围岩力学机理

围岩力学机理
围岩力学机理

1 巷道变形力学机理

巷道未开挖时,周围岩体处于原岩应力状态,原岩应力在一定时期内是相对平衡的。当在原岩内进行开挖后,巷道周围一定范围内岩体的原岩应力遭到破坏,导致应力重分布,引起巷道周围岩体的变形、位移、甚至破坏。由于开挖而引起的围岩或支护结构上的力学效应统称为广义的围岩压力。围岩压力的大小不仅与岩体的初始应力状态有关,岩体的物理力学性质和岩体结构有关,还与工程性质、支护结构及支护时间有关。

当围岩的二次应力不超过围岩的弹性极限时围岩压力将全部有围岩自身来承担。当二次应力超过围岩的强度极限时,就必须采取措施以保证巷道稳定。此时,围岩压力由围岩与支护结构共同承担。围岩压力就其表现形式分为松动压力、变形压力、膨胀压力、冲击压力等。

1.1 松动压力

由于开挖而引起围岩松动或坍塌的岩体以重力形式直接作用在支护结构上的压力是松动压力。其多数情况下出现在巷道的顶板和侧帮,表现为顶板压力比较大,侧帮压力比较小。松动压力是因为围岩个别岩体的滑动、或者由于支护不及时导致松散围岩的冒顶或片帮,以及在节理发育的裂隙岩体中,围岩某些部位沿软弱结构面发生剪切破坏或受拉破坏等导致局部滑动引起的。松动压力有以下特点:不连续、难预测,突发性[7-8]。

1.2 变形压力

开挖必然引起围岩变形,支护结构为抵抗围岩变形而承受的压力称为变形压力。变形压力多数是因为应力重新分布后产生的二次应力很大,超过围岩的强度极限时,导致一些围岩产生变形,进入塑性阶段。当岩体强度比较较高时,在无支护状态下,塑性区将渐渐扩大到一定区域就不再扩大。煤层巷道中,由于煤体强度小,过大的塑性变形会导致塑性区进入破裂阶段,进而导致巷道失稳。

形变压力与围岩变形和支护结构有关,支护结构与支护刚度有关;围岩变形与支护的施筑时间有关。所以形变压力是支护结构特性和时间的曲线。如图2.1所示。

图2.1 围岩与支护共同作用特性

分析图中曲线可知,巷道刚开挖成型时围岩变形迅速,随着时间的推移,变化速率减慢。如果支护非常早时,支护结构上压力越大,对材料要求比较高。如果支护比较晚,支护结构难以控制围岩变形,围岩会超出其塑性阶段,进入破坏阶段以致围岩破坏,此时支护的意

义大大降低[9~10]。所以对围岩与支护共同作用支护特性曲线的分析可以的得知,在比较合理时间段进行支护,既发挥了围岩的自承能力,又使支护结构的压力不大,达到比较理想的支护效果

1.3 膨胀压力

某些岩体(如蒙脱石)由于遇水后体积发生膨胀,从而产生膨胀压力。膨胀压力是围岩吸水膨胀引起的,因此应减少这些岩石与水的接触甚至隔绝[7]。

1.4冲击压力

冲击压力是由岩爆或围岩脱空区块体堕落形成的一种特殊围岩压力。岩体强度高,脆性好,当岩体受到挤压后而积聚大量能量,当岩体积聚到一定能量时突然释放产生岩爆。

隧道围岩分级及其主要力学参数

隧道围岩分级及其主要力学参数 一、一般规定 在公路勘察设计过程中,是根据周边岩体或土体的稳定特性进行围岩分级的。围岩分Ⅰ~Ⅵ级,由于每级间范围较大,施工阶段对Ⅲ、Ⅳ、Ⅴ基本级别,再进行亚级划分。在公路隧道按土质特性和工程特性分:岩质围岩分级——Ⅰ~Ⅴ级;土质围岩分级Ⅳ~Ⅵ级。对岩质围岩和土质围岩分别采用不同的指标体系进行评定:岩质围岩基本指标为岩质的坚硬程度和完整程度,修正指标为地下水状态,主要软弱结构面产状及初始地应力状态。 土质围岩分级指标体系宜根据土性差异而组成,粘土质围岩基本指标为潮湿程度。沙质土围岩基本指标为密实程度。修正指标潮湿程度。碎石土围岩基本指标为密实程度。至于膨胀土、冻土作为专门研究,这里暂不述。围岩分级指标体系中可用定性分析,也可用定量分析,但由于工地施工条件时间等因素,一般我们仅采用定性分析。下面我讲定性分析来确定围岩级别。 1、确定岩性及风化程度。 2、结构面发育,主要结构面结合程度,主要结构面类型,甚至产状倾角、走向结构面张开度,张裂隙。 3、水的状况涌水量等。 二、岩石坚硬程度的定性划分 1、坚硬岩:锤击声清脆、震手、难击碎,有回弹感,浸水后大多无吸水反应,如微风化的花岗岩——正长岩,闪长岩,辉绿岩,玄

武岩,安山岩,片麻岩,石英片麻岩,硅质板岩,石英岩,硅质胶结的砾岩,石英砂岩,硅质石灰岩等等。 2、较坚硬岩:锤击声较清脆,有轻微回弹,稍震手,较难击碎,浸水后有轻微吸水反应。如未风化~微风化的熔结凝灰岩、大理岩、板岩、白云岩、石灰岩、钙质胶结的砂岩等。 3、较软岩:锤击声不清脆,无回弹,较易击碎,浸水后指甲可刻击印痕。如未风化~微风化的凝灰岩,砂质泥岩,泥灰岩,泥质砂岩,粉砂岩,页岩等。 4、软岩:锤击声哑,无回弹,有凹痕,多击碎,手可掰开。如强风化的坚硬岩,弱风化~强风化的较坚硬岩,弱分化的较软岩,未风化的泥岩等。 5、极软岩:锤击声哑,无回弹,有较深凹痕,手可捏碎,浸水后可捏成团,如全风化的各种岩类,各种半成岩。Rc——岩石单轴饱和抗压强度、定性质与岩石的对应关系,一般Rc>60MPa——坚硬岩,Rc=60~30 MPa为较坚硬岩;Rc=3 0~15MPa为较软岩;Rc=15~5MPa 软岩;Rc<5Mpa极软岩。也可用Rc=22.82Is(50),Is(50)——岩石点荷载强度指数。这里不多说。 三、岩质围岩的完整度的定性划分 这是根据岩体的结构状况来定性划分 1、完整:节理裂隙,不发育,节理裂隙1-2组,平均间距>1.0m 层面结合好,一般。 2、较完整:节理裂隙,不发育,节理裂隙1-2组,平均间距1.0m

