,通过任何一个闭合曲面的磁通量恒为零,这意味着不存在磁单极子。
法拉第电磁感应定律说明,当穿过一个闭合回路的磁通量发生变化时,会在回路中产生感应电动势。
安培麦克斯韦定律则将安培定律进行了扩展,引入了位移电流的概念,使得在时变电磁场中,磁场的旋度不仅与传导电流有关,还与位移电流有关。
三、电磁波的特性电磁波具有很多独特的特性。
首先是波动性,它以正弦波的形式传播,具有波长、频率和波速等特征。
波长是指相邻两个波峰或波谷之间的距离,频率则是单位时间内电磁波振动的次数,而波速等于波长乘以频率。
电磁波在真空中的传播速度是恒定的,约为 3×10^8 米/秒。
不同频率的电磁波在介质中的传播速度会有所不同。
电磁波还具有偏振性。
电磁场与电磁波分析
![电磁场与电磁波分析](https://img.taocdn.com/s3/m/f0768c9c5122aaea998fcc22bcd126fff6055d57.png)
电磁场与电磁波分析电磁场和电磁波是我们日常生活中经常遇到的物理现象。
本文将对电磁场和电磁波进行分析,探讨它们的特点和应用。
一、电磁场的概念及特点电磁场是由电荷或电流产生的一种物理场。
电磁场的特点如下:1.1 空间作用范围广泛:电磁场能够在无限远的空间内传播,并且不会受到物质的阻碍。
1.2 作用力的体现:电磁场对电荷和电流具有作用力,可以改变它们的运动状态。
1.3 方向和强度的矢量性:电磁场具有方向和强度的矢量性质,可以用矢量来表示。
1.4 电磁波的产生:当电流变化时,电磁场会产生电磁波,即电磁辐射。
二、电磁波的概念及分类电磁波是电磁场的一种表现形式,具有电场和磁场相互垂直且相互交替变化的特点。
根据波长的不同,电磁波可以分为以下几种类型:2.1 射线状电磁波:这类电磁波的波长很短,如X射线和γ射线,能够穿透物质。
2.2 紫外线:紫外线的波长介于可见光和X射线之间,能够引起物质的照射和化学反应。
2.3 可见光:可见光是人眼能够感知到的电磁波,它的波长范围大约在380-780纳米之间,包括了红、橙、黄、绿、蓝、靛、紫七种颜色。
2.4 红外线:红外线的波长介于可见光和微波之间,常用于热成像和通信领域。
2.5 微波:微波的波长范围大约在1毫米至1米之间,广泛应用于通信、雷达和热食品加热等领域。
2.6 无线电波:无线电波是波长最长的电磁波,波长通常超过1米,用于广播、电视和无线通信等方面。
三、电磁场与电磁波的应用电磁场和电磁波在现代社会的各个领域中发挥着重要作用,下面以几个典型应用为例进行说明:3.1 通信领域:电磁波是现代通信的重要媒介,包括手机信号、电视信号和卫星通信等。
无线电波、微波和红外线等电磁波的应用使得信息传输更加迅速和便捷。
3.2 医疗领域:X射线、γ射线和紫外线等电磁波被广泛应用于医疗领域,用于诊断和治疗。
例如,X射线能够在体内获得人体骨骼和器官的影像,帮助医生进行疾病诊断。
3.3 能源领域:太阳光是一种重要的能源,它以电磁波的形式照射到地球表面,被光伏电池转化为电能。
电磁场与电磁波的基本概念与特性
![电磁场与电磁波的基本概念与特性](https://img.taocdn.com/s3/m/9493488edb38376baf1ffc4ffe4733687f21fc67.png)
电磁场与电磁波的基本概念与特性电磁场和电磁波是电磁学领域中的两个重要概念,它们在物理学和工程学的许多领域中扮演着关键的角色。
本文将介绍电磁场和电磁波的基本概念,并探讨它们的特性。
一、电磁场的概念与特性电磁场是由电荷和电流所产生的力场,它包括电场和磁场两个组成部分。
电场是由电荷所产生的力场,它可以通过电荷的静电作用来描述。
磁场是由电流所产生的力场,它可以通过电流的磁性作用来描述。
电场和磁场是相互关联的,在空间中存在一个物理量称为电磁场强度,它可以同时描述电场和磁场的强弱和方向。
根据麦克斯韦方程组,电磁场可以通过电荷和电流产生,并且在空间中以波动形式传播。
电磁场的特性主要包括以下几点:1. 相互作用性:电磁场具有相互作用的性质,电场中的电荷受到电场力的作用,磁场中的电流受到磁场力的作用。
这种相互作用性使得电磁场可以在空间中传递能量和动量。
2. 传播性:电磁场以电磁波的形式在空间中传播。
电磁波是电场和磁场的联合振动,具有特定的频率和波长,可以在真空中传播,速度等于光速。
3. 线性叠加性:电磁场满足线性叠加原理,即多个电磁场的叠加等于各个电磁场分别作用时的独立效果之和。
