管理统计学-第3章 抽样分布与参数估计
第三章 参数估计
第三章参数估计重点:1.总体参数与统计量2.样本均值与样本比例及其标准误差难点:1.区间估计2.样本量确实定知识点一:总体分布与总体参数统计分析数据的方法包括:描绘统计和推断统计〔第一章〕推断统计是研究如何利用样本数据来推断总体特征的统计学方法,包括参数估计和假设检验两大类。
总体分布是总体中所有观测值所形成的分布。
总体参数是对总体特征的某个概括性的度量。
通常有总体平均数〔μ〕总体方差〔σ2〕总体比例〔π〕知识点二:统计量和抽样分布总体参数是未知的,但可以利用样本信息来推断。
统计量是根据样本数据计算的用于推断总体的某些量,是对样本特征的某个概括性度量。
统计量是样本的函数,如样本均值〔〕、样本方差〔 s2〕、样本比例〔p〕等。
构成统计量的函数中不能包括未知因素。
由于样本是从总体中随机抽取的,样本具有随机性,由样本数据计算出的统计量也就是随机的。
统计量的取值是根据样本而变化的,不同的样本可以计算出不同的统计量值。
[例题·单项选择题]以下为总体参数的是( )a.样本均值b.样本方差c.样本比例d.总体均值答案:d解析:总体参数是对总体特征的某个概括性的度量。
通常有总体平均数、总体方差、总体比例题·判断题:统计量是样本的函数。
答案:正确解析:统计量是样本的函数,如样本均值〔〕、样本方差〔〕、样本比例〔p〕等。
构成统计量的函数中不能包括未知因素。
[例题·判断题]在抽样推断中,作为推断对象的总体和作为观察对象的样本都是确定的、唯一的。
答案:错误解析:作为推断对象的总体是唯一的,但作为观察对象的样本不是唯一的,不同的样本可以计算出不同的统计量值。
〔一〕样本均值的抽样分布设总体共有n个元素,从中随机抽取一个容量为n的样本,在重置抽样时,共有n n种抽法,即可以组成n n不同的样本,在不重复抽样时,共有个可能的样本。
每一个样本都可以计算出一个均值,这些所有可能的抽样均值形成的分布就是样本均值的分布。
统计学第3章-概率、概率分布与抽样分布
互斥事件及其概率
(例题分析)
解:由于每一枚硬币出现正面或出现反面的概率 都是1/2,当抛掷的次数逐渐增大时,上面的4个 简单事件中每一事件发生的相对频数 (概率)将近 似等于 1/4 。因为仅当 H1T2 或 T1H2 发生时,才会 恰好有一枚硬币朝上的事件发生,而事件 H1T2 或 T1H2 又为互斥事件,两个事件中一个事件发 生或者另一个事件发生的概率便是 1/2(1/4+1/4) 。 因此,抛掷两枚硬币,恰好有一枚出现正面的概 率等于 H1T2 或 T1H2 发生的概率,也就是两种事 件中每个事件发生的概率之和
解:设 A = 某住户订阅了日报 B = 某个订阅了日报的住户订阅了晚报
依题意有:P(A)=0.75;P(B|A)=0.50
P(AB)=P(A)·P(B|A)=0.75×0.5=0.375
3-31
独立事件与乘法公式
(例题分析)
【例】从一个装有3个红球2个白球的盒子里摸球 (摸出后球不放回),求连续两次摸中红球的概率
3-17
互斥事件的加法规则
(例题分析)
【例】抛掷一颗骰子,并考察其结果。求出其点 数为1点或2点或3点或4点或5点或6点的概率
解:掷一颗骰子出现的点数(1,2,3,4,5,6)共有
6个互斥事件,而且每个事件出现的概率都为1/6 根据互斥事件的加法规则,得
P(1或2或3或4或5或6) P(1) P(2) P(3) P(4) P(5) P(6) 1 1 1 1 1 1 1 6 6 6 6 6 6
合计
从这200个配件中任取一个进行检查,求 (1) 取出的一个为正品的概率 (2) 取出的一个为供应商甲的配件的概率 (3) 取出一个为供应商甲的正品的概率 (4) 已知取出一个为供应商甲的配件,它是正品的概率
统计学之抽样与抽样分布
的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差
•
有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体
•
称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。
统计学教程(含spss)四参数估计
从一批灌装产品中,随机抽取20灌,得样本方差为0.0025。试以95%的置 信度,估计总体方差的存在区间。
n 1 s2 2 n 1 s2
2 2
2 1 2
n 1 s2
2 0.025
2
n 1 s2
2 0.975
19 0.0025 2 19 0.0025
32.8523
8.90655
自正态总体抽样时,总体均值与总体中位数相同,而中位数的 标准误差大约比均值的标准误差大25%。因此,样本均值更有效。
x 的抽样分布
M e的抽样分布
____
X
有效性
一致性
如果 lim
P
1(为任意小数,n
为样本容量)