岩石力学参数测试

3.2 侏罗系煤岩层物理力学性质测试 3.2.1试验仪器及原理 本试验采用电子万能压力试验机(图3.24)对侏罗系、石炭系岩石试样进行抗压强度、抗拉强度以及抗剪强度的测定。 (a) 电子万能压力试验机 (b) 单轴抗压强度测试 (c) 抗拉强度测试 (d) 抗剪强度测试 图3.24 岩石力学电子万能压力试验机及试验过程 (1) 岩石抗压强度测定: 单轴抗压强度的测定:将采集的岩块试件放在压力试验机上,按规定的加载速度(0.1mm/min)加载至试件破坏。根据试件破坏时,施加的最大荷载P ,试件横断面A 便可计算出岩石的单轴抗压强度S 0,见式(3.1)。 S 0= P A (3.1) 一般表面单轴抗压强度测定值的分散性比较大,因此,为获得可靠的平均单轴抗压强度值,每组试件的数目至少为3块。 (2) 岩石抗拉强度的测定: 做岩石抗拉试验时,将试件做成圆盘形放在压力机上进行压裂试验,试件受集中荷载的作用,见式(3.2)。

S t = 2P DT π (3.2) 式中:S t ——岩石抗拉强度 MPa ; P ——岩石试件断裂时的最大荷载,KN ; D ——岩石试件直径; T ——岩石试件厚度。 为使抗拉强度值较准确,每种岩石试件数目至少3块。 (3) 岩石抗剪强度测定: 将岩石试件放在两个钢制的倾斜压模之间,然后把夹有试件的压模放在压力实验机上加压。当施加荷载达到某一值时,试件沿预定的剪切面剪断,见式(3.3)。 sin cos n T P A A N P A A τασα? = =? ??? ==?? (3.3) 式中:P ——试件发生剪切破坏时的最大荷载; T ——施加在破坏面上的剪切力; N ——作用在破坏面上的正压力; A ——剪切破坏面的面积; τ——作用在破坏面上的剪应力; n σ——作用在破坏面上的正应力; α——破坏面上的角度。 每组取3块试件,变换不同的破坏角,根据所得的数值,便可在στ-坐标系上画出反映岩石发生剪切破坏的强度曲线。并可求出反映岩石力学性质的另外两个参数:粘聚力c 及内摩察角?。 3.2.2 标准岩样加工 根据需要和所在矿的条件,在晋华宫矿12#煤层2105巷顶板钻取岩样,钻孔长度约22m ,在。根据各段岩心长度统计结果,晋华宫矿顶板岩层的RQD 值为72.4%,围岩质量一般。 岩心取出后,随即贴上标签,用透明保鲜袋包好以防风化,之后装箱,托运到实验室,经切割、打磨、干燥制成标准的岩石试样,岩样制作过程见图3.25。

最新常见岩石力学参数

几种常见岩石力学参数汇总 2010年9月2日 参考资料:《构造地质学》,谢仁海、渠天祥、钱光谟编,2007年第2版,P25-P37。 1.泊松比的变化范围: 2.弹性模量的变化范围:

3.常温常压下强度极限: 4.内摩擦角和内聚力的变化范围: 一、课程名称:中国戏曲介绍课时:2个学时 二、背景分析:戏曲是中国文化的瑰宝,同学们对中国戏曲 还不够了解,不能经常接触戏曲。 三、教学内容:中国戏曲 四、教学目标:初步了解中国戏曲的相关知识,并学会哼唱具有代表性的戏曲,简要说出

他们的起源 五、教学过程: 【引入课程】1、先介绍董永和七仙女的故事,然后放[天仙配],为讲戏曲作铺垫,将同学们带入戏曲的氛围中 【初步了解】1、介绍戏曲相关知识中国戏曲主要是由民间歌舞、说唱和滑稽戏三种不同艺术形式综合而成。它起源于原始歌舞,是一种历史悠久的综合舞台艺术样式。经过汉、唐到宋、金才形成比较完整的戏曲艺术,它由文学、音乐、舞蹈、美术、武术、杂技以及表演艺术综合而成,约有三百六十多个种类。它的特点是将众多艺术形式以一种标准聚合在一起,在共同具有的性质中体现其各自的个性。[1]中国的戏曲与希腊悲剧和喜剧、印度梵剧并称为世界三大古老的戏剧文化,经过长期的发展演变,逐步形成了以“京剧、越剧、黄梅戏、评剧、豫剧”五大戏曲剧种为核心的中华戏曲百花苑。[2-5]中国戏曲剧种种类繁多,据不完全统计,中国各民族地区地戏曲剧种约有三百六十多种,传统剧目数以万计。其它比较著名的戏曲种类有:昆曲、粤剧、淮剧、川剧、秦腔、晋剧、汉剧、河北梆子、河南坠子、湘剧、黄梅戏、湖南花鼓戏等。放[刘海砍樵] 2、戏曲行当 生、旦、净、丑各个行当都有各自的形象内涵和一套不同的程式和规制;每个都行当具有鲜明的造型表现力和形式美。 3、艺术特色 综合性、虚拟性、程式性,是中国戏曲的主要艺术特征。这些特征,凝聚着中国传统文化的美学思想精髓,构成了独特的戏剧观,使中国戏曲在世界戏曲文化的大舞台上闪耀着它的独特的艺术光辉。 4、唱腔 第一种是抒情性唱腔,其特点为速度较缓慢,曲调婉转曲折,字疏腔繁,抒情性强。它宜于表现人物深沉而细腻的内心感情。许多剧种的慢板、大慢板、原板、中板均厉于这-类。放[女驸马] 第二种是叙事性唱腔,其特点为速度中等,曲调较平直简朴,字密腔简,朗诵性强。它常用于交代情节和叙述人物的心情。许多剧种的二六、流水等均属于这一类。放[花木兰] 第三种是戏剧性唱腔,其特点为曲调的进行起伏较大,节奏与速度变化较为强烈,唱词的安排可疏可密。它常用于感情变化强烈和戏剧矛盾冲突激化的场合。各戏剧中的散板、摇板等板式曲调都属于这一类。 5、国五大戏曲剧种

