(完整版)初一数学尺规作图
新人教版七年级上数学13.4.1尺规作图重点讲解及习题
![新人教版七年级上数学13.4.1尺规作图重点讲解及习题](https://img.taocdn.com/s3/m/c795840da8114431b90dd8b4.png)
学习目标:1.掌握三种尺规作图的方法及一般步骤,并能熟练掌握基本作图语言。
2.通过动手操作、合作探究,培养作图能力、语言表达能力、逻辑思维和推理能力。
3.激情投入,全力以赴,认识到尺规作图与实际生活的紧密联系,激发学习兴趣 重点:掌握作线段等于已知线段,作一个角等于已知角,作已知角的平分线的作法。
难点:尺规作图的理论依据 教学过程 一导入预习课本尺规作图定义: 二..作一条线段等于已知线段。
已知:线段MN =a ,求作一条线段等于a.作法:(1) (2) (3)三.作一个角等于已知角 已知:∠AOB 求作一个角等于∠AOB. 作法:(1)作 O 1P 1;(2)以O 为圆心,以 作弧, 交 ,交 ;(3)以 为圆心,以 作弧,交 ; (4)以 为圆心,以 半径作弧,交 ;(5)经过 作 。
则 即为所求的角。
想一想:为什么两个角相等?你会证明吗?13.4.1尺规作图ODCBAaM NaMNA CB四做已知角的角平分线已知:∠AOB ,求作∠AOB 的平分线.作法:(1)以O 为圆心,以适当长为半径画弧,交OA于C 点,交OB 于D 点;(2)分别以C、D 两点圆心,以大于CD长为半径画弧,两弧相交于P 点;(3)过O、P 作射线OP ,即为所求作的角平分线.五练习(尺规作图)1.任意画出两条线段AB和CD,再作一条线段,使它等于AB+2CD2.任意画出两个角∠1和∠2,使∠1 > ∠2,再作一个角,使它等于∠1—∠23 把下图所示的角四等分4 已知:线段a和b(a>b)求作:一个等腰△ABC,使它的腰长等于线段a,底边长等于b。
OOBA21OBAPCD5 任意画一个(锐角、钝角)和直角三角形,画出三个内角的角平分线.,并总结规律(不写画法,保留作图痕迹)13.4.1尺规作图(2)学习目标:1.掌握三种尺规作图的方法及一般步骤,并能熟练掌握基本作图语言。
2.通过动手操作、合作探究,培养学生的作图能力、语言表达能力、逻辑思维和推理能力。
数学人教版七年级上册尺规作图
![数学人教版七年级上册尺规作图](https://img.taocdn.com/s3/m/2179e8055901020207409ce7.png)
5、已知线段AC = 1,BC = 3则线段AB的长度 是( D ). A .4 B.2 C. 2或4 D. 以上答案都不对
变式:已知A、B、C是同一条直线上的三
点,且线段AC = 1,BC = 3,则线段AB的
长度是( C ).
现有A、B两个村庄位于小河边,要修一水 库,供应村民饮用水,请问该水库应当修 在哪里,费用最少?
间的距离.
A
B
C
D
线段AC的中点
A B C
你记住什么 是线段的中 点了吗?
定义:把一条线段分成相等的两条线段的点, 叫做这条线段的中点.
数量关系: AB + BC=AC 如上图,若AB=2cm,
1 AC 2
AB = BC=
则线段AC= 4 cm,
线段BC= 2 cm.
AC=2AB=2BC
例3 如图,点P是线段AB的中点,点C、D
6
∴ AB=6PC=6×1.5=9(cm) 即 AB的长是9cm.
例2 已知线段a、b,画一条线段c,使它 的长度等于两条已知线段的长度的和.
a b
画法: 1、画射线AD. 2、用圆规在射线AD上截取AB=a.
3、用圆规在射线BD上截取BC=b.
c a b B C D
A
线段AC就是所求的线段c.
线段c的长度是线段a、b的长度的和, 我们就说线段c是线段a、b的和, 记做c=a+b,即AC=AB+BC.
把线段AB三等分.已知线段CP的长为1.5cm, 求线段AB的长.
A C P
1.5cm
D
B
?
∵ 解:
点P是线段AB的中点,
1 ∴ AP=PB= AB. 2 ∵ 点 C、D把线 段AB三等分,
最新人教版 初中数学 七年级上册尺规作图_知识点讲解1
![最新人教版 初中数学 七年级上册尺规作图_知识点讲解1](https://img.taocdn.com/s3/m/885131b75901020206409c22.png)
如图24.4.2,我们可以先画射线AB,然后用圆 规量出线段MN的长,再在射线AB上截取AC= MN,线段AC就是所要画的线段.
图 24.4.2
2、作一个角等于已知角 已知: AOB(图1) 求作: A`O`B`,使 A`O`B`= AOB
B D
B` D`
O
A C
O`
C`
A`
1、作射线O`A`。 2、以点O为圆心,以任意长为半径作弧,交OA于
C,交OB于D。 3、以点O`为圆心,以OC长为半径作弧,交O`A`于
C`。 4、以点C`为圆心,以CD长为半径作弧,交前弧于D`。 5、经过点D`作射线O`B`,∠A`O`B`就是所求的角。
B D
B` D`
O
A
C
O`
C`
A`
• 证明:
,由作法可知
• △C`O`D`≌△COD(SSS),
• ∴∠C`O`D`=∠COD(全等三角形的对应角相等),
的垂直平分线.
5.过定点作已知直线的垂线 ①.如图,点C在直线l上,试过点C画出直线l的垂 线.
能否利用画线段垂直平分线的方法解决呢?试试看,ห้องสมุดไป่ตู้成
整个作图.
图 24.4.8
以C为圆心,任一线段的长为半径画弧,交l于A、B两点,
则C是线段AB的中点.因此,过C画直线l的垂线转化为
画线段AB的垂直平分线.
• 即∠A`O`B`=∠AOB。
3、平分已知角
已知: AOB(图2) 求作:射线OC,使 AOC= BOC
B
E
C
•
O
D
A
1、在OA和OB上,分别截取OD、OE,使OD=OE。
• 2、分别以D、E为圆心,大于DE的长为半径作弧,
(初一)尺规作图
![(初一)尺规作图](https://img.taocdn.com/s3/m/43417f8bdaef5ef7ba0d3ccf.png)
E C
A
α
B F
几何作图Βιβλιοθήκη 基本作图三、利用基本作图解决实际问题
例2 如图,107国道OA和320国道OB在某市相交于 点O,在∠AOB的内部有工厂C和D,现要修建一个 货站P,使P到OA、OB的距离相等且PC=PD,用尺
规作出货站P的位置(不写作法,保留作图痕迹,写出
结论).
A D O C
实际作图
B A
灌 溉总 渠
2、A、B是两个村庄,要从灌溉总渠 引两条水渠,使它们到A、B两村距 离之和最短,请你作出方案,不写 作法,保留作图痕迹。
B A
灌 溉总 渠
四、反思与提高
对尺规作图再认识的过程中,你有何 新的收获? 实际作图
几何作图
基本作图
作业: 书本P86习题2、3、4、6。
校本:尺规作图(2)
第19章 全等三角形
19.3 尺规作图
一、基本尺规作图
1、作一条线段等于已知线段.
2、作一个角等于已知角. 3、作已知角的平分线.
α a
4、过一点做已知直线的垂线;
(1) 过在直线上的点C 作出直线的垂线。
(2) 过直线外的点C ,作出直线的垂线。
5、作已知线段的垂直平分线.
小耍一下!看你怎么样
1.作线段PQ=BC; 2.作∠EDF=∠ABC ; 3.作射线AG平分∠BAC; 4.作线段AB的垂直平分线DH.