n
则称 为的满足一致性标准的点估计量
ˆ1的抽样分布 ˆ2的抽样分布
x s 2 p 均为一致性估计量
X~N, 2
x__
~
N
, 2 n
__
Z x ~N 0,1
n
P Z
Z Z
1
2
2
P Z
2
__
x n
Z
1
2
显著性水平
22
2
Z 2
置信度
1
0
P_x_ Z
2
n
__
x Z 2
1
n
2
Z 2
显著性水平α下,μ在1- α置信水平下的置信区间:
__
x
Z
2
__
n , x Z 2
f x
x
n
x 2
f x
1
e 2 2 x
2
x
抽样分布
E(x)
统计学 第三章抽样与抽样分布
=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取
《统计学》第10讲 参数估计(复习+习题)
(二)方差的区间估计
1.总体方差的区间估计
对于来自正态总体的容量为n的简单随机样本,统 计量 n 1s 2 / 2 服从自由度为 n 1 的卡方分布。
n 1 s 2
2
~ 2 n 1
总体方差在1- 置信水平下的置信区间为
2 n 1 s
2
2 2 2 2 s1 s2 s1 s2 , F 2 F1 2
F分布两个自由度
24
(三)总体比率区间估计
1.单样本比率的区间估计
当样本容量充分大时,样本比率p近似服从以总体比
率P为数学期望,以P(1-P)/n为方差的正态分布。
1. 样本比率的数学期望
E (p) P
2. 样本比率的方差
P (1 P ) n
n1 n2
18
( n1 3 0, n 2 3 0 )
大样本,方差已知(两个总体分布没有要求)
1. 两个样本均值之差 x 1 x 2 的抽样分布服从正态
分布,其数学期望为两个总体均值之差
E (x1 x 2 ) 1
2
2. 方差为各自的方差之和
2 x1 x 2
12 22 n1 n2
•
分别从两个独立的随机总体中抽取容量为n1和n2的 独立样本,当两个样本都为大样本时,两个样本比 率之差的抽样分布可用正态分布来近似。 数学期望为
• •
E ( p 1 p 2 ) P1 P 2
方差为各自的方差之和
27
2 p1 p 2
P1 (1 P1 ) P2 (1 P2 ) n1 n2
2
2 2 x n
抽样与参数估计
第四章抽样与参数估计推断统计:利用样本统计量对总体某些性质或数量特征进行推断。
从数据得到对现实世界的结论的过程就叫做统计推断(statistical inference)。
这个调查例子是估计总体参数(某种意见的比例)的一个过程。
估计(estimation) 是统计推断的重要内容之一。
统计推断的另一个主要内容是本章第二节要介绍的假设检验(hypothesis testing) 。
因此本节内容就是由样本数据对总体参数进行估计,即:学习目标:了解抽样和抽样分布的基本概念理解抽样分布与总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体比例和总体方差的区间估计第一节抽样与抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取一部分元素(单位)进行调查,并根据样本数据所提供的信息来推断总体的数量特征。
总体(Population):调查研究的事物或现象的全体参数个体(Item unit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Sample size):样本中所含个体的数量一般将样本单位数不少于三十个的样本称为大样本,样本单位数不到三十个的样本称为小样本。
一、抽样方法及抽样分布1、抽样方法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每一个样本都有相同的机会(概率)被抽中。
注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,又可分为重复抽样与不重复抽样。
而且,根据抽样中是否排序,所能抽到的样本个数往往不同。
②、分层抽样:总体分成不同的“层”(类),然后在每一层内进行抽样③、整群抽样:将一组被调查者(群)作为一个抽样单位④、等距抽样:在样本框中每隔一定距离抽选一个被调查者(2)非概率抽样:不是完全按随机原则选取样本①、非随机抽样:由调查人员自由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择一群特定数目、满足特定条件的被调查者2、抽样分布一般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(sampling distribution)。
管理统计学:第三章:样本数据特征
• 式中,Xi为样本观察值。
第3.4节 样本数据的离散特征