这个原理在电磁场的计算和分析中十分重要。
二、电磁波的概念与特性电磁波是电磁场以波动形式在空间中传播的现象。
它由电场和磁场的振动联合形成,具有特定的频率和波长,可以携带能量和信息。
电磁波的特性可以用以下几个方面来描述:1. 频率和波长:电磁波的频率指的是在一定时间内电磁场振动的次数,单位为赫兹;波长指的是电磁波在一定时间内传播的距离,单位为米。
频率和波长之间满足频率乘以波长等于光速的关系。
2. 能量和动量:电磁波携带能量和动量,在空间中传播时可以将能量和动量传递给其他物体。
这种特性使得电磁波在通信、能量传输等领域有着重要的应用。
3. 偏振性:电磁波具有偏振性,即电场和磁场的振动方向垂直于传播方向。
根据电场和磁场振动方向的相对关系,可以将电磁波分为横波和纵波两种类型。
电磁场与电磁波
![电磁场与电磁波](https://img.taocdn.com/s3/m/6c6321e1f424ccbff121dd36a32d7375a417c693.png)
电磁场与电磁波电磁场和电磁波是物理学中非常重要的概念,它们在我们的日常生活和科学研究中扮演着重要角色。
本文将介绍电磁场和电磁波的概念、性质以及它们在现代科技中的应用。
一、电磁场的概念和性质电磁场是指由电荷产生的力场和磁场所组成的物理场。
根据麦克斯韦方程组,电荷的运动会产生电场,而变化的电流则会产生磁场。
这两个场之间相互作用,共同构成了电磁场。
电磁场具有以下几个重要的性质:1. 电磁场是无线的:电磁场的传播速度是光速,约为300,000公里/秒,具有较快的传播速度。
2. 电场和磁场的相互作用:根据法拉第电磁感应定律,变化的磁场可以产生感应电场,而变化的电场则会产生感应磁场。
这种相互作用是电磁波传播的基础。
3. 电磁场的能量传递:电磁场携带能量,能量的传递通过电磁波进行。
电磁波是由电场和磁场相互耦合形成的波动现象。
二、电磁波的概念和性质电磁波是由电场和磁场相互耦合形成的一种波动现象。
它以光速传播,并在真空中可以自由传播。
电磁波具有以下几个重要的性质:1. 频率和波长:电磁波的频率和波长之间存在确定的关系,即频率乘以波长等于光速。
不同频率和波长的电磁波表现出不同的特性,如可见光、射线和无线电波等。
2. 偏振性质:电磁波可以是无偏振的,也可以是偏振的。
偏振电磁波只在一个特定的方向上振动,有利于某些应用,如偏振镜和3D眼镜等。
3. 干涉和衍射:电磁波在遇到障碍物或孔径时会产生干涉和衍射现象。
这些现象可以用来解释光的折射、多普勒效应等现象,对科学研究和技术应用具有重要意义。
三、电磁场和电磁波的应用电磁场和电磁波在现代科技中运用广泛。
以下列举几个例子:1. 通信技术:无线通信离不开电磁波传播,无线电、微波和红外线等电磁波被广泛用于手机、无线网络、卫星通信等领域。
2. 医学影像:射线和磁共振成像等技术利用电磁波对人体进行成像,对医学诊断和治疗起到重要作用。
3. 光学器件:电磁波在光学器件中被广泛应用,如透镜、光电二极管和激光器等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
且
r 1
如金、银和铜等属于抗磁质。 (2)顺磁质:磁化率为正,相对磁导率略大于1,即 1 1 且 r 1 r m 如镁、锂和钨等属于顺磁质。 (3)铁磁质:其磁化率非常大,其相对磁导率远大于1,即
r 1
如铁、镍和钴等属于铁磁质。
在铁磁性材料中,有许多小天然磁化区,称为磁畴。
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
第3章 媒质的电磁性质和边界条件
引言
一、 导体 二、电介质
三、 磁介质
四、媒质中的麦克斯韦方程组 五、电磁场的边界条件
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
引言
微波炉的工作原理
微波炉是利用电磁波的能量来加热食物的。 微波炉由一 个磁控管将电能转化为电磁波,然后照射到食 物上。 食物被电磁场加热的原因:因为食物中含有水分子,而水 分子具有一定的电偶极矩,在高频电磁场作用下,正负电 荷将受到电场力的作用,电偶极矩发生迅速变化和旋转, 使得水分子运动加剧,温度上升,熟化食物。
) JC Jm
D t
已知: J m M
B 磁介质中的磁场强度: H M
D ( M ) JC 0 t B