巷道围岩破坏机理及防护技术

巷道围岩破坏机理及防护技术 矿产资源的不断开采,开采深度不断加大,渐渐进入深部开采,深部开采引起的三高一绕动严重影响巷道的稳定性,进入千米之后的深部开采围岩压力增大、原始构造应力大、巷道围岩变化剧烈。因此巷道围岩破坏研究机理及技术是我们研究重点,针对围岩稳定的基本状况,提出有针对性的支护方案有重要意义。 标签:巷道围岩;支护;稳定性 1 巷道围岩机理研究 矿井的深部开采的巷道问题已经不能用浅部理论解决,浅部条件下的地质情况以及矿山压力破坏机理都产生变化,深部的地质状况有独特的特点,对于深部要进行特征分析以及重新建立一个符合特点的压力显现理论。根据巷道变形的特点,建立一个科学体系将弹塑性理论以及破碎理论融合,传统的连续介质不适合复杂条件。深部巷道围岩破裂区和完整区多次交替的现象,即分区破裂化。将分区破裂化定义为“在深部岩体中开挖洞室或者巷道时,在其两侧和工作面前的围岩中,会产生交替的破裂区和不破裂区。 在各类的巷道进行施工的过程中,原始的应力场遭到破坏,巷道围岩压力的调整在巷道稳定蠕变期间,一个非线性的复杂的体系是围岩体系的状态,对于深部的巷道破坏不会有明显的显现特征,我们要保证加强对高应力下的巷道控制,做到对于耦合围岩变形的特征还有围岩压力进行控制。对于上覆岩层压力以及扩容压力是围岩失稳的主要方面,破坏扩容及粘土矿物膨胀压力是影响深部软岩巷道稳定的持续性力源。不注重围岩与支护体的变形协调和祸合难以达到理想的支护效果,是不能够合理的分析破坏机理,为此,必须从围岩的变形破坏特征。矿物组成、结构特点、力学作用等多方面深入研究围岩的变形力学机制,只有这样才能设计出一个合理稳定防御体系。对巷道围岩进行分析归类,对于不同的体系采取,对于支护方案进行设计,对参数进行确定,修缮施工工艺,多角度全方位的进行支综合研究。如今支护在材料以及支护设备上有新的突破,在支护材料方面主要研发了锚杆支护、喷射混凝土支护、钢结构支护混凝土预制大弧板结构等,在支护方式是包括锚杆+喷射混凝土、锚喷网、锚喷网+锚索,锚喷网。 2 支护方案 在现场进行锚杆与卸压孔协同作用就行现场应用,评价巷道围岩稳定性。深部测点数据在埋深982m处,最大水平主应力为29.20MPa,垂直应力为23.30MPa,最大水平主应力方向N20.6°E。埋深在1034m,轨道巷中,最大水平主应力33.22/MPa最小水平主应力15.19/MPa垂直应力25.84/MPa最大水平主应力方向N35°E。在1045m深的回风巷最大水平主应力为31.27MPa,最小水平主应力为14.27MPa,垂直应力为22.38MPa,煤矿深部地层应力场类型为H大于V大于A 型应力场,最大水平主应力为最小水平主应力的1.5到2.1倍。地应力数据划分的地应力水平是超高地应力区域,巷道围岩的强度显示,在岩层的完整性来看是