• 描述数据集合的离散特征的两种方法: • 一、点状描述,如明确样本数据集合中的最小 值和最大值等; • 二、区间描述(基于差值的描述),如样本数 据集合中的最大值与最小值之差。
3.4.1 对样本数据离散特征的点状描述: 极值、四分点与百分位点
• 1.极大值(Maximum)与极小值 (Minimum)
• 极大值与极小值,从一定视角反映了样本 数据集合中样本的离散情况。 • 问:极大值、极小值适用于什么测度? • 另一个位与数的问题:
• 2.下四分点(Lower quartile)与上四分点 (Upper quartile) • 1)上、下四分点的概念 • 下四分点使由小到大排序后的数据集合的左 边部分,包含25%的样本总个数,右边部分 包含75%的样本总个数。 • 上四分点使由小到大排序后的数据集合的左 边部分,包含75%的样本总个数,右边部分 包含25%的样本总个数。 • 上、下四分点在一定意义上反映了样本数据 的离散情况。
• 基于排序,能够简单统计频次:
• 价格(元)9.93 9.94 9.95 9.96 9.97 9.98 9.99 10.00 • 次数: 1 0 1 1 2 3 4 4 • 频率% 3.33 0 3.33 3.33 6.67 10.00 13.33 13.33 • 价格(元)10.01 10.02 10.03 10.04 10.05 10.06 • 次数: 4 2 3 2 2 1 • 频率% 13.33 6.67 10.0 6.67 6.67 3.33
第 3章 样本数据特征的初步 分析
数据模型决策-统计学3-参数估计
均值和方差
若T ~ t(n) ,则 E(T ) = 0
D(T ) = n (n > 2) n−2
第3t 分章布与参正数态分估布计的比较
第3章 参数估计
(4) t分布(Students 分布)
性质:
当n很大时,
lim f (t) =
n→∞
1
− t2
e2
2π
此时,tα/2≈uα/2,t 分布近似标准正态分布
2分布,即
V ~ χ 2 (n1) , W ~ χ 2 (n2,)
则随机变量 F = V / n1 W / n2
服从F分布, n1,n2分别是它的第一自由度和第二自由度,
且通常记为 F ~ F (n1, n2 )
第3章 参数估计
第3章 参数估计
(3) F分布
F分布查表
∞
∫ P(F > Fα ) = Fα f (x)dx = α (0 <α < 1)
第3章 参数估计
抽样与抽样分布 点估计 区间估计 样本容量的确定
第3章 参数估计
3.1 抽样与抽样分布
总体由研究对象的全体所组成。 样本是总体中的部分元素所组成的集合。
有限总体和无限总体 无放回抽样和有放回抽样
简单随机抽样(x1, x2,…, xn):
简单随机抽样是指从总体中抽取样本容量为n 的样本时,x 1, x2,…, xn这n个随机变量必须具备以下两个条件:
与 t 分布有关的理论通常称为“小样本理论”
查表问题: P{t(n) > tα (n)} = α
第3章 参数估计
P(t(7)>1.8946)=0.05
第3章 参数估计
(5) 样本平均数的抽样分布
统计学习题(抽样分布、参数估计)
统计学习题(抽样分布、参数估计)练习题第1章绪论(略)第2章统计数据的描述2.1某家商场为了解前来该商场购物的顾客的学历分布情况,随机抽取了100名顾客。
其学历表示为:1.初中;2.高中/中专;3.大专;4.本科及以上学历。
调查结果如下:4222434414 2244432422 3121441424 2332134344 3312424324 2322212244 2123333334 2343313232 4313434214 2242334121(1)制作一张频数分布表。
(2)绘制一张条形图,反映学历分布。
2.2为了解某电信客户对该电信公司的服务的满意度情况,某调查公司分别对两个地区的电信用户在以下五个方面对受访用户的满意情况进行了问卷调查得到的数据如下(表中数据为平均满意度打分,从1分到10分满意度依次递增):地区企业形象客户期望质量感知价值感知客户总体满意度A 8.269504 7.51773 9.2624117.9148948.411348B 7.447368 8.3684218.9736848.1052637.394737试用条形图反映将两地区的满意度情况。
2.3下面是一个班50个学生的经济学考试成绩:88569179699088718279 988534744810075956092 83646569996445766369 6874948167818453912484628183698429667594(1)对这50名学生的经济学考试成绩进行分组并将其整理成频数分布表,绘制直方图。
(2)用茎叶图将原始数据表现出来。
2.4如下数据反映的是某大学近视度数的情况,共120名受访同学,男女同学各60名。