B C
A
5. 作BP⊥AC
二、基本作图的应用
例1 已知两边及其夹角,求作三角形.
E
C
α a
A
α
B F
b
练习:在上题图形的基础上,以线段 a、b为邻边作一个平行四边形.
初中数学专题尺规作图(含答案)
![初中数学专题尺规作图(含答案)](https://img.taocdn.com/s3/m/9699b4e48bd63186bcebbc7b.png)
第28课时尺规作图◆考点聚焦1.掌握基本作图,尺规作图的要求与步骤.2.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,•对简单的作图能叙述作法.3.运用基本作图、结合相关的数学知识(平移、旋转、对称、•位似)等进行简单的图案设计.4.运用基本作图解决实际问题.◆备考兵法1.熟练掌握基本作图.2.在画几何体的三视图时,要注意其要求,•即“长对正”“高平齐”“宽相等”.3.认真分析题意,善于把实际问题转化为基本作图.◆识记巩固1.尺规作图的定义:_____________.2.基本作图包括:_______,_______,________,________,_______.3.三角形三边的垂直平分线的交点叫三角形的外心,•三角形三内角平分线的交点叫三角形的内心,外心到三角形的_______的距离相等,内心到三角形_______的距离相等.识记巩固参考答案:1.限定只能使用圆规和没有刻度的直尺作图2.作线段作角作线段的垂直平分线过一点作已知直线的垂线作角平分线3.顶点三边◆典例解析例1 (2008,新疆建设兵团)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(2)写出你的作法.解析(1)所作菱形如图①,②所示.说明:作法相同的图形视为同一种,例如类似图③,•图④的图形视图与图②是同一种.①②③④(2)图①的作法:作矩形A1B1C1D1四条边的中点E1,F1,G1,H1,连结H1E1,E1F1,G1F1,G1H1.四边形E1F1G1H1即为菱形.图②的作法:在B2C2上取一点E2,使E2C2>A2E2且E2不与B2重合,连结A2E2.以A2为圆心,A2E2为半径画弧,交A2D2于H2;以E2为圆心,A2E2为半径画弧,交B2C2于F2;连结H2F2,则四边形A2E2F2H2为菱形.例2 如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画∠AOB的平分线(请保留画图痕迹).解析连结AB.因为OA=OB,因此△ABO为等腰三角形.要作出∠AOB的平分线,•只要确定出AB的中点即可.因AEBF为矩形,因此连结AB,EF,相交于M.根据矩形的性质,M即为AB的中点.连结OM,射线OM即为所求的角平分线.例3台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一个台球桌,目标球F与本球E之间有一个G球阻挡,现在击球者想通过击打E球先撞击球台的AB边,经过一次反弹后再撞击F球,他应将E球打到AB边上的哪一点?•请在图中用尺规作图这一点H,并作出E球的运行路线(不写画法,保留作图痕迹).解析作点E关于直线AB的对称点E1,连结E1F,E1F与AB相交于点H,球E•的运动路线是EH→HF.点评本例是把实际问题通过抽象,把求H点的问题先转化为作E•点关于直线AB的对称点问题加以解决.数学课程标准对尺规作图提出了明确要求,是中考的重要内容之一,在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.•学会对作图问题进行分析,归纳,掌握画法.◆中考热身1.(2008,江苏镇江)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD 的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连结DF,在所作图中,寻找一对全等三角形,并加以证明.(不定作法,保留作图痕迹)2.(2008,山西太原)如图,在△ABC中,∠BAC=2∠C.(1)在图中作出△ABC的内角平分线AD;(要求:尺规作图,保留作图痕迹,•不写证明)(2)在已作出的图形中,写出一对相似三角形,并说明理由.3.(2008,四川成都)如图,已知点A是锐角∠MON内的一点,试分别在OM,ON上确定点B,点C,使ABC•的周长最小,写出你作图的主要步骤并标明你所确定的点_________.(要求画出草图,保留作图痕迹)◆迎考精练一、基础过关训练1.在Rt△ABC中,已知∠C=90°,AD是∠BAC的平分线.以AB上一点O为圆心,AD•为弦作⊙O(不写作法,保留作图痕迹).2.请你画出一个以BC为底边的等腰△ABC,使底边上的高AD=BC.(1)求tanB和sinB的值.(2)在你所画的等腰△ABC中,假设底边BC=5米,求腰上的高BE.3.作一条直线,平分如图所示图形的面积:4.现有m,n两堵墙,两个同学分别站在A处和B处,请问小明在哪个区域内活动才不会被任何一个同学发现?(画图,用阴影表示)5.按下列要求作图,不写画法,要保留作图痕迹.(1)在图1中,作出AB的中点M,作出∠BCD的平分线CN,延长CD到点P,使DP=2CD;(2)如图2是一个破损的机器部件,它的残留边缘是圆弧,请作图找出圆弧所在的圆心.图1 图26.如图,Rt△ABC的斜边AB=5,cosA=35.(1)用尺规作图作线段AC的垂直平分线(保留作图痕迹,不要求写作法,证明);(2)若直线L与AB,AC分别相交于D,E两点,求DE的长.7.成绵高速公路OA和绵广高速公路OB在绵阳市相交于点O,在∠AOB•内部有两个城镇C,D,若要修一个大型农贸市场P,使P到OA与OB的距离相等,且PC=PD,用尺规作出市场P的位置.(不写作法,保留作图痕迹)二、能力提升训练8.已知正方形ABCD的面积为S.(1)求作:四边形A1B1C1D1,使得点A1和点A关于点B对称,点B1和点B关于点C 对称,点C1和点C关于点D对称,点D1和点D关于点A对称;(只要求画出图形,不要求写作法)(2)用S1表示(1)中所作出的四边形A1B1C1D1的面积;(3)若将已知条件中的正方形改为任意四边形,面积仍为S,并按(1)•的要求作出一个新的四边形,面积为S2,则S1与S2是否相等?为什么?参考答案:中考热身1.解:(1)画角平分线,线段的垂直平分线.(2)△BOE≌△BOF≌△DOF.证明(略)2.解:(1)如图,AD即为所求(2)△ABD∽△CBA,理由如下:∵AD平分∠BAC,∠BAC=2∠C,∴∠BAD=∠BCA.又∵∠B=∠B,∴△ABD∽△CBA.3.分别作点A关于OM,ON的对称点A′,A″;连结A′A″,分别交OM,ON于点B,点C,则点B,点C即为所求作图略迎考精练基础过关训练1.点拨:作AD的垂直平分线与AB的交点即为圆心,OA为半径.(作图略)2.解:①画线段BC:②作BC的垂直平分线MN与BC相交于D;③在DM上截取DA=BC;④连结AB,AC,△ABC即为所求.(1)tanB=2,sinB=255,(2)BE=25米.3.点拨:过几何体中心的任一条直线均可将该图形分成面积相等的两部分.(•如图)4.解:小明在图中的阴影部分区域就不会被两个同学发现.5.(1)作图略.(2)点拨:在残片的圆弧上任选两条弦,分别作它们的中垂线,其交点即为圆心.6.点拨:(1)①分别以A,C为圆心,以大于12AC为半径画弧,两弧相交于M,N;•②连结MN,过MN的直线即为所求的直线L.(2)DE=2. 7.点拨:(1)作∠AOB的角平分线OE;(2)作DC的垂直平分线MN;(3)MN 交OE 于P 点,P 即为所求. 能力提升训练8.解:(1)如图1.图1 图2 (2)设正方形ABCD 的边长为a ,∴S=a 2. 依题意A 1D 1=A 1B 1=B 1C 1=C 1D 15. 易证A 1B 1C 1D 1是正方形, ∴S 1111A B C D =5a 2,∴S 1=5S . (3)S 1=S 2.证明如下:如图2,连结BD 1,BD .在△BDD 1中,AB 是中线, ∴S △ABD =S △ABD1.在△AA 1D 1中,BD 1是中线, ∴S △ABD1=S △A1BD1,S △AA1D1=2S △ABD1, 同理S △OC1B1=2S △CBD , ∴S △AA1D1+S △OC1B1=2S . 同理S △DD1C1+S △BA1B1=2S , ∴S 四边形1111A B C D =5S=S 2, ∴S 1=S 2.。
用尺规作图线段与角课件沪科版数学七年级上册
![用尺规作图线段与角课件沪科版数学七年级上册](https://img.taocdn.com/s3/m/29388ccedbef5ef7ba0d4a7302768e9950e76e78.png)
• 画图形、设计图案,时常要画线段和角. • 一些复杂的尺规作图都是由基本作图组成的. • 下面介绍两种基本作图: (1)用尺规作一条线段等于已知线段; (2)作一个角等于已知角.