复合岩层地质下铁路隧道围岩控制技术研究

复合岩层地质下铁路隧道围岩控制技术研究 发表时间:2019-03-27T16:12:25.260Z 来源:《基层建设》2018年第35期作者:王晨阳 [导读] 摘要:为了解决复合岩层地质下铁路隧道围岩变形严重问题,确定合理的支护体系。对具体的地质情况进行了分析,阐述了复合岩层地质下铁路隧道锚杆支护设计原则。 河南理工大学能源科学与工程学院河南焦作 454000 摘要:为了解决复合岩层地质下铁路隧道围岩变形严重问题,确定合理的支护体系。对具体的地质情况进行了分析,阐述了复合岩层地质下铁路隧道锚杆支护设计原则。确定了在不同情况下的支护形式和参数。在隧道内布置测站。现场监测结果表明:隧道监测初期支护体应力有一定波动,随着观测时间的增加而增大,但在47d内开始趋于稳定,左右拱腰收敛应力分布为50MPa和42MPa左右。说明此支护方案效果良好,能够有效控制围岩变形。 关键词:铁路隧道;围岩变形;监测;围岩控制 1 隧道变形的地质特征与危害 发生大变形的隧道一般具有以下地质特征:(1)隧道围岩条件。发生大变形的围岩主要有:①显著变质的岩类,如片岩、千枚岩等;②膨胀性凝灰岩;③软质粘土层和强风化的凝灰岩;④凝灰岩和泥岩分互层;⑤泥岩破碎带和矿化变质粘土等。这类围岩的凝聚强度c 值较低,内摩擦角值很小,单轴抗压强度较低。 (2)隧道处于高应力区,且大变形地段的隧道一般埋深在100m以上。 (3)隧道围岩的天然含水量大。 深埋隧道通过软岩和断层带时,在高的地应力和富水条件下通常产生大变形。这种隧道围岩变形量大,而且位移速度也很大,一般可以达到数十厘米到数米,如果不支护或支护不当,收敛的最终趋势是隧道将被完全封死,如果发生在永久衬砌构筑以前,往往表现为初期支护严重破裂、扭曲,挤出面侵入限界。这种大变形危害巨大,严重影响施工工期或者线路正常运营,而且整治费用高昂。 2 复合岩层地质下铁路隧道锚杆支护设计原则 (1)一次支护原则 锚杆支护要避免二次或多次支护,应尽可能一次支护就能有效控制围岩变形。这是实现矿井高效、安全生产的要求,为采矿服务的巷道和硐室等工程,需要保持长期稳定,不能经常维修;另一方面,这是锚杆支护本身的作用原理决定的。巷道围岩一旦揭露立即进行锚杆支护效果最佳,而在已发生离层、破坏的围岩中安装锚杆,支护效果会受到显著影响。 (2)高预应力和预应力扩散原则 预应力是锚杆支护中的关键因素,是区别锚杆支护是被动支护还是主动支护的参数,只有高预应力的锚杆支护才是真正的主动支护,才能充分发挥锚杆支护的作用。一方面,要采取有效措施给锚杆施加较大的预应力;另一方面,通过托板、钢带等构件实现锚杆预应力的扩散,扩大预应力的作用范围,提高锚固体的整体刚度与完整性。 (3)“三高一低”原则 即高强度、高刚度、高可靠性与低支护密度原则。在提高锚杆强度(如加大锚杆直径或提高杆体材料的强度)、刚度(提高锚杆预应力、全长锚固),保证支护系统可靠性的条件下,降低支护密度,减少单位面积上锚杆数量,提高掘进速度。 (4)临界支护强度与刚度原则 锚杆支护系统存在临界支护强度和刚度,如果支护强度与刚度低于临界值,巷道将长期处于不稳定状态,巷道围岩变形和破坏得不到很好的控制。因此,设计锚杆支护系统的强度与刚度应高于临界值。 (5)相互匹配原则 锚杆各构件,包括托板、螺母、钢带等的参数和力学性能应该相互匹配,锚杆与锚索的参数与力学性能应相互匹配,最大限度地发挥锚杆支护的整体支护作用。 (6)可操作性原则 锚杆支护设计方案应该有可操作性,有利于施工管理和掘进速度的提高。 (7)安全经济原则 在保证巷道围岩支护效果与安全程度,技术上可行、施工上可操作的条件前提下,尽量做到经济合理,有利于降低巷道支护综合成本。 3 复合岩层地质下铁路隧道支护参数 3.1锚杆支护参数 型号为?20mm×2000mm左旋螺纹钢高强的锚杆,匹配150mm×150mm×10mm高强拱形托盘与高强螺母,是配套产品。加长树脂锚固,钻孔直径≤30mm,K2335和Z2360各一支用作为锚固剂的规格,锚杆预紧力矩不低于300N?m,锚杆锚固力不低于100KN。 辅助支护:顶板配以钢筋网作为辅助支护,钢筋网采用Ф6mm的钢筋焊接而成的经纬网,经纬网网格大小为100mm×100mm,钢筋网尺寸为2880mm×1100mm,相邻网搭接约100mm,铁丝钮扣联结,联结距离不大于200mm。 3.2锚索支护参数 使用直径是17.8mm,长为7300mm,有效长度7000mm左右的1×7股高强度且低松弛钢绞线制,锚索一排一根,排距2000mm,并且紧跟掘进迎头来施工。锚索钻孔直径≤30mm,锚索用3卷树脂锚固剂锚固型号分别为一支K2335与两支Z2360,理论锚固长度约1400mm左右,并在锚索锚固端1300mm处施加挡圈。用型号为250mm×250mm×12mm的高强球型锚索托盘,锚索的预紧力应该≥200KN。锚索锚固力不低于300KN。 遇地质变化较大的地段,锚索长度可根据需要调整,锚索应深入稳定顶板2~3m。 3.3表面喷浆 设计方案中喷射混凝土强度是C20,喷射混凝土配比为:水泥∶砂子∶石子=1∶2∶2。刚开始喷时可适度减少石子掺量。水灰比为 0.4~0.5。原材料按照重量计,称量的允许偏差值:水泥和速凝剂均为 2%,砂子和石子均为 3%。设计方案中喷浆厚度为150mm,一次

岩体力学参数确定的方法

岩体力学参数的确定方法 在岩石工程实践中,首先需要了解其研究对象———工程岩体的力学特性,确定其特性参数。力学参数的合理确定在岩石力学的研究和发展过程中始终是难题之一。在应用工程力学领域, 如果原封不动地借用经典理论力学的连续性假设和定义,会出现理解上的毛病。必须考虑假设的合理使用范围和各物理量的适用定义。本文就地下岩体工程根据侧重的点不同对岩体参数的确定方法进行探讨。 一.传统岩体参数的确定方法 地下巷道、硐室开挖后,围岩产生应力重分异作用,径向应力减少,切向应力增加,并且随着工程不断推进,岩体应力状态不断改变。巷道、硐室围岩处于“三高一扰动”条件下,岩体表现的力学特性是破坏条件下的稳定失稳再平衡过程。围岩体处于一种拉压相间出现的复杂应力状态。该类工程岩体的力学参数的确定要进行岩体的卸荷试验研究,且要依据现场工程实际条件进行卸荷条件下的应力、渗流与温度三场耦合试验研究。需要进行循环加卸载条件下的岩体力学特性研究,进而获得岩体的力学参数特征。 确定地下巷道、硐室工程岩体力学参数的方法为: (1)三轴应力状态下的卸荷三场耦合力学试验,获得有关参数; (2)进行岩体流变特性试验研究,获得有关岩体的流变参数。 目前在该领域要进行大量的工作,包括设备仪器的研制等,同时还要利用新的计算机技术才会实现。 二.建立力学模型确定岩体力学参数

建立工程岩体力学参数模型主要是解决复杂岩体力学参数确定的问题。要确定复杂岩体的力学参数需要把工程岩体看作具有连续性的模型,运用确定岩体力学参数的新方法,对含层状斜节理的岩体建立力学模型进行力学实验,从而确定了该岩体的各项基本力学参数值。 1.工程岩体力学参数模型 目前对岩石的力学属性及其划分基本有两种观点:一种观点认为岩石本身是一个连续的、没有各向异性的材料,另一种意见认为岩石由多晶体系组成,并存在空洞和裂纹等缺陷,使得岩体本身结构表现出各向异性和不连续性。一般情况下岩体被视为非连续介质,但在一定条件下仍满足连续介质力学的基本假定。因此给定工程岩体的连续性假设:假定整个物体的体积都被组成这个物体的物质微元所充满,没有任何空隙。物质微元是有大小的,物质微元的尺寸决定于所研究的工程物体的尺寸。这样就存在一个用连续体理论来研究非连续体的问题。 2.工程岩体力学参数 为确定工程岩体的力学参数,需要通过井下工程地质调查,根据岩体所含结构面的不同及结构体特性的差异,选取具有代表性的不同尺寸的岩块和结构面,然后进行一系列室内力学实验和数值模拟实验。具体步骤如下: (1) 通过井下工程调查,确定结构面的空间分布模式,抽象工程岩体结构模型;并在现场采集有代表性的完整岩块和软弱结构面试