男149 161761821310 80 951081414 0 144145151515161681882121 0 21211052121211116817521 0 356462121212121312121 0 2121212121375375383838 8 45566065120 30120 7521女120 3334537437538700 90700 60141516212121211517170 0 0 0 0 0 0 0 5 521 0 1752121214043451217517 8 181818518519195196202021 0 21212121212121333335 0 3636363840474865055(1)按近视度数分别对男女学生进行分组。
数理统计第3章 随机抽样与抽样分布
E ( X i ) = E ( X ) = µ , D( X i ) = D( X ) = σ 2 , i = 1,2,L , n
1 n 1 n 所以 E ( X ) = E ( ∑ X i ) = ∑ E ( X i ) = µ , n i =1 n i =1
1 1 . D ( X ) = D( ∑ X i ) = 2 ∑ D( X i ) = n n i =1 n i =1
11
它反映了总体 二、样本数字特征 均值的信息 它反映了总体 1 n 样本均值 X = ∑Xi 方差的信息 n i=1 1 n 1 n 2 2 2 2 样本方差 S = ∑( Xi − X) = n −1 ∑Xi − nX n −1 i=1 i =1
推导: 推导:
( Xi − X)2 = ∑( Xi2 − 2Xi X + X 2 ) ∑
因此, 应视为一组随机变量, 因此,抽样值 ( x1 , x2 ,L, xn ) 应视为一组随机变量,我们把 的一个样本 子样), 样本( ),其中 称为该样本的容量 容量。 它称为总体 X 的一个样本(或子样),其中 n 称为该样本的容量。
7
二、简单随机抽样
由于抽样的目的是为了对总体的分布进行统 计推断, 计推断,为了使抽取的样本能很好地反映总体的 信息,必须考虑抽样方法 信息,必须考虑抽样方法. 最常用的一种抽样方法叫作“ 最常用的一种抽样方法叫作“简单随机抽 它要求抽取的样本满足下面两点: 样”,它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察的总体 代表性: 有相同的分布. 有相同的分布 2. 独立性: X1,X2,…,Xn是相互独立的随机变量 独立性: 是相互独立的随机变量. 由简单随机抽样得到的样本称为简单随机样本 简单随机样本, 由简单随机抽样得到的样本称为简单随机样本, 今后如不加声明,均指简单随机样本。 今后如不加声明,均指简单随机样本。
《管理统计学》课程教学大纲
《管理统计学》课程教学大纲Statistics for Management课程代码:52105530 课程性质:专业基础理论课,选修适用专业:管理科学与工程,工商管理总学分数:3.0总学时数:48 修订年月:2010年11月编写年月:2009年9月执笔:谢湘生课程简介(中文):管理统计学是管理科学与工程学科的核心课程,其内容包括统计数据的搜集与整理、统计数据的描述、抽样与参数估计、假设检验、分类资料的假设检验、方差分析、相关分析与回归分析等,本课程将管理统计学基本原理、实际管理问题和SPSS软件应用结合起来。
课程简介(英文):The course of statistics for management is a core curriculum of management science and engineering. The content of the course includes gathering and sorting out statistic data, describing statistic data, sampling and parameter evaluating,hypothesis testing,hypothesis testing for classified data,variation analysis,correlation analysis and regression analysis,etc. This course integrates the basic principles of statistics for management, practical problems in management and SPSS application into a whole。
一、课程目的本课程所提供的统计分析方法是管理学、社会学领域,应用最为广泛的数量方法。
概率统计基础:第 3 章 随机变量及抽样分布
这一过程称为抽样 , X1 , X2 , , Xn 称为容量为n的样本.