0 B 0 ( H M ) 0 (1 m ) H
已知:M m H
令: r 1 m
可得: B 0 r H
D (1 e ) 0 E
已知: P
e 0 E
令: r 1 e
D r 0 E
其中: r 称为相对介电常数。
电介质的物态方程
材料的介电常数表示为: r 0
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
高斯定律: D V
积分形式: S D dS V V dV
其中:表面 S 是体积 V 的封闭界面。
束缚电荷的面密度为:
束缚电荷的体密度为:
ˆ PS Pn P n
P P
若电介质中还存在自由电荷分布时,电介质中一点总的电位为: V P PS 1 1 A dV dS 4π 0 V R 4π 0 S R
H1 H1 H1 H1
O2
H1 H1
O2
O2
H1 H1
O2
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
媒质在电磁场作用下可发生现象:
☺导体的传导现象: 在外电场的作用下,这些带电粒子将发生定向运动, 形成电流。这种现象称为传导。能发生传导现象的材料称 为导体。 ☺电介质的极化现象: 这种在外加电场作用下,分子的电偶极矩将增大或发 生转向的现象称为电介质的极化现象。 ☺磁介质的磁化现象: 还有一些材料对磁场较敏感,例如螺丝刀在磁铁上放 一会儿,螺丝刀就具有一定的磁性,能吸起小螺钉。这种 现象称为磁化现象。能产生磁化现象的材料称为磁介质。
不同材料的电导率数据见教材上表3-1。
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
二、电介质
1. 电介质的特性 电介质是一种绝缘材料,在外电场作用下不能发生传导现 象,可以发生极化现象。 电介质有多种形态:固态,液态和气态。 无极分子 电介质分子可分为两类: 有极分子 无极分子:当外电场不存在时,电介质中分子的正负电荷 的“重心”是重合的。 当外电场不存在时,电介质中的正负电荷“重心” 有极分子: 不重合,因此每个分子可等效为一个电偶极子。
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
一、导体
1. 导体的定义:含有大量可以自由移动的带电粒子的物质。 金属导体: 由自由电子导电。 导体分为两种 电解质导体: 由带电离子导电。 2. 静电场中的导体 + 静电平衡状态的特点演示 + - E + E外 (1)导体为等位体; - 内+ + (2)导体内部电场为零; + (3)导体表面的电场处处与导体表 面垂直,切向电场为零 ( Et 0) ; (4)感应电荷只分布在导体表面上,导体内部感应电 荷为零 ( V 0) 。
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
3. 磁化强度 磁化强度的定义:单位体积内,所有磁矩的矢量和。
m M lim
V 0
(A/m) V 磁介质被磁化后,磁介质中出现束缚电流。 束缚电流面密度: J mS M an
束缚电流体密度: J m M 介质磁化后束缚电流在空间产生的矢量磁位:
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
2、电介质的极化 定义:这种在外电场作用下,电介质中出 现有序排列的电偶极子,表面上出现束缚 电荷的现象,称为电介质的极化。
(1)无极分子的极化:位移极化演示
在外电场作用下,由无极分子组成的电介质中,分子的正 负电荷“重心”将发生相对位移,形成等效电偶极子。 (2)有极分子的极化:转向极化演示 在外电场作用下,由有极分子组成的电介质,各分子的 电偶极矩转向电场的方向。
结论:穿过任意封闭曲面的电通量,只与曲面中包围的自由 电荷有关,而与介质的极化状况无关。 常见电介质的相对介电常数见教材上的表3-2 。
6. 介质的击穿
介质的击穿:当电介质上的外加电场足够大时,束缚电荷有 可能克服原子结构的吸引力,成为自由电荷。 此时,介质呈现导体特性。 击穿场强:介质所能承受的最大电场强度。它在高压技术 中是一个表征材料性能的重要参数。
R2
D
r
R1
O
R1
R2
R
P
O
R1
R2
R
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
三、磁介质
1. 什么是磁介质?