三、概念剖析
(二)作一条线段等于已知线段
已知:线段AB. 求作:线段A′B′,使A′B′=AB.
A
B
三、概念剖析
作法
1
2
解:作法:
(1)作射线OA;
(2)以OA为边做∠AOB=∠1;
(3)以O为顶点,以射线OA为边,
O
在∠AOB内部作∠AOD=∠2.
则∠BOD即为所求的∠3.
B D
A
五、课堂总结
1.几何中,通常用没有刻度的直尺和圆规来画图,这种画图的方法叫 做尺规作图.
2.作一条线段等于已知线段和线段的和、差、倍、分关系的画法 3.作一个角等于已知角和角的和、差、倍、分关系的画法
(1)作射线A’C’; (2)以点A’为圆心,以AB 的长为半径画弧,交射线 A’ C’于点B’,A’B’ 就是所求作的线段
A’
范例
B’
C’
三、概念剖析
(三)作一个角等于已知角
如图,已知∠ABC,画∠DEF=∠ABC.(写出作法,并保留作图痕迹)
M
D
N
E
F
G
(1)在∠ABC上以点B为圆心,以任意长为半径画弧,分别交BA、BC于点M、N;
(2)作射线EG,并以点E为圆心,BN的长为半径画弧交EG于点 F(;3)以点F为圆心,MN的长为半径画弧交前弧于点D;
(4)作射线ED,∠DEF即为所求.
三、概念剖析
尺规作图的一般步骤: (1)已知,即:已知的条件是什么. (2)求作,即:所要作的最终的结果是什么,满足什么条件. (3)分析,即:分析如何作出所要求作的图形,一般不用写出来. (4)作法,这是作图的主要步骤,在这里要写清作图的过程.有时候 不要求写作法,但一定要保留作图的痕迹.
(完整版)初中最基本的尺规作图总结
![(完整版)初中最基本的尺规作图总结](https://img.taocdn.com/s3/m/9ae3d48f16fc700aba68fc62.png)
尺规作图一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
初中数学专题尺规作图(含答案)
![初中数学专题尺规作图(含答案)](https://img.taocdn.com/s3/m/3989163fcec789eb172ded630b1c59eef8c79ace.png)
- 1 -第28课时 尺规作图◆考点聚焦1.掌握基本作图,尺规作图的要求与步骤..掌握基本作图,尺规作图的要求与步骤.2.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,••对简单的作图能叙述作法.图能叙述作法.3.运用基本作图、结合相关的数学知识(平移、旋转、对称、.运用基本作图、结合相关的数学知识(平移、旋转、对称、••位似)等进行简单的图案设计.图案设计.4.运用基本作图解决实际问题..运用基本作图解决实际问题. ◆备考兵法1.熟练掌握基本作图..熟练掌握基本作图.2.在画几何体的三视图时,要注意其要求,.在画几何体的三视图时,要注意其要求,••即“长对正”“高平齐”“宽相等”. 3.认真分析题意,善于把实际问题转化为基本作图..认真分析题意,善于把实际问题转化为基本作图. ◆识记巩固1.尺规作图的定义:.尺规作图的定义:_______________________________________..2.基本作图包括:.基本作图包括:_____________________,,______________,,________________,,________________,,______________..3.三角形三边的垂直平分线的交点叫三角形的外心,.三角形三边的垂直平分线的交点叫三角形的外心,••三角形三内角平分线的交点叫三角形的内心,外心到三角形的三角形的内心,外心到三角形的_____________________的距离相等,内心到三角形的距离相等,内心到三角形的距离相等,内心到三角形_____________________的距离相等.的距离相等.的距离相等. 识记巩固参考答案:1.限定只能使用圆规和没有刻度的直尺作图.限定只能使用圆规和没有刻度的直尺作图2.作线段.作线段 作角作角作角 作线段的垂直平分线作线段的垂直平分线作线段的垂直平分线 过一点作已知直线的垂线过一点作已知直线的垂线过一点作已知直线的垂线 作角平分线作角平分线作角平分线 3.顶点.顶点 三边三边三边 ◆典例解析例1 (20082008,新疆建设兵团),新疆建设兵团),新疆建设兵团)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(保留作图痕迹)(2)写出你的作法.)写出你的作法.解析解析 (1)所作菱形如图①,②所示.)所作菱形如图①,②所示.说明:作法相同的图形视为同一种,例如类似图③,说明:作法相同的图形视为同一种,例如类似图③,••图④的图形视图与图②是同一种.种.① ②③ ④ (2)图①的作法:作矩形A 1B 1C 1D 1四条边的中点E 1,F 1,G 1,H 1,连结H 1E 1,E 1F 1,G 1F 1,G 1H 1.四边形E 1F 1G 1H 1即为菱形.即为菱形.图②的作法:在B 2C 2上取一点E 2,使E 2C 2>A 2E 2且E 2不与B 2重合,连结A 2E 2. 以A 2为圆心,A 2E 2为半径画弧,交A 2D 2于H 2; 以E 2为圆心,A 2E 2为半径画弧,交B 2C 2于F 2; 连结H 2F 2,则四边形A 2E 2F 2H 2为菱形.为菱形.例2 如图,已知∠如图,已知∠AOB AOB AOB,,OA=OB OA=OB,点,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画∠刻度的直尺在图中画∠AOB AOB 的平分线(请保留画图痕迹).解析解析 连结连结AB AB.因为.因为OA=OB OA=OB,因此△,因此△,因此△ABO ABO 为等腰三角形.要作出∠为等腰三角形.要作出∠AOB AOB 的平分线,的平分线,••只要确定出AB 的中点即可.因AEBF 为矩形,为矩形,因此连结因此连结AB AB,,EF EF,,相交于M .根据矩形的性质,M 即为AB 的中点.连结OM OM,射线,射线OM 即为所求的角平分线.即为所求的角平分线.例3 台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一个台球桌,目标球F 与本球E 之间有一个G 球阻挡,现在击球者想通过击打E 球先撞击球台的AB 边,经过一次反弹后再撞击F 球,他应将E 球打到AB 边上的哪一点?边上的哪一点?••请在图中用尺规作图这一点H ,并作出E 球的运行路线(不写画法,保留作图痕迹).解析解析 作点作点E 关于直线AB 的对称点E 1,连结E 1F ,E 1F 与AB 相交于点H ,球E•E•的运动的运动路线是EH EH→→HF HF..点评点评 本例是把实际问题通过抽象,把求本例是把实际问题通过抽象,把求H 点的问题先转化为作E•E•点关于直线点关于直线AB 的对称点问题加以解决.数学课程标准对尺规作图提出了明确要求,是中考的重要内容之一,在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.••学会对作图问题进行分析,归纳,掌握画法.进行分析,归纳,掌握画法. ◆中考热身1.(20082008,江苏镇江)如图,在△,江苏镇江)如图,在△,江苏镇江)如图,在△ABC ABC 中,作∠中,作∠ABC ABC 的平分线BD BD,交,交AC 于D ,作线段BD 的垂直平分线EF EF,分别交,分别交AB 于E ,BC 于F ,垂足为O ,连结DF DF,在所作图中,寻找一,在所作图中,寻找一对全等三角形,并加以证明.(不定作法,保留作图痕迹)(不定作法,保留作图痕迹)2.(20082008,山西太原)如图,在△,山西太原)如图,在△,山西太原)如图,在△ABC ABC 中,∠中,∠BAC=2BAC=2BAC=2∠∠C .(1)在图中作出△在图中作出△ABC ABC 的内角平分线AD AD;;(要求:(要求:尺规作图,尺规作图,尺规作图,保留作图痕迹,保留作图痕迹,保留作图痕迹,••不写证明) (2)在已作出的图形中,写出一对相似三角形,并说明理由.)在已作出的图形中,写出一对相似三角形,并说明理由.3.