深井软岩巷道破坏机理与围岩控制技术研究

深井软岩巷道破坏机理与围岩控制技术研究 李智峰 (黑龙江科技学院,黑龙江哈尔滨150027) 摘 要 矿井开采进入深部以后,原有的支护方式及支护强度已很难适应深井煤巷的变形特征,巷道围岩变形根本无法满足矿井安全生产的 需要。该文通过对深井软岩巷道的变形破坏机理,采用锚杆为主的联合支护技术,实现了深井软岩巷道围岩控制的长期稳定,也为该类巷道推行锚杆联合支护技术提供了参考和借鉴。关键词 深井 软岩 锚喷支护中图分类号TD327 文献标识码 A *收稿日期:2012-02-27 作者简介:李智峰(1972-),男,辽宁彰武人,中级职称,毕业于黑龙江科技学院计算机科学与技术专业,大学本科。现为黑龙江科技学院安全工程学院教师,主要从事科研管理和煤矿安全方面的研究工作。 随着煤矿开采强度与范围显著增加,巷道布置出 现了以下发展方向:(1)在巷道层位方面,永久性巷道从岩巷向煤巷发展,以提高掘进速度,缩短建井周期;放顶煤开采技术的广泛应用,使得回采巷道从岩石项板煤巷向煤层项板巷道和全煤巷道发展。(2)在巷道断面形状与大小方面,拱形断面向矩形断面发展,以提高掘进速度与断面利用率,回采巷道有利于采煤工作面的快速推进;小断面向大断面发展,以满足大型采掘设备与高开采强度的要求。(3)在回采巷道数量方面,单巷布置向多巷发展,以满足高瓦斯矿井及大型矿井运输、通风的要求。(4)从巷道赋存条件方面,埋深从浅部向深部发展,简单地质条件向复杂地质条件发展,特别是深井软岩巷道围岩控制问题,增加了巷道支 护难度,对支护技术提出更高、更苛刻的要求 [1-3] 。因此,本文从深井软岩巷道破坏机理,针对具体实际情况确定巷道支护方式和技术参数,通过现场工业试验获得良好的技术经济效果。1 深井软岩巷道破坏机理 随着开采深度的增加,地应力也随之增加,由于围岩强度小,巷道围岩应力状态达到或超过岩石的塑性变形临界或强度极限,要达到一个新的平衡,必须由深部岩石来承载巷道动压,当一个平衡点被破坏,就要求有一个新的平衡点来支持,这样必然造成巷道围岩松动圈增大,由浅入深,因而巷道收敛变形量急剧增加,稳定性差,给巷道稳定性控制带来困难。1.1深井巷道矿山压力 深井巷道稳定性差的根本原因是深井巷道的矿山压力较大,或简单地说是原始地应力大,假定巷道承受的垂向地应力等于地层重力。对于深度达到800m 的巷道,则自重应力可达到20MPa ,如果巷道围岩的轴抗压强度为40MPa ,则有巷道的不稳定系数为0.5,则巷 道围岩会因应力集中达到单轴抗压强度极限。对于受 到采场矿压作用的巷道,则更容易发生变形破坏。1.2深井巷道变形破坏规律 若以巷道松动圈的厚度来表示巷道变形破坏情况,则可发现:随采深的加大,各种岩性巷道的松动圈的厚度随着加厚;岩性越软则松动圈厚度越大,承受动压作用的各种岩性巷道松动圈的厚度值更大一些。鸡西荣华煤矿主要大巷所在水平的岩层主要为泥岩、煤和炭质泥岩,经观测泥岩、煤和炭质泥岩松动圈最大在2 2.5m 之间,属于深井软岩,极难支护。1.3深井软岩巷道稳定性控制 通过以上分析,巷道稳定性主要取决于3方面的因素:(1)巷道围岩应力场,主要由开采深度和采动影响决定;(2)巷道围岩的力学性质,主要由岩层结构、岩石强度和裂隙发育情况等因素起作用;(3)巷道支护方式和参数。 因此,深井软岩围岩控制应从煤层赋存情况、开采 深度和井田的地质情况为依据, 从巷道的支护方式和参数入手,不断优化支护方案,增强围岩强度,提高支护能力来控制巷道的稳定性。2锚杆支护在软岩巷道中的应用 2.1 支护方式的选择 以鸡西荣华矿水平运输大巷为例介绍软岩巷道围岩控制方式。 软岩支护设计必须采取卸压、让压与加固围岩、提高围岩自承能力相结合的方法,若采用料石砌碹的支护方法,不仅工序复杂,支护工期长,工人劳动强度大,成本高,而且因砌筑材料是刚性的,起不到卸压、让压的作用,当围岩应力发生变化时,极易破坏,不能解决软岩支护问题;采用U 型钢支架支护,虽然承载能力高,可缩性强,但硐室高度、跨度较大,施工困难,成本较高,且它不能对巷道围岩提供主动支护作用,也不是一种理想的支护方式。根据荣华水平运输大巷围岩的 实际情况, 对设计依据进行了详尽分析后,确定采用以高强度左旋无纵筋螺纹钢树脂锚杆为主的锚、网、索与喷射混凝土联合支护。通过高强度左旋无纵筋螺纹钢树脂锚杆对围岩进行主动加固,保持围(下转第155页) 3 512012年第5 期