抽样的特点 在相同条件下对总体X进行n次重复、独立观察
要求各次取样的结果互不影响 每次取出的样品与总体有相同的分布
样本的特点
观察前:X1 , X2 ,, Xn 是相互独立,与总体同分布的随机 变量
0.4
n=2
0.3
n=3
0.2
n=5
n = 10
0.1
n = 15
5 10 15 20 25
设 c 2 ~c 2 (n) X i ~ N (0,1) i 1, 2, , n
则
E(X i ) 0,
D( X i ) 1,
E
(
X
2 i
)
1
E c 2
E
n
X
2 i
n
i1
E
(
X
4 i
)
1
x4e
1. 期望为:E(c2)=n,方差为:D(c2)=2n(n为自
由度)
2. 可加性:若U和V为两个独立的c2分布随机变 量,U~c2(n1),V~c2(n2),则U+V这一随机变 量服从自由度为n1+n2的c2分布
总体
样本
计算样本统计量 如:样本均值、 比例、方差
几个重要分布 c2-分布(c2-distribution)
1. 由阿贝(Abbe) 于1863年首先给出,后来由海 尔墨特(Hermert)和卡·皮尔逊(K·Pearson) 分 别于1875年和1900年推导出来
定义: 设 X 1 , X 2 , , X n相互独立,都服从正态
个体:随机变量X的值
总体
统计学第四章抽样与参数估计
疗效评价
通过参数估计和假设检验等方法,评价药物 的疗效和安全性。
案例三:工业生产过程质量控制
抽样检验计划制定
根据产品特性和质量要求,制定合适的抽样 检验计划。
不合格品控制
对不合格品进行统计分析和处理,找出原因 并采取措施加以改进。
过程能力分析
收集生产过程中的质量数据,进行过程能力 分析和参数估计。
抽样作用
通过样本信息推断总体特征,为决策提供依据。
抽样方法分类
随机抽样
按照随机原则从总体中抽取样本,每个个体 被抽中的概率相等。
系统抽样
按照某种规则从总体中抽取样本,如每隔一 定距离或时间抽取一个样本。
分层抽样
将总体分成若干层,然后从各层中随机抽取 样本。
整群抽样
将总体分成若干群,然后随机抽取若干群作 为样本。
05
案例分析:实际场景下抽样 与参数估计问题探讨
案例一:市场调查中消费者满意度测评
01
抽样方法选择
根据市场调查的目的和预算,选 择合适的抽样方法,如简单随机 抽样、分层抽样或整群抽样。
03
数据收集与处理
设计调查问卷,收集消费者满意 度数据,并进行数据清洗和整理
。
02
样本量确定
综合考虑调查的精度要求、总体 规模、抽样误差等因素,合理确
运用统计学方法进行假设检验和参数估计,验证研究假 设的可靠性。
THANKS
定样本量。
04
参数估计
运用统计学方法,对消费者满意 度进行参数估计,如计算满意度
均值、标准差等。
案例二:医学研究中药物疗效评价
试验设计
采用随机对照试验等方法,确保试验组和对 照组的可比性。
样本量计算
统计学课后答案
第一章绪论1.社会经济统计学的研究对象是:(A)A社会经济现象的数量方面B.统计工作C.社会经济内在规律D.统计方法2.考察全国的工业企业的情况时,以下标志中属于不变标志的有(A)A.产业的分类B.职工人数C.劳动生产效率D.所有制3.要考察全国居民的人均住房面积,其统计总体是(A)A.全国所有居民户B.全国的住宅C.各省市自治区D.某一居民户4.最早使用"统计学"这一术语的是(B)A.政治算术学派B.国势学派C.社会统计学D.数理统计学派第二章统计数据的收集,整理和显示1.统计的调查对象是(C)A.总体各单位标志值B.总体单位C.现象总体D.统计指标2.我国统计调查体系中,作为主体的是(A)A.经常性抽查调查B.必要的统计报表C.重点调查及估计推算等D.周期性普查3.要对某企业生产设备的实际生产能力进行调查,则企业的“生产设备”是(A)A.调查对象B.调查单位C.调查项目D.报告单位4.下面那些现象事宜采用非全面调查?(ABCD)A.