(20082008,四川成都)如图,已知点,四川成都)如图,已知点A 是锐角∠是锐角∠MON MON 内的一点,试分别在OM OM,,ON 上确定点B ,点C ,使ABC•ABC•的周长最小,的周长最小,写出你作图的主要步骤并标明你所确定的点写出你作图的主要步骤并标明你所确定的点___________________________..(要求画出草图,保留作图痕迹)求画出草图,保留作图痕迹)◆迎考精练 一、基础过关训练1.在Rt Rt△△ABC 中,已知∠中,已知∠C=90C=90C=90°,°,°,AD AD 是∠是∠BAC BAC 的平分线.以AB 上一点O 为圆心,为圆心,AD•AD•AD•为为弦作⊙弦作⊙O O (不写作法,保留作图痕迹).2.请你画出一个以BC 为底边的等腰△为底边的等腰△ABC ABC ABC,使底边上的高,使底边上的高AD=BC AD=BC.. (1)求tanB 和sinB 的值.的值.(2)在你所画的等腰△)在你所画的等腰△ABC ABC 中,假设底边BC=5米,求腰上的高BE BE..3.作一条直线,平分如图所示图形的面积:.作一条直线,平分如图所示图形的面积:4.现有m ,n 两堵墙,两个同学分别站在A 处和B 处,请问小明在哪个区域内活动才不会被任何一个同学发现?(画图,用阴影表示)被任何一个同学发现?(画图,用阴影表示)5.按下列要求作图,不写画法,要保留作图痕迹..按下列要求作图,不写画法,要保留作图痕迹.(1)在图1中,作出AB 的中点M ,作出∠,作出∠BCD BCD 的平分线CN CN,延长,延长CD 到点P ,使DP=2CD DP=2CD;; (2)如图2是一个破损的机器部件,它的残留边缘是圆弧,请作图找出圆弧所在的圆心.图1 图26.如图,.如图,Rt Rt Rt△△ABC 的斜边AB=5AB=5,,cosA=35. (1)用尺规作图作线段AC 的垂直平分线(保留作图痕迹,不要求写作法,证明); (2)若直线L 与AB AB,,AC 分别相交于D ,E 两点,求DE 的长.的长.7.成绵高速公路OA 和绵广高速公路OB 在绵阳市相交于点O ,在∠在∠AOB•AOB•AOB•内部有两个城镇内部有两个城镇C ,D ,若要修一个大型农贸市场P ,使P 到OA 与OB 的距离相等,且PC=PD PC=PD,用尺规作出,用尺规作出市场P 的位置.(不写作法,保留作图痕迹)(不写作法,保留作图痕迹)二、能力提升训练8.已知正方形ABCD 的面积为S .(1)求作:四边形A 1B 1C 1D 1,使得点A 1和点A 关于点B 对称,点B 1和点B 关于点C 对称,点C 1和点C 关于点D 对称,点D 1和点D 关于点A 对称;(只要求画出图形,不要求写作法)求写作法)(2)用S 1表示(1)中所作出的四边形A 1B 1C 1D 1的面积;的面积; (3)若将已知条件中的正方形改为任意四边形,面积仍为S ,并按(1)•的要求作出一个新的四边形,面积为S 2,则S 1与S 2是否相等?为什么?是否相等?为什么?参考答案: 中考热身中考热身1.解:(1)画角平分线,线段的垂直平分线.)画角平分线,线段的垂直平分线. (2)△)△BOE BOE BOE≌△≌△≌△BOF BOF BOF≌△≌△≌△DOF DOF DOF.. 证明(略)证明(略)证明(略) 2.解:(1)如图,)如图,AD AD 即为所求即为所求(2)△)△ABD ABD ABD∽△∽△∽△CBA CBA CBA,理由如下:,理由如下:,理由如下: ∵AD 平分∠平分∠BAC BAC BAC,∠,∠,∠BAC=2BAC=2BAC=2∠∠C , ∴∠∴∠BAD=BAD=BAD=∠∠BCA BCA..又∵∠又∵∠B=B=B=∠∠B ,∴△,∴△ABD ABD ABD∽△∽△∽△CBA CBA CBA..3.分别作点A 关于OM OM,,ON 的对称点A ′,′,A A ″;连结A ′A ″,分别交OM OM,,ON 于点B ,点C ,则点B ,点C 即为所求即为所求 作图略作图略作图略 迎考精练迎考精练 基础过关训练基础过关训练1.点拨:作AD 的垂直平分线与AB 的交点即为圆心,的交点即为圆心,OA OA 为半径.(作图略)(作图略) 2.解:①画线段BC BC::②作BC 的垂直平分线MN 与BC 相交于D ; ③在DM 上截取DA=BC DA=BC;;④连结AB AB,,AC AC,△,△,△ABC ABC 即为所求.即为所求.(1)tanB=2tanB=2,,sinB=255,(2)BE=25米.米.3.点拨:过几何体中心的任一条直线均可将该图形分成面积相等的两部分.(•如图)4.解:小明在图中的阴影部分区域就不会被两个同学发现..解:小明在图中的阴影部分区域就不会被两个同学发现.5.(1)作图略.(2)点拨:在残片的圆弧上任选两条弦,分别作它们的中垂线,其交点即为圆心.交点即为圆心.6.点拨:(1)①分别以A ,C 为圆心,以大于12AC 为半径画弧,两弧相交于M ,N ;•②连结MN MN,过,过MN 的直线即为所求的直线L . (2)DE=2DE=2.. 7.点拨:(1)作∠)作∠AOB AOB 的角平分线OE OE;; (2)作DC 的垂直平分线MN MN;;(3)MN 交OE 于P 点,点,P P 即为所求.即为所求. 能力提升训练能力提升训练8.解:(1)如图1.图1 图2 (2)设正方形ABCD 的边长为a ,∴S=a 22. 依题意A 1D 1=A 1B 1=B 1C 1=C 1D 1=5a . 易证A 1B 1C 1D 1是正方形,是正方形,∴S 1111A B C D =5a 2,∴S 1=5S . (3)S 1=S 2.证明如下:.证明如下:如图2,连结BD 1,BD .在△BDD 1中,AB 是中线,是中线, ∴S △ABD =S △ABD1.在△AA 1D 1中,BD 1是中线,是中线, ∴S △ABD1=S △A1BD1,S △AA1D1=2S △ABD1, 同理S △OC1B1=2S △CBD , ∴S △AA1D1+S △OC1B1=2S . 同理S △DD1C1+S △BA1B1=2S , ∴S 四边形1111A B C D =5S=S 2, ∴S 1=S 2.。
初中数学尺规作图方法大全
![初中数学尺规作图方法大全](https://img.taocdn.com/s3/m/7fe47c2a2379168884868762caaedd3383c4b521.png)
初中数学尺规作图方法大全尺规作图是一种用没有刻度的直尺和圆规作图的方法。
最基本的尺规作图通常称为基本作图,而一些复杂的尺规作图则是由基本作图组成的。
基本作图包括五种:作一条线段等于已知线段、作一个角等于已知角、作已知线段的垂直平分线、作已知角的角平分线、过一点作已知直线的垂线。
第一个问题要求作一条长度等于已知线段a的线段AB。
作法是先作射线AP,然后在射线AP上截取AB=a。
这样就得到了所求的线段AB。
第二个问题要求作已知线段MN的中点O。
作法是以M、N为圆心,大于MN的相同线段为半径画弧,两弧相交于P、Q,然后连接PQ交MN于O。
这样就得到了所求的点O。
第三个问题要求作已知角AOB的角平分线OP。
作法是以O为圆心,任意长度为半径画弧,分别交OA、OB于M、N,然后分别以M、N为圆心,大于AOB的线段长为半径画弧,两弧交AOB内于P,最后作射线OP。
这样就得到了所求的角平分线OP。
第四个问题要求作一个角等于已知角AOB。
作法是先作射线O'A',然后以O为圆心,任意长度为半径画弧,交OA于M,交OB于N,再以O’为圆心,以OM的长为半径画弧,交O’A’于M’,以M’为圆心,以MN的长为半径画弧,交前弧于N’,最后连接O’N’并延长到B’。
这样就得到了所求的角A’O’B’。
最后一个问题要求经过点P作直线CD,使得CD经过点P且CD⊥AB。
作法是以P为圆心,任意长为半径画弧,交AB于M、N,然后分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点Q,最后过D、Q作直线CD。
这样就得到了所求的直线CD。
题六:已知直线AB及外一点P,求作直线CD,使CD经过点P,且CD⊥AB。