巷道围岩控制方法与支护方式

巷道围岩控制方法与支护方式 [摘要]在煤矿生产过程中,巷道围岩控制与巷道的支护是非常重要的环节,关系到煤炭生产的高产高效与采煤安全生产。降低巷道围岩应力,提高围岩的稳定性,合理选择支护是巷道围岩控制的主要途径。本文主要阐述了巷道围岩压力及影响因素、巷道围岩控制措施、方法和巷道保护与支护措施等技术问题。 【关键词】巷道;围岩控制;支护方式 在煤矿生产过程中,巷道围岩控制与巷道的支护是非常重要的环节,关系到煤炭生产的高产高效与采煤安全生产。降低巷道围岩应力,提高围岩的稳定性,合理选择支护是巷道围岩控制的主要途径。回采导致的支承压力不但数倍于原岩应力,并且,影响范围大。巷道受回采影响后,围岩应力、围岩变形成几倍、几十倍急增。巷道围岩控制的实质是利用煤层开采引起采场周围岩体应力重新分布的规律,正确选择巷道布置和护巷方法,使巷道位于应力降低区内,防范回采引起的支承压力的影响,控制围岩压力。本文主要阐述了巷道围岩压力及影响因素、巷道围岩控制措施、方法和巷道保护与支护措施等技术问题。 1、巷道围岩压力及影响因素 1.1、围岩压力 (1)松动围岩压力。因巷道挖掘而松动、塌落的岩体,其重力直接作用在支架结构物上的压力,表现为松动围岩压力载荷形式,如支护没有有效控制围岩变形,围岩形成松动垮塌圈时,造成松动围岩压力,顶压显现严重。 (2)变形围岩压力。支护可控制围岩变形的发展时,围岩位移挤压支架而出现的压力,即:变形围岩压力。在围岩、支护力学体系中,围岩与支架互相作用,围岩就对支架施加变形压力。弹性变形压力是围岩弹性变形时作用在支架上的压力,弹性变形出现的速度很快,变形量相当小,围岩、支护相互作用的过程,实际作用较小。塑性变形压力是因为围岩塑性变形和破裂,围岩向巷道空间位移,使支护结构受压,这是变形围岩压力的基本形式。塑性变形的状况由巷道塑性区和破裂区的范围所决定。塑性区的扩展具有时间效应,它不再扩展时,围岩变形速度就下降。 (3)膨胀围岩压力。 与变形压力不同,它是由吸水膨胀导致的。从表面上看,膨胀压力是变形压力,而两者的变形机制完全不同。一个是与水发生理化反应;一个是围岩应力与结构效应。

围岩力学机理

1 巷道变形力学机理 巷道未开挖时,周围岩体处于原岩应力状态,原岩应力在一定时期内是相对平衡的。当在原岩内进行开挖后,巷道周围一定范围内岩体的原岩应力遭到破坏,导致应力重分布,引起巷道周围岩体的变形、位移、甚至破坏。由于开挖而引起的围岩或支护结构上的力学效应统称为广义的围岩压力。围岩压力的大小不仅与岩体的初始应力状态有关,岩体的物理力学性质和岩体结构有关,还与工程性质、支护结构及支护时间有关。 当围岩的二次应力不超过围岩的弹性极限时围岩压力将全部有围岩自身来承担。当二次应力超过围岩的强度极限时,就必须采取措施以保证巷道稳定。此时,围岩压力由围岩与支护结构共同承担。围岩压力就其表现形式分为松动压力、变形压力、膨胀压力、冲击压力等。 1.1 松动压力 由于开挖而引起围岩松动或坍塌的岩体以重力形式直接作用在支护结构上的压力是松动压力。其多数情况下出现在巷道的顶板和侧帮,表现为顶板压力比较大,侧帮压力比较小。松动压力是因为围岩个别岩体的滑动、或者由于支护不及时导致松散围岩的冒顶或片帮,以及在节理发育的裂隙岩体中,围岩某些部位沿软弱结构面发生剪切破坏或受拉破坏等导致局部滑动引起的。松动压力有以下特点:不连续、难预测,突发性[7-8]。

1.2 变形压力 开挖必然引起围岩变形,支护结构为抵抗围岩变形而承受的压力称为变形压力。变形压力多数是因为应力重新分布后产生的二次应力很大,超过围岩的强度极限时,导致一些围岩产生变形,进入塑性阶段。当岩体强度比较较高时,在无支护状态下,塑性区将渐渐扩大到一定区域就不再扩大。煤层巷道中,由于煤体强度小,过大的塑性变形会导致塑性区进入破裂阶段,进而导致巷道失稳。 形变压力与围岩变形和支护结构有关,支护结构与支护刚度有关;围岩变形与支护的施筑时间有关。所以形变压力是支护结构特性和时间的曲线。如图2.1所示。 图2.1 围岩与支护共同作用特性 分析图中曲线可知,巷道刚开挖成型时围岩变形迅速,随着时间的推移,变化速率减慢。如果支护非常早时,支护结构上压力越大,对材料要求比较高。如果支护比较晚,支护结构难以控制围岩变形,围岩会超出其塑性阶段,进入破坏阶段以致围岩破坏,此时支护的意