企业经营管理中出现的新情况B.某型号日光灯耐用时数检查C.某地区居民储蓄存款D.某地区森林的木材积蓄量5.抽查调查(abd)A.是一种非全面调查B.是一种非连续性的调查C.可以消除抽样误差D.应遵循随机原则6.洛伦茨曲线(BC)A.是一种向下累计曲线B.可用于反映财富的分布曲线C.用以衡量收入分配公平与否D.越接近对角线基尼系数越大第三章数据分布特征的描述1.由变量数列计算加权算术平均数时,直接体现权数的实质的是(D)A.总体单位数的多少B.各组单位数的多少C.各组变量值的大小D.各组频率的大小2.若你正在筹划一次聚会,想知道该准备多少瓶饮料,你最希望得到所以客人需要饮料数量(a)A.均值B.中位数C.众数D.四分位数3.2004年某地区甲、乙两类职工的月平均收入分别为1060和3350 元,标准差分别为230元和680元,则职工平均收入的代表性(B)A.甲类较大B.乙类较大C.两类相同D.在两类之间缺乏可比性4.假如学生测验成绩记录为优。
管理统计学复习题
管理统计学第一章绪论一、填空1、统计学发展经历了( )、( )和( )三个阶段。
2、依据“恩格尔法则”,家庭收入(),则饮食支出占家庭收入的百分比()。
3、统计学方法一般可以分为两类:()和()。
4、描述统计是指()。
5、推断统计是指()。
6、()用于衡量生活水平。
二、名词解释1、管理统计学2、统计学3、随机现象总体4、总体三、简答题1、统计学方法可以解决的主要问题有哪些?2、统计学的发展经历了哪些阶段?说明每个阶段的特点。
第二章数据收集方法一、填空1、数据来源分为()和()两种。
2、依据调查对象的不同,统计调查方式分为()和()。
3、全面调查主要有()和()。
4、非全面调查包括()、()、()、()、()及()等。
5、统计调查方法归纳起来可分为()和()两大类。
6、随机抽样类型包括()、()及()等。
7、非随机抽样类型包括()、()及()等。
8、误差分为()和()两大类。
9、非抽样误差包括()、()、()、()及()等。
二、名词解释1、抽样调查2、单纯随即抽样3、抽样误差三、简答题1、数据计量尺度分为哪几种?不同计量尺度各有什么特点?2、统计变量分类有哪些?统计数据有哪几种?3、抽样调查分为哪两类?各有什么特点?4、简述企业数据收集过程第三章描述数据的图表方法一、填空1、单变量定量数据的图形描述分为()和()两大类。
2、单变量定量数据的图形表示方法有()、()、()及()、()等。
3、多定量数据的的图形表示方法有()、()、()及()等4、比较具有相同分类且问题可比的定性数据的各样本或总体时,应用()。
5、描述同时产生的两个定性变量关系的最常用的两种方式为()和()。
6、()和()通过反映频数分布表的内容,来描述定性数据。
7、累积频数分布图通过反映累积频数分布表的内容来描述()。
二、简答题及绘图1、简述频数分布表的编制过程。
2、什么是茎叶图?有什么特点?习题3-1、3-3第四章描述统计中测度一、填空1、集中趋势的度量有()和()。
(完整)统计学简答题参考答案
统计学简答题参考答案第一章绪论1。
什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。
统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。
2.简要说明统计数据的来源。
答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。
间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得.3。
简要说明抽样误差和非抽样误差。
答:统计调查误差可分为非抽样误差和抽样误差。
非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的.抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的.4。