作法:1)以P为圆心,任意长为半径画弧,交AB于M、N;2)分别以M、N为圆心,大于MN长度的一半为半径画弧,两弧交于点Q;3)过P、Q作直线CD。
则直线CD就是所求作的直线。
题目七:已知三边作三角形。
已知:线段a,b,c,求作△ABC,使AB=c,AC=b,BC=a。
初中尺规作图详细讲解(含图)
![初中尺规作图详细讲解(含图)](https://img.taocdn.com/s3/m/5468cdc004a1b0717fd5ddc6.png)
初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1.只用直尺及生锈圆规作正五边形2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA==.3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图.1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点 ,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!. 五种基本作图:初中数学的五种基本尺规作图为:1.做一线段等于已知线段 2.做一角等于已知角 3.做一角的角平分线 4.过一点做一已知线段的垂线5.做一线段的中垂线下面介绍几种常见的尺规作图方法:⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 、n 的距离也必须相等,发射塔P 应修建在什么位置?【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P 应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点P 应是它们的交点.【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.【例2】 在平面直角坐标系中,点A 的坐标是(4,0),O 是坐标原点,在直线3y x =+上求一点P ,使AOP∆是等腰三角形,这样的P 点有几个?【解析】 首先要清楚点P 需满足两个条件,一是点P 在3y x =+上;二是AOP ∆必须是等腰三角形.其次,寻找P 点要分情况讨论,也就是当OA OP =时,以O 点为圆心,OA 为半径画圆,与直线有两个点1P 、2P ;当OA AP =时,以A 点为圆心,OA 为半径画圆,与直线无交点;当PO PA =时,作OA 的垂直平分线,与直线有一交点3P ,所以总计这样的P 点有3个.【例3】 设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r 的圆,使其与O ⊙及'O ⊙外切.rr【分析】 设M ⊙是符合条件的圆,即其半径为r ,并与O ⊙及'O ⊙外切,显然,点M 是由两个轨迹确定的,即M 点既在以O 为圆心以R r +为半径的圆上,又在以'O 为圆心以'R r +为半径的圆上,因此所求圆的圆心的位置可确定.若O ⊙与'O ⊙相距为b ,当2r b <时,该题无解,当2r b =有唯一解;当2r b >时,有两解.【解析】 以当O ⊙与'O ⊙相距为b ,2r b >时为例:⑴ 作线段OA R r =+,''O B R r =+.⑵ 分别以O ,'O 为圆心,以R r +,'R r +为半径作圆,两圆交于12,M M 两点. ⑶ 连接1OM ,2OM ,分别交以R 为半径的O ⊙于D 、C 两点. ⑷ 分别以12M M ,为圆心,以r 为半径作圆. ∴12,M M ⊙⊙即为所求.【思考】若将例3改为:“设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r ()r R >的圆,使其与O ⊙ 内切,与'O ⊙外切.”又该怎么作图?⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例4】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】设半径为1..我们的任务就是做出这个长度..1的长度自然就出来了. 【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2,角形..) ⑷【例5】 求作一正方形,使其面积等于已知ABC ∆的面积.【分析】 设ABC ∆的底边长为a ,高为h ,关键是在于求出正方形的边长x ,使得212x ah =,所以x 是12a 与h 的比例中项.【解析】 已知:在ABC ∆中,底边长为a ,这个底边上的高为h ,求作:正方形DEFG ,使得:ABC DEFG S S ∆=正方形haDCBANM作法:⑴ 作线段12MD a =;⑵ 在MD 的延长线上取一点N ,使得DN h =;⑶ 取MN 中点O ,以O 为圆心,OM 为半径作O ⊙; ⑷ 过D 作DE MN ⊥,交O ⊙于E , ⑸ 以DE 为一边作正方形DEFG . 正方形DEFG 即为所求.【例6】 在已知直线l 上求作一点M ,使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .al【分析】 先利用代数方法求出点M 与圆心O 的距离d ,再以O 为圆心,d 为半径作圆,此圆与直线l 的交点即为所求.【解析】 ⑴ 作Rt OAB ∆,使得:90A ∠=︒,OA r =,AB a =.⑵ 以O 为圆心,OB 为半径作圆.若此圆与直线l 相交,此时有两个交点1M ,2M . 1M ,2M 即为所求.若此圆与直线l 相切,此时只有一个交点M .M 即为所求.若此圆与直线l 相离,此时无交点.即不存在这样的M 点使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例7】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.c ba D'DCB Acba【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b ⊥于D ,将ABD ∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ; ⑵ 以AD 为一边作正三角形'ADD ; ⑶ 过'D 作''D C AD ⊥,交直线c 于C ;⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧). ⑸ 连接AB 、AC 、BC 得ABC ∆. ABC ∆即为所求.【例8】 已知:如图,P 为AOB ∠角平分线OM 上一点.求作:PCD ∆,使得90P ∠=︒,PC PD =,且C 在OA 上,D 在OB 上.OD'O【解析】 ⑴ 过P 作PE OB ⊥于E .⑵ 过P 作直线l OB ∥;⑶ 在直线l 上取一点M ,使得PM PE =(或'PM PE =); ⑷ 过M (或'M )作MC l ⊥(或'M C l ⊥),交OA 于C (或'C )点;⑸ 连接PC (或'PC ),过P 作PD PC ⊥(或''PD PC ⊥)交OB 于D (或'D )点. 连接,PD CD (或',''PD C D ).则PCD ∆(或''PC D ∆)即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件.【例9】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.C BAG'F'E'D'G FED CBA【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG .【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上. ⑶ 作直线'BF 交AC 于F .⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E . ⑸ 过G 作''GD G D ∥交BC 于D . 