TBM刀具设计中围岩力学参数的选择

第20卷第2期岩石力学与工程学报20(2):230~234 2001年3月Chine se Jour nal of Rock Mechanics and Engineer ing Mar ch,2001 TBM刀具设计中围岩力学参数的选择* 徐则民黄润秋张倬元 (成都理工学院工程地质研究所成都610059) 摘要围岩力学特性是隧道掘进机)))TBM刀具设计中必须考虑的重要因素,而且这一因素也直接关系到TBM的总体设计及选用TBM施工的可行性。选择以单轴抗压强度为核心的参数系统作为刀具设计依据是不完善的。TBM 掘进过程中,刀具正下方因承受纵向压力而下陷,刀具两侧附近岩石由于受到平行掌子面的挤压而隆起。岩石下陷和隆起的同时,其内部出现张性或张剪性破裂面。当相临刀具诱发的隆起区重叠时,岩石便以碎块的形式脱离掌子面。在刀具荷载作用下,掌子面上两点之间的相对位移越大,对掘进越有利,而不同点之间的相对位移受岩石泊松比L和弹性模量E的控制。较大的L、较小的E对TBM掘进是有利的。除了单轴抗压强度外,刀具设计还应综合考虑变形参数L和E。 关键词TBM,刀具设计,围岩力学参数,单轴抗压强度,泊松比,弹性模量 分类号TU451文献标识码A文章编号100026915(2001)022******* 1引言 由装有刀具的刀盘、刀盘旋转驱动装置和刀盘纵向推进装置组成的掘进系统是庞大的工厂化TBM 综合体中最重要的部分,而掘进系统中的刀具,也称为盘形(碟形)刀具(刀圈、滚刀),作为TBM的破岩工具,则是TBM中最重要、最关键的部件。TBM是否可以充分发挥其高效能、低成本的优势,很大程度上取决于刀具的质量以及其是否符合所掘进的隧道。 目前的TBM一般都由厂商根据甲方提供或由厂商亲自测定的围岩参数为甲方特制,设计中考虑的围岩参数包括岩石强度(抗压、抗拉和剪切强度)和耐摩性能等。尽管有多个指标,但在刀具设计中,甚至是在比较T BM的掘进业绩或在T BM与钻爆法之间作出选择时,最常考虑的因素一般都是单轴抗压强度[1~3],有时加上一个反映岩石耐磨性能的石英含量[4~6]。 单轴抗压强度(UCS)是在无围压(R2=R3=0)而单向加压(R1)情况下获得的一个岩石强度参数,岩石的破坏方式为张裂、剪裂或张2剪复合型破裂。如果以岩石的单轴抗压强度为依据设计刀具,那么刀具破岩的理想条件是掌子面上有走向平行隧道轴向的节理发育,即隧道轴线方向存在由节理构成的一系列临空面。节理之间的岩块,在刀具荷载的作用下,形成张性或张剪性裂隙,并向临空面方向膨胀。所有刀具共同作用的结果是在刀具以下一定深度范围内的岩石,在既有节理的基础上,形成密集的裂隙带,并逐渐脱离掌子面。 掌子面上发育与隧道轴线走向一致的节理系统的情况是存在的,但几率却是不大的。如果既有节理系统与隧道轴线大角度相交、无节理或节理的开度很差,那么靠单轴压缩来破岩就很困难了,而这种情况在大埋深特长隧道中又是很常见的。因此,以岩石单轴抗压强度作为TBM刀具设计的主要依据是不完善的。 西康铁路秦岭特长隧道所用的TB880E型TBM 是德国Wirth公司专门为秦岭隧道特制的,TBM及刀具设计的主要依据是UCS和石英含量。根据设计和招标文件,秦岭北口第一段,即4.2km的片麻岩段岩石的抗压强度为78~137MPa、石英含量为20%~30%;Wirth公司保证在该区段内刀具的使用寿命达到180h,刀具消耗控制在439把以内。同时,中德T BM采购合同还规定,当岩石抗压强度为100 ~180MPa时,掘进速度为3.5m/h,在325MPa 时,掘进速度不小于1m/h。 1999年11月29日收到初稿,2000年2月17日收到修改稿。 *国家杰出青年科学基金(49525204)资助项目。 作者徐则民简介:男,37岁,博士,1988年毕业于长春地质学院水工系水文地质工程地质专业,现为教授,主要从事交通工程病害方面的研究工作。

采场附近巷道围岩控制

第十一章采场附近巷道围岩控制 由于采场上覆岩层大范围运动和垮落,对采场附近巷道形成强烈的动压影响,使巷道维护状况严重恶化。采场附近巷道围岩控制,成为矿山巷道的难点和重点。动压影响巷道围岩控制首先要合理确定巷道与采场之间的相对位置,然后是选择适合动压巷道变形特点的支护与加固方式。 第一节采场附近支承压力分布规律 如本书第1编所述,在回采工作面推进过程中及回采结束后,由于上覆岩层自下而上逐步冒落、破断与沉降,将在回采工作面周围形成动态的及静态的支承压力,如图11-1所示,在回采工作面四周煤体或煤柱上出现应力集中现象,在采空区内出现应力降低现象。 图11-1 长壁工作面周围垂直应力的分布 可以采用实验室模拟实验、现场实测或数值计算等方法,近似估计支承压力的分布规律,包括峰值大小及位置,应力升高区压力及影响范围,应力降低区压力及范围。 一、煤层下部底板中支承压力分布 上述图11-1所示的支承压力,将向其下方的底板煤岩中传递,形成相应的应力升高区和应力降低区,并随着回采工作面的推进,发生变形与应力的扩散和衰减过程。 1、变形的扩散和衰减规律 变形的扩散和衰减规律如图11-2及图11-3所示,它们分别表示沿走向剖面和沿倾斜剖面(工作面前方10m处),下方底板中的变形特征。图中实线表示距煤层分别0、8、24、40m的四个水平上的变形增量曲线(取水平线为零线),虚线表示附加变形完全衰减的边界。

图11-2 沿走向剖面底板中变形扩散规律 Ⅰ—边缘下方压缩变形区;Ⅱ—采空区下方变形恢复区 图11-3 工作面前方10m 处沿倾斜方向底板中的变形规律 2、应力的扩散与衰减规律。 底板中铅直应力的集中区和卸压区基本上与支承压力的集中区和卸压区相对应,随着Z 值增加应力集中和卸压程度降低,应力分布趋向缓和。 图11-4为沿走向剖面底板中3个应力分量的分布规律。由图11-4(a )可见,垂直应力z σ的高峰位置与法线成一定夹角向煤体前下方传播,高峰值大小按负指数规律衰减;z σ的原始应力等值线位置与法线成15°左右向后下方伸展。 图11-4 支承压力在底板中的传播 (a )岩层处于相对稳定状态的支承压力分布;(b ) z σ/h γ分布; (c )x σ/h k γ分布(3/1=k );(d )h xz γτ/分布 煤柱宽度对应力传递规律有较大影响。图11-5为一侧采空(相当于煤柱无限宽)、两侧采空煤柱较小和两侧采空煤柱较宽情况下,底板中z σ的应力等值线图,可见3种情况下底板中支承压力的峰值大小及分布范围是有很大区别的。

