分形几何在建筑设计中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分形几何在建筑设计中的应用
摘要:本文简要介绍了分形几何理论及其分形理论在建筑设计中的应用,并在此基础上分析了三个具有分形意义的著名建筑的实例。
关键词:分形,分维,建筑设计
1.引言
在过去的2000年,欧几里德几何学中的形状都是直线与平面、圆与球、三角形与圆锥式的几何形体。而在建筑设计中简单的几何形体构筑的结构体系合乎理性且易于设计和建造。因此千百年来,西方建筑师一直视欧几里德几何为衡量与创造空间的唯一的经典几何体系。然而,大千世界演化出如此复杂的结构,是不能用传统的欧氏几何来解释。詹姆斯•格莱克曾指出:“欧氏几何是现实的高度抽象,正是它们启示了柏拉图的和谐哲学。欧几里德利用这些图形构筑了两千年的历史的传统几何学,而这也正是大多数人学过的几何学。艺术家在其中找到了理想的美,托勒密派天文学家利用它构筑了一个宇宙理论。但是,为了了解复杂,欧几里德几何是一种错误的抽象过程。”
科学与计算机技术的迅猛发展加深了人类对大自然的内在组织机理的认识和了解。正是在这样的背景下,20世纪70年代曼德尔布诺特提出了新的几何理论——分形。曼德尔布诺特说:“云不是球,山不是锥,闪电并非直线。新的几何学这一面镜子里映照出来的宇宙是一个粗糙的,而不是滚圆的,是凹凸不平的,而不是平滑
无暇的。它是坑坑洼洼,断裂、扭曲、纠成一团,相互环绕的几何学。对于大自然复杂性的了解期待着一种猜想,认定复杂性决非随机,也非偶然。霹雳长空闪电的径迹之所以有意义,并不是它们的方向,而是在于它们分布的曲曲折折,这就是我们这一代几何学所要求的信念。”
分形几何的提出,为我们了解事物的本质提供了有利的依据,同时也为建筑和艺术的发展提供了广阔的发展空间。
2.分形
寒冬腊月,人们由衷地赞赏玻璃上结晶的冰花形态万千,却很少有人想过它为何具有那样的形状;面对蜿蜒曲折的海岸线,人们只是感叹自然造物的伟大,却不曾想过,它究竟有多长。万事万物复杂的形状和结构是难以用传统的欧氏几何衡量的。正是由于欧氏几何在解释这些现象时的困难导致了分形理论的诞生。
分形理论是1975年由美国数学家曼德尔布诺特(B.B.Man delbrol)提出的,“分形”一词来源于拉丁语中的“Frangere”。关于分形,曼德尔布诺特在其著作《分形:形式、偶然性、维数》中是这样描述的:自然界的许多事物的组成部分可能在一定的条件下或过程中,在某些方面(形态、结构、信息、功能等)表现出与整体的相似性,即具有自相似性(确定性的或统计意义上的),并能够用连续取值的分数维数来描述。分形的这些性质是自然实在的形态的共同的内在属性。所以说,分形几何是一种更加贴近自然本来面目,更能揭示自然内在结构的一种“真实”的几何学。
对于分形来说,很难给出一个简单严整的数学定义,我们可以将其视作一个具有某些共同特性的集合。英国数学家Falcomer. K认为,分形的数学定义可以借助生物学中对“生命”的定义的方法,生物学中将“生命”的定义用一系列生命体共有的特性来界定。据此Falcomer.K提出了分形集的基本性质,并将分形定义为,分形是具有如下所列性质的集合F:
1.F具有精细结构,即在任意小的比例尺度内包含整体。
2.F是不规则的,以至于不能用传统的几何语言来描述。
3.F通常具有某种自相似性,或许是近似的或许是统计意义下的。
4.F在某种方式下定义的“分维数”通常大于F的拓扑维数。
5.F的定义常常是非常简单的,或许是递归的。
自然界中存在无数分形的例子,冯•科和雪花曲线(图1)可视作分形的典型例子。冯•科和是这样描述冯•科和雪花曲线(Koc hCurve)的:先画一个等边三角形,把边长为原来三角形边长的三分之一的小等边三角形选放在原来三角形的三条边上,由此得到一个六角星,再将这个六角星的每个角上的小等边三角形按上述同样方法变成一个小六角星,如此一直进行下去,就得到了雪花的形状。
塞尔平斯基地毯(图2)是另外一个经典的分形。塞尔平斯基地毯(SierpinskiCarpet)初始元是一个正方形,每边三等分把它分成一般大的9个正方形,挖去正中间的一块。再把其余的8个
也分成一般大的9个正方形再各自挖去正中间的一块,相继如图操作,最终该地毯的面积为不变,孔的周界长度无限。另外,本世纪初少数的数学家曾经考虑过看起来十分古怪的形状,图3所示的塞尔平斯基地毯的三维形态就是其中之一,数学家们称它为孟格尔海绵,它的体积为零,表面积无穷大。
3.分维
在自然界中存在着许多事物,它们具有标度不变的性质,维数是为了确定几何对象中一个点的位置而需要的独立的坐标的数目。
曼德尔布诺特指出:一个分形集一般具有三个要素:“形”(Form)、偶然性(Chance)、维数(Dimension)。我们可以毫不费力地区分出一座山和一朵云,是因为它们具有不同的“形”,同样我们也能轻易地区分出一段海岸线与一条科和曲线,这是因为虽然它们同样具有大约为1.3的维数,但由于“机遇”(随机性)因素的影响,海岸线具有更为紊乱的形状。虽然分形看起来复杂多变、难以名状,例如云朵,很难说清楚它到底是什么形状,但是谁都知道什么是云,而且能够分出乌云、浮云等等。这是因为无论分形的生成机制和构造方法多么不同,它们都可以通过一个特征量来测定其不平整度、复杂度和卷积度。这个特征量就是“分形维数”(F ractalDimension),简称“分维”。曼德勃罗特认为“分维”比起“形”和“机遇”更容易描述分形集的不规则度和破碎度,可以说“分形维数”是贯穿分形理论的主线。维数不必是整数维,可以是分数维。
如闪电的叉状电光具有大约1.3的维数。设想如果把科和曲线区间[2/3,1]中的图形放大三倍,放大后的图形与原来的曲线形状完全相同。
对于非整数维的引入我们可以这样理解:我们在测量一个几何形时,需要选择基本单位,只有这个单位的维数必须与所测量的图形的维数一致,才能够得到确定的值。例如我们用单位长度的线段去测量直线的长度(二者的拓扑维数均为1),或者用单位面积的正方形和一个区域的面积(二者的拓扑维数均为2),反过来,用线段去测量区域的面积,所得的结果将是无穷大,说明所用的尺度太“细”;如若用单位正方形去度量线段的面积,结果必为零,说明所用的尺度太“粗”。同样的道理,当我们用一维的单位线段去测量科和曲线的长度时其结果是无穷大,如果用二维的单位面来度量其结果又是零。如果想要得到确定的度量值,必须以维数介于1和2之间的尺度来测量,因此,科和曲线是非整数维且维数大于1小于2的几何对象。分维值反映了分形集的复杂程度,体现了分形所占据的空间大小,维数越高的分形集填充的空间越多。
4.分形理论在建筑设计中的应用
随着我们对大自然的认识越来越多,我们在建筑上对几何的理解也产生变化并向前发展。我们再也不去渴求某个理想化的对称的几何图形,而是试图去了解大自然中有序与无序之间特定的组合,去感受用有序与无序交织而成的和谐的排列所带给我们美的启示。