则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例10】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AMP ∆,再补上ANP ∆.只要NM AP ∥,则AMP ∆和AMP ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ; ⑵ 过M 作MN AP ∥交AB 于N ; ⑶ 过P 、N 作直线l . 直线l 即为所求.【例11】 如图:五边形ABCDE 可以看成是由一个直角梯形和一个矩形构成.⑴ 请你作一条直线l ,使直线l 平分五边形ABCDE 的面积; ⑵ 这样的直线有多少条?请你用语言描述出这样的直线.FED CBAMFDCBFD CB【解析】 ⑴ 取梯形AFDE 的中位线MN 的中点O ,再取矩形BCDF 对角线的交点'O ,则经过点O ,'O 的直线l 即为所求;⑵ 这样的直线有无数条.设⑴中的直线l 交AE 于Q ,交BC 于R ,过线段RQ 中点P ,且与线段AE 、BC 均有交点的直线均可平分五边形ABCDE 的面积.【例12】 (07江苏连云港)如图1,点C 将线段AB 分成两部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S SS S =,那么称直线l 为该图形的黄金分割线.⑴ 研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是ABC △的黄NM P CB Al金分割线.你认为对吗?为什么?⑵ 请你说明:三角形的中线是否也是该三角形的黄金分割线?⑶ 研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC 于点F ,连接EF (如图3),则直线EF 也是ABC △的黄金分割线.请你说明理由. ⑷ 如图4,点E 是ABCD 的边AB 的黄金分割点,过点E 作EF AD ∥,交DC 于点F ,显然直线EF 是ABCD 的黄金分割线.请你画一条ABCD 的黄金分割线,使它不经过ABCD 各边黄金分割点.【解析】 ⑴ 直线CD 是ABC △的黄金分割线.理由如下:设ABC △的边AB 上的高为h .12ADC S AD h =△,12BDC S BD h =△,12ABC S AB h =△,∴ADC ABC S AD S AB =△△,BDC ADC S BDS AD=△△.又∵点D 为边AB 的黄金分割点,∴AD BD AB AD=.∴ADC BDCABC ADCS S S S =△△△△.∴直线CD 是ABC △的黄金分割线.⑵ ∵三角形的中线将三角形分成面积相等的两部分,此时1212S S S ==,即121S S S S ≠,∴三角形的中线不可能是该三角形的黄金分割线.⑶ ∵DF CE ∥,∴DEC △和FCE △的公共边CE 上的高也相等,∴DECFCE S S =△△.设直线EF 与CD 交于点G ,∴DGE FGC S S =△△.∴ADCFGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形.又∵ADC BDC ABC ADC S S S S =△△△△,∴BEFC AEF ABC AEF S S S S =四边形△△△. ∴直线EF 也是ABC △的黄金分割线.⑷ 画法不惟一,现提供两种画法;M (答案图1)M (答案图2)A CB 图1 A D B 图2CAD B图3C F E 图4画法一:如答图1,取EF中点G,再过点G作一直线分别交AB,DC于M,N点,则直线MN就是ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM NE∥交AB于点M,连接MN,则直线MN就是ABCD的黄金分割线.。
初中数学第7章 第5节 尺规作图
![初中数学第7章 第5节 尺规作图](https://img.taocdn.com/s3/m/9885b661cc175527072208db.png)
数学
基本作图
1.作一条线段等于已知线段,以及线段的和、差 . 2.作一个角等于已知角,以及角的和、差. 3.作角的平分线.
利用基本作图作三角形
1.已知三边作三角形. 2.已知两边及其夹角作三角形. 3.已知两角及其夹边作三角形. 4.已知底边及底边上的高作等腰三角形. 5.已知一直角边和斜边作直角三角形.
②作直线PQ交AB于点D,交BC于点E,连接AE.若CE= 4,则AE8=____.
4.(2013·乐山)如图,已知线段AB. (1)用尺规作图的方法作出线段AB的垂直平分线l;(保留
作图痕迹,不要求写出作法) (2)在(1)中所作的直线l上任意取两点M,N(线段AB的上
方 ) , 连 接 AM , AN , BM , BN. 求 证 : ∠ MAN = ∠MBN.
与圆有关的尺规作图
1.过不在同一直线上的三点作圆(即三角形 的外接圆). 2.作三角形的内切圆. 【注意】尺规作图的工具是圆规和没有刻度 的直尺.
基本作图
【例1】(2013·兰州)如图,两条公路OA和OB相交于O点, 在∠AOB的内部有工厂C和D,现要修建一个货站P,使 货站P到两条公路OA,OB的距离相等,且到两工厂C, D的距离相等,用尺规作出货站P的位置.(要求:不写 作法,保留作图痕迹,写出结论)
A.以点C为圆心,OD为半径的弧 B.以点C为圆心,DM为半径的弧 C.以点E为圆心,OD为半径的弧 D.以点E为圆心,DM为半径的弧
2.(2013·曲靖)如图,以∠AOB的顶点O为圆心,适当长
为半径画弧,交OA于点C,交OB于点D.再分别以点C,
D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部
初中数学 尺规作图
![初中数学 尺规作图](https://img.taocdn.com/s3/m/d2e75e2550e2524de4187efc.png)
返回目录
答图1
第七单元 图形与变换
返回目录
(2) 在 (1) 所 作 的 图 中 , 若 ∠ BAD = 45° , 且 ∠ CAD = 2 ∠ BAC , 证 明:△BEF为等边三角形.
证明:∵AC=AD,AF平分∠CAD,
∴∠CAF=∠DAF,AF⊥CD.
∴∠AFC=90°.
第七单元 图形与变换
步骤与原理
已知:直线 AB 和 AB 外一点 C,求作:AB
的垂线,使它经过点 C
过一 点作 已知 直线 的垂
线
点 在 直 线 外
作法:1.任意取点 K,使点 K 和点 C 在 AB
的两旁;2.以点 C 为圆心,CK 长为半径画
弧,交 AB 于点 D,E;3.分别以点 D,E 为
于点D和点E,若∠B=50°,则∠CAD的度数是
A.30° C.50°
B.40° D.60°
返回目录
( A)
第七单元 图形与变换
返回目录
2.如图,已知平行四边形AOBC的顶点O(0,0),B(4,0),C(5, 3 ),
∠AOB=60°,点B在x轴正半轴上,按以下步骤作图:①分别以点O,A
为圆心,大于
初中数学 尺规作图
知识梳理
河南中考
核心知识
第七单元 图形与变换
人教:七上P125-131 八上P35-42,P48-50,P62-63 北师:七下P55-57 八下P18-19,P25-26 华师:八上P85-92
返回目录
知识梳理
返回目录
第七单元 图形与变换
一、五种基本尺规作图
步骤与原理
作一条线段等 作法:1.作射线AM;2.以点A为圆
【中考数学考点复习】第一节 尺规作图 课件(23张PPT)
![【中考数学考点复习】第一节 尺规作图 课件(23张PPT)](https://img.taocdn.com/s3/m/f0a21a1f443610661ed9ad51f01dc281e53a56e0.png)
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线
上
第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;
上
4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.