巷道围岩力学

1 本规范是专门针对潞安矿区现有生产矿井所开采的3#煤层的地质与生产条件而编制的,旨在促进 潞安矿区煤巷锚杆支护技术健康发展,为矿井实现安全高效创造良好条件。 1.2 根据《潞安矿区巷道围岩地质力学测试与分类研究报告》和《潞安矿区煤巷锚杆支护成套技术研究》的结论,在潞安矿区的煤巷中可以并应积极推广应用锚杆支护技术。指导思想是:解放思想,实事求是,因地制宜,积极推广应用。工作原则是:以科学的理论依据为指导,以严谨的态度抓好设计、施工和管理。 1.3 本规范适用于潞安矿区以锚杆支护作为主要手段的煤巷,包括:(1) 回采巷道(运输巷,回风巷,开切眼,瓦排巷等);(2) 采区集中巷;(3) 煤层大巷;(4) 各类煤巷交岔点和峒室。1.4 在进行煤巷锚杆支护设计前,必须有全面、准确、可靠的巷道围岩地质力学参数,包括地应力的大小和方向、围岩强度、围岩结构等。否则,不能进行锚杆支护设计。 1.5 煤巷锚杆支护设计采用动态信息设计法。设计是一个动态过程,充分利用每个过程提供的信息。设计应严格按五个步骤进行,即巷道调查和地质力学评估、初始设计、井下施工与监测、信息反馈分析和修正设计、日常监测。1.6 煤巷锚杆支护材料的尺寸规格、力学性能与产品质量必须满足锚 杆支护设计的要求,并符合煤矿安全有关规定。否则,不能下井使用。 1.7 煤巷锚杆支护施工应严格按照设计和作业规程要求进行,确保施工质量。1.8 与煤巷锚杆支护技术有关的各级管理和技术人员,以及操作工人,都应进行锚杆支护技术培训。1.9 本规范未涉及的煤巷锚杆支护技术问题,应按煤炭行业有关规定执行。 第二章巷道围岩地质力学评估与现场调查 2.1 巷道围岩地质力学评估与现场调查是煤巷锚杆支护设计的基础依据和先决条件,必须在进行支护设计之前完成。 2.2 地质力学评估与现场调查首先应确定评估与调查的区域,考虑巷道服务期间影响支护系统的所有因素,随后的锚杆支护设计应该限定在这个区域内。 2.3 地质力学评估与现场调查主要包括以下内容(1) 巷道围岩岩性与强度煤层厚度、倾角和强度;顶、底板各岩层的岩性、厚度、倾角和强度。(2) 围岩结构与地质构造巷道围岩内节理、裂隙等不连续面的分布,对围岩完整性的影响;巷道附近较大断层、褶曲等地质构造与巷道的位置关系,以及对巷道围岩稳定性的影响程度。 (3) 地应力巷道原岩应力的大小和方向,与巷道轴线的夹角;巷道周围采动状况,以及采动对巷道围岩 应力的影响程度。(4) 环境影响巷道水文地质条 件,涌水量,瓦斯涌出量,对围岩强度的影响程度,围岩的风化特性等。 (5) 锚杆锚固力用井下施工中要采用的锚杆,以端部锚固的方式,在顶板和两帮设计锚固长度范围内进行拉拔试验,锚固力满足设计要求时,方能在井下使用。 2.4 巷道围岩地质力学参数,包括地应力、围岩强度和围岩结构应采用先进的测试方法进行测试。目前根据国内外的技术水平和科研成果,应采用下列井下实测的方法确定。 (1) 地应力可采用水压致裂法或应力解除法测量。 (2) 巷道围岩强度可采用井下围岩强度测定装置直接在钻孔中测量,也可在井下巷道中取岩芯,在实验室制成岩样进行测量。 (3) 围岩结构应采用巷道表面观察,钻孔取芯测量和钻孔窥视相结合的方法进行。 2.5 巷道围岩地质力学参数有一定的适用范围。当在一个地点获取的参数用于同一煤层的其它地点时,应进行充分的现场调研,以保证两地点条件的相似性。 2.6 当巷道围岩岩性、结构和应力条件发生较大变化时,如遇到大型

《煤矿围岩控制及监测》课程设计

中国矿业大学 《煤矿围岩控制及监测》课程设计 姓名:9999999 学号:888888888 学院: 专业: 设计题目:综采工作面控顶设计 指导教师:职称: 二〇一五年六月

目录I 目录 1 工作面条件 (2) 1.1工作面地质条件 (2) 1.2工作面技术条件 (2) 2 控顶设计 (3) 2.1防漏 (3) 2.1防压 (3) 2.3防推 (7) 3支架的选型 (8) 3.1支架参数要求 (8) 3.2支架型号确定 (9) 4主要结论 (9) 参考文献 (10) 致谢 (11)

1 工作面条件 1.1 工作面地质条件 某工作面所在采区煤层倾角为18°,工作面沿倾斜方向布置,沿走向推进。该工作面设计面长200m,采用综合机械化开采,由西向东推进,推进长度1500m。由西边界向东边界,每隔300m布置一个钻孔,共计6个钻孔,有关资料见表1。 1.2 工作面技术条件 工作面采用综合机械化采煤工艺。 综合机械化采煤是指采煤工作面全部生产过程,即机械破煤、装煤、运煤、支护、采空区处理及回采巷道运输、掘进等全部机械化。综合机械化采煤的

设备。 综采工作面的主要设备有:采煤机、可弯曲刮板输送机、转载机、自移式液压支架。 刮板输送机是综合机械化采煤工作面的主要运输设备。除了运送煤之外,还可作为采煤机械的运行轨道,液压支架移动的支点。 固定采煤机有链牵引的拉紧装置或无链牵引的齿轨,并有清理工作面浮煤,放置电缆、水管、乳化液胶管等功能。 2 控顶设计 综采工作面的控顶设计,主要是确定支架架型、支架工作阻力与初撑力以及支架的高度等。不论是选用现有支架,还是设计新支架,都要在上述控顶原则的基础上来进行。在设计过程中,本着一切从最不利的条件出发。下面按防漏、防压、防推进行叙述。 2.1 防漏 由本设计的煤层顶板条件,煤层上方有直接顶,并且有伪顶,同时要实现高产高效,因此应选用支撑掩护式液压支架。 本设计直接顶比较软弱,如果端面距过大,容易引起端面冒落。在这种条件下,综采工作面端面距不超过340mm 。 实践表明,支架初撑力越大,顶板的下沉量将越小,端面冒高也将越小。支撑掩护式液压支架由于本身有香煤壁的推力,初撑力越大推力将越大,越有利于控制端面冒落。为防止发生端面冒落,综采工作面端面冒落高度不超过300mm ,对正常生产影响不大,这时所需的支架初撑力0p '(kN/架)目前只能通过调压实验或日常监测来确定。 2.1 防压 1.支架的工作阻力应能支撑住工作空间及采空区上方垮落带岩层的重量 K —安全系数,取1.2 p -支架工作阻力KN a L —每架支架所控制的工作面长度,1.5m/架; γ—垮落带直接顶岩层平均容重,223/KN m ; h —垮落带直接顶厚度,m ; z L '—直接顶岩梁长度,即z d h zx L L L L '=++,d L 为端面距340mm ,h L 支架顶梁 长度420mm ,zx L 为直接顶岩层在支架顶梁后的极限悬顶距;

相关文档
最新文档