在外磁场作用下,呈现出明显磁性的物质称为磁介质。 电子轨道磁矩 原子磁矩: 电子自旋磁矩 原子核自旋磁矩
2. 磁介质的磁化 演示
在外磁场作用下,物质中的原子磁矩都将受到一个扭矩 作用,所有原子磁矩都趋于和外磁场方向一致排列,结果 对外产生磁效应,这种现象称为物质的磁化。
V
D V
B 0
S
B dS 0
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
例1:点电荷 Q 位于介质球壳的球心,球壳内半径为 R1 ,外半 径为 R2 球壳的相对介电常数为 r ,壳内外为真空。 求:球壳中任一点的电位移矢量、电场强度、极化强度及电位。
解:按题意该电场为球对称场,选球坐标系,用高斯定律
S
D dS Q
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
3. 极化强度 极化强度:描述电介质极化程度的物理量。 极化强度定义:单位体积中分子电矩的矢量和。
设介质中任一小体积 V 中所有分子的电矩矢量和为 pi, i 极化强度为: pi P lim i 2 极化强度的单位是 。 C/m V 0 V
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
5. 电介质的物态方程
电介质极化后,场域中除了自由电荷之外,又多了束缚电荷, 根据高斯定律: ( 0 E) V P V ( P) 可得: ( 0 E P) V 定义一个新矢量: D 0 E P
N e e d
J C N e e e E
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
4. 导电材料的物态方程
J C N e e e E
若设:
则:
e Nee
导体的电导率
JC E
描述导电材料的电磁特性的物态方程。
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
A JC Jm J mS d V dS S R 4π V R
i
0
磁化强度与磁场强度之间存在线性关系:
M m H
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
4. 磁介质的物态方程 根据全电流定律: (
B
0 B D ( ) J C M 0 t
磁滞回线
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
例2:某一各向同性材料的磁化率 m 2 ,磁感应强度, ˆx (mWb/m2 ) B 20 ya 求:该材料的相对磁导率、磁导率、磁化电流密度、传导电流 密度、磁化强度及磁场强度。
解:根据关系式 及
r 1 m
得: r 1 2 3
0 0
2π
π
DR R 2 sin d d Q
Q ˆ a 2 R 4 πR
r
Q
R2
R1
所以: D
R R2 :
R1 R R2 :
D 0E D 0 r E
E1
Q 4π 0 R
Q
2
ˆR a
2
E2
4π 0 r R
ˆR a
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
3. 恒定电场中的导体 将一段导体与直流电源连接,则导体内部会存在恒定电场。 导体中的自由电子受到电场力的 作用,逆电场方向运动。其平均 电子速度称为漂移速度:
d e E
式中: e 称为电子的迁移率, 其单位为 (m2 /V s) 。 故电流密度为: J C 可得: 如图: 单位时间内通过 dS 的 电量为: dq Nee d dS 式中: N e 为自由电子密度。
电磁场与电磁波
第3章 媒质的电磁性质和边界条件
(4)亚铁磁质:由于部分反向磁矩的存在,其磁性比铁磁材料 的要小,铁氧体属于一种亚铁磁质。 一些材料的相对磁导率和分类情况见教材上表3-4。