初中数学尺规作图
![初中数学尺规作图](https://img.taocdn.com/s3/m/455150f55022aaea988f0f0f.png)
尺规作图1作一条线段等于已知线段已知:线段a,求作:线段AB,使AB=a。
2作一全角等于已知角已知:∠MPN求作:∠ABC,使∠ABC=∠MPN。
3作角的平分线已知:∠MPN求作:∠MPN的角平分线PO4作线段的垂直平分线已知:线段AB求作:线段AB的垂直平分线MN。
5过定点作已知直线的垂线:(1)点在直线上;(2)点在直线外6过定点作已知直线的平行线7已知三边作三角形已知:线段a、b、c求作:△ABC,使AB=a、BC=b、AC=c。
8已知两边及其夹角作三角形已知:线段a、b、∠α求作:△ABC,使AB=a、BC=b、∠B=∠α。
9已知两角及其夹边作三角形c b a已知:线段a、∠α、∠β求作:△ABC,使∠A=∠α、∠B=∠β、AB=a。
10已知底边及底边上的高作等腰三角形已知:线段a、h求作:△ABC,使AB=AC,BC=a、BC边上的高AD=h。
11已知底边上的高和顶角作等腰三角形已知:线段h、∠α求作:△ABC,使AB=AC,∠A=∠α,高AD=h。
12已知底边及腰长作等腰三角形已知:线段a、b求作:△ABC,使AB=AC=a,BC=b。
13已知一直角边及斜边作直角三角形已知:线段a、c求作:Rt△ABC,使∠C=90°、AB=c、BC=a14作三角形的外接圆已知:△ABC求作:△ABC的外接圆⊙O15作三角形的内切圆已知:△ABC求作:△ABC的内切圆⊙O16如图,直线AB⊥CD,垂足为P,∠ACP=45°, A AB CB C利用尺规在图中作一段劣弧,使得它在A 、C 两点分别与直线AB 和CD 相切。
17已知,矩形ABCD(1)作图:作出点C 关于BD 所在直线的对称点E18已知,如图,在Rt △ABC 中,∠C=90º,∠BAC 的角平分线AD 交BC 边于D ,以AB 边上一点O 为圆心,过A ,D 两点作⊙O20、如图,在Rt △ABC 中,∠C=90º,请在△ABC 内部裁出一个半圆,圆心在AC边上,且与AB 、BC 都相切。
(完整)初一尺规作图题目练习
![(完整)初一尺规作图题目练习](https://img.taocdn.com/s3/m/0a9ca40ba0116c175f0e48c9.png)
初一作图练习班别:学号:姓名:一、尺规作图例题题目一:作一条线段等于已知线段。
已知:如图,线段a .求作:线段AB,使AB = a .作法:(1)作射线AP;(2)在射线AP上截取AB=a .则线段AB就是所求作的图形。
题目二:作已知线段的中点。
已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:(1)分别以M、N为圆心,大于12 MN的相同线段为半径画弧,两弧相交于P,Q;(2)连接PQ交MN于O.则点O就是所求作的MN的中点。
(试问:PQ与MN有何关系?)(怎样作线段的垂直平分线?)题目三:作已知角的角平分线。
已知:如图,∠AOB,求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。
作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、N为圆心,大于12 MN的相同线段为半径画弧,两弧交∠AOB内于P;作射线OP。
则射线OP就是∠AOB的角平分线。
题目四:作一个角等于已知角。
二、作图练习1、如图,已知线段a,b,c,用圆规和直尺画一条线段,使它等于a+b(保留作图痕迹,不要求写作法)2、如图,已知线段a,b,c,用圆规和直尺画一条线段,使它等于a+c-2b(保留作图痕迹,不要求写作法)3、如图,已知∠α,(1)画一个∠AOB=∠α(2)画∠AOB的补角(3)画∠AOB的角平分线OC(4)若∠AOC=60°35′,求∠AOB的度数α4、如图,一只蚂蚁从O点出发,沿北偏东45°的方向爬行2.5cm,碰到障碍物(记做B)后,折向北偏西60°的方向爬行3cm(此时的位置记作C)。
(1)画出蚂蚁爬行路线;(2)用量角器量出∠OBC的度数。
(保留整数)5、下图是由五块积木搭成的几何体,这5块积木都是棱长为1的正方体(1)、请画出这个图形的主视图、左视图和俯视图。
(2)、求出这个几何体的表面积。
(完整版)初中最基本的尺规作图总结
![(完整版)初中最基本的尺规作图总结](https://img.taocdn.com/s3/m/9ae3d48f16fc700aba68fc62.png)
尺规作图一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
北师大版七年级数学下册 第四章三角形 4.4 尺规作图 (共27张PPT)
![北师大版七年级数学下册 第四章三角形 4.4 尺规作图 (共27张PPT)](https://img.taocdn.com/s3/m/c4dd5123a45177232e60a244.png)
用尺规作三角形
学习指南
教学目标 1.已知两边及其夹角会作三角形;(重点,难点) 2.已知两角及其夹边会作三角形.(重点,难点) 3.已知三边会作三角形.(重点,难点)
豆豆书上的三角形被墨迹污染了一部分,他想在作业本上画出一个与书上完全一样的三角形,他该 怎么办?
你能帮他画出来吗?
1.尺规作图的工具是直尺和圆规. 2.我们已经会用尺规作一条线段等于已知线段、作一个角等于已知角.
回顾刚才作三Байду номын сангаас形的顺序
边
夹角
边
边
还有没有其他的 作法?
夹角
边
已知:线段a, c, ∠α ,求作:△ABC,使BC=a,AB= c, ∠ABC =∠α.
a
c
作法与示范
N
E′
E α
D
作法2
(1)作∠MBN= ∠α;
B
D′
M
作法与示范 作法2
N E′ A Bc
M a D′ C
(2)在射线BM上截取BC=a, 在射线BN上截取BA=c;
如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D。 (1)试说明:AC∥DE;
(2)若BF=13,EC=5,求BC的长。
如图,在四边形ABCD中,AB=AD,BC=DC,E为线段AC上的一动点(不与点A重合),在点E的移动过 程中,BE和DE是否相等?并说明理由。
(2017四川南充中考)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF, 试说明:AC∥BD.
作法:
(1)作线段BC=5厘米;
(2)以C为圆心, 3厘米为半径画弧;
(3)以B为圆心,3.5厘米为半径画弧, 两弧相交于点A;
初中数学尺规作图大汇总(原创绝对经典)
![初中数学尺规作图大汇总(原创绝对经典)](https://img.taocdn.com/s3/m/b819eba54b73f242336c5ff7.png)
线段垂直平分线的作法 角平分线的作法 作一个角等于已知角 用尺规作一个三角形
太原维刚实验学校 2020年5月6日 一线数学教师何彦峰
尺规作图作线段的垂直平分线
尺规作图
已知:线段AB. 求作:线段AB的垂直平分线.
C
作法:(1)分别以点A,B 为圆心,以大于 1AB
A
的长为半径作弧,2 两
a
c
A
α
α
B
C
二 已知三角形的两角及其夹边作三角形
已知:∠α,∠β和线段c,如图所示.
求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.
ED
α
C
β c
A
BF
用尺规作三角形
三 已知三角形的三条边,求作这个三角形
已知:线段a,b,c如图所示.
求作:△ABC,使AB=c,AC=b,BC=a.
a
b
A
B D
弧交于C,D两点.
(2)连接CD.直线CD即为所求.
如图,A,B是路边两个新建小区,要 在公路边增设一个公共汽车站.使两个 小区到车站的路程一样长,该公共汽 车站应建在什么地方?
B A
【提示】连接AB,作AB的垂直平分线,则与公路的 交点就是要建的公共汽车站.
2. 有A,B,C三个村庄,现准备要建一 所学校,要求学校到三个村庄的距离相 等,请你确定学校的位置.
3、作射线_O_E___;__O_E__即为所求。
如图,直线l1、l2、l3表示三条相 交叉的公路,现要建一个货物中
转站,要求它到三条公路的距离
相等,则可供选择的地址有__处。
l1
l3
l2
l1
D
l3
A
(完整版)北师大版数学七年级下册尺规作图(绝对经典)
![(完整版)北师大版数学七年级下册尺规作图(绝对经典)](https://img.taocdn.com/s3/m/f3f6389eb4daa58da1114a83.png)
第一环节:知识梳理(要点)1、尺规作图的定义: 尺规作图是指用没有刻度的直尺和圆规作图。
最基本,最常用的尺规作图通常称基本作图。
一些复杂的尺规作图都是由基本作图组成的。
2、五种基本作图:1、 作一条线段等于已知线段;2、 作一个角等于已知角;3、 作已知线段的垂直平分线;4、 作已知角的角平分线;5、 过一点作已知直线的垂线(1) 题目一:作一条线段等于已知线段。
已知:如图,线段 a .求作:线段AB 使AB = a .作法:(1)作射线AP ; (2) 在射线AP 上截取AB=a .则线段AB 就是所求作的图形。
(2) 题目二:作已知线段的中点。
已知:如图,线段 MN. 求作:点 0,使M0=N Q 即0是MN 的中点) 作法: (1) 分别以M N 为圆心,大于 占1门 的相同线段为半径画弧, 两弧相交于P , Q(2) 连接 PQ 交 MN 于 0.则点0就是所求作的MN 的中点。
(3) 题目三:作已知角的角平分线。
已知:如图,/ A0B求作:射线 0P,使/ A0P=Z B0P(即0P 平分/ A0B 。
作法:(1) 以0为圆心,任意长度为半径画弧, 分别交0A 0B于 M, N;(2) 分别以M N 为圆心,大于的线段长为半径画(3) 作射线0P 。
则射线0P 就是/ A0B 的角平分线。
(4) 题目四:作一个角等于已知角。
已知:如图,/ A0B求作:/ A ' 0 B',使 A ' 0' B' =/ A0B教学过程(1) 作射线O' A ;(2) 以O为圆心,任意长度为半径画弧,交OA于M,交OB于N;(3)以O'为圆心,以OM勺长为半径画弧,交O A'于M ;(4)以M为圆心,以MN的长为半径画弧,交前弧于N';(5)连接O' N'并延长到B'。
则/ A'OB'就是所求作的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
P
A
a
O
Q
P
N
M
O N M
B
P
A 七年级数学期末复习资料(七)
尺规作图
【知识回顾】
1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
最基本,最常用的尺规作图,通常称基本作图。
一些复杂的尺规作图都是由基本作图组成的。
2、五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知线段的垂直平分线;
4、作已知角的角平分线;
5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。
已知:如图,线段a .
求作:线段AB ,使AB = a . 作法:
(1) 作射线AP ;
(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。
(2)题目二:作已知线段的中点。
已知:如图,线段MN.
求作:点O ,使MO=NO (即O 是MN 的中点). 作法:
(1)分别以M 、N 为圆心,大于 的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .
则点O 就是所求作的MN的中点。
(3)题目三:作已知角的角平分线。
已知:如图,∠AOB ,
求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。
作法:
(1)以O 为圆心,任意长度为半径画弧,
分别交OA ,OB 于M ,N ;
(2)分别以M 、N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。
则射线OP 就是∠AOB 的角平分线。
③
②
①
P B
B
A
P
(4)题目四:作一个角等于已知角。
已知:如图,∠AOB 。
求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB
作法:
(1)作射线O ’A ’;
(2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。
则∠A ’O ’B ’就是所求作的角。
(5)题目五:经过直线上一点做已知直线的垂线。
已知:如图,P 是直线AB 上一点。
求作:直线CD ,是CD 经过点P ,且CD ⊥AB 。
作法:
(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;
(2)分别以M 、N 为圆心,大于
MN 2
1
的长为半径画弧,两弧交于点Q ; (3)过D 、Q 作直线CD 。
则直线CD 是求作的直线。
(6)题目六:经过直线外一点作已知直线的垂线 已知:如图,直线AB 及外一点P 。
求作:直线CD ,使CD 经过点P ,
且CD ⊥AB 。
c a
b
m
n
作法:
(1)以P为圆心,任意长为半径画弧,交AB于M、N;
(2)分别以M、N圆心,大于MN
2
1
长度的一半为半径画弧,两弧交于点Q;(3)过P、Q作直线CD。
则直线CD就是所求作的直线。
(5)题目七:已知三边作三角形。
已知:如图,线段a,b,c.
求作:△ABC,使AB = c,AC = b,BC = a.
作法:
(1)作线段AB = c;
(2)以A为圆心,以b为半径作弧,
以B为圆心,以a为半径作弧与
前弧相交于C;
(3)连接AC,BC。
则△ABC就是所求作的三角形。
题目八:已知两边及夹角作三角形。
已知:如图,线段m,n, ∠α.
求作:△ABC,使∠A=∠α,AB=m,AC=n.
作法:
(1)作∠A=∠α;
(2)在AB上截取AB=m ,AC=n;
(3)连接BC。
则△ABC就是所求作的三角形。
题目九:已知两角及夹边作三角形。
已知:如图,∠α,∠β,线段m .
求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.
作法:
(1)作线段AB=m;
(2)在AB的同旁
作∠A=∠α,作∠B=∠β,
∠A与∠B的另一边相交于C。
则△ABC就是所求作的图形(三角形)。
【考点练习】
1、如图:107国道OA和320国道OB在某市相交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、OB的距离相等且PC=PD,用尺规作出货站P的位置(不写作法,保留作图痕迹,写出结论)
2、三条公路两两相交,交点分别为A,B,C,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况?用尺规作图作出所有可能的加油站地址。
3、过点C作一条线平行于AB。
4、如图,平行四边形纸条ABCD中,E、F分别是边AD、BC的中点。
张老师请同学们将纸条的下半部分平行四边形ABEF沿EF翻折,得到一个V字形图案。
请你在原图中画出翻折后的图形平行四边形A1B1FE;(用尺规作图,不写画法,保留作图痕迹)。
5、如图,已知方格纸中的每个小方格都是全等的正方形,∠AOB画在方格纸上,请用利用格点和直尺(无刻度)作出∠AOB的平分线。
O
B
A
6、小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案,图中AB 为直径,O 为圆心(要求用尺规作图,保留作图痕迹)。
7、已知线段AB 和CD ,如下图,求作一线段,使它的长度等于AB +2CD.
8、如图,已知∠A 、∠B ,求作一个角,使它等于∠A-∠B.
9、如图,画一个等腰△ABC ,使得底边BC=a ,它的高AD=h
a
H G F
E B A
10、如图,有A ,B ,C 三个村庄,现要修建一所希望小学,•使三个村庄到学校的距离相等,学校的地址应选在什么地方?请你在图中画出学校的位置并说明理由(•保留作图痕迹).
11、如图,A 、B 两村在一条小河的的同一侧,要在河边建一水厂向两村供水. (1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置? 请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.
.B
A .
12、如图,A 为∠MON 内一点,试在OM 、ON 边上分别作出一点B 、C ,使△ABC 的周长最小.
13、如图,已知两点P 、Q 在锐角∠AOB 内,分别在OA 、OB 上求点M 、N ,使PM +MN +NQ 最短.
18.如图所示,EFGH 是一矩形的台球台面,有黑白两球分别位于A 、B 两点位置上,试问:怎样撞击黑球A ,使黑球先碰撞台边EF 反弹后再击中白球B ?
N
A
O
M Q P
B O A。