解释描述统计和推断统计的概念?(P5)答:描述统计是用图形、表格和概括性的数字对数据进行描述的统计方法。
推断统计是根据样本信息对总体进行估计、假设检验、预测或其他推断的统计方法。
第二章统计数据的描述1描述次数分配表的编制过程。
答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。
按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。
按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组.统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表.2. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。
常用的指标有均值、中位数、众数、极差、方差、标准差、离散系数、偏态系数和峰度系数。
3。
怎样理解均值在统计中的地位?答:均值是对所有数据平均后计算的一般水平的代表值,数据信息提取得最充分,具有良好的数学性质,是数据误差相互抵消后的客观事物必然性数量特征的一种反映,在统计推断中显示出优良特性,由此均值在统计中起到非常重要的基础地位.受极端数值的影响是其使用时存在的问题。
统计学课后答案
第四章 抽样分布与参数估计3.某地区粮食播种面积5000亩,按不重复抽样方法随机抽取了100亩进行实测,调查结果,平均亩产450公斤,亩产量标准差为52公斤。
试以95%的置信度估计该地区粮食平均亩产量和总产量的置信区间。
解:已知X =450公斤,n =100(大样本),n/N=1/50,11≈-Nn,不考虑抽样方式的影响,用重复抽样计算。
s =52公斤,1-α=95%,α=5%。
这时查标准正态分布表,可得临界值:96.1025.02/==z z α该地区粮食平均亩产量的置信区间是:1005296.14502⨯±=±nsz x α=[439.808,460.192] (公斤) 总产量的置信区间是:[439.808⨯5000,460.192⨯5000] (公斤) =[2199040,2300960](公斤)4.已知某种电子管使用寿命服从正态分布。
从一批电子管中随机抽取16只,检测结果,样本平均寿命为1490小时,标准差为24.77小时。
试以95%的置信度估计这批电子管的平均寿命的置信区间。
解:(1)已知X =1490小时,n =16,s =24.77小时,1-α=95%,α=5%。
这时查t 分布表,可得 2.13145)1(2/=-n t α该批电子管的平均寿命的置信区间是:1677.2413145.214902⨯±=±nst x α=[ 1476.801,1503.199](小时)因此,这批电子管的平均寿命的置信区间在1476.801小时与1503.199小时之间。
6.采用简单随机重复抽样的方法,从2 000件产品中抽查200件,其中合格品190件。
要求:(1)计算合格品率及其抽样平均误差。
(2)以95.45%的置信度,对合格品率和合格品数量进行区间估计。
(3)如果极限误差为2.31%,则其置信度是多少? 解:(1)合格品率:P=190/200⨯100%=95% 抽样平均误差:np p p )1()(-=σ=0.015(2)%3%95%100015.02%95)(22/02275.02/±=⨯⨯±=±==p Z P Z Z σαα]19601840[]2000%982000%92[(%]98%92[,,的置信区为:件合格品数量,:合格品率的置信区间为=⨯⨯)(3)%64.87)(8764.01,54.1%31.2%100015.0%31.2)(2/2/2/==-==⨯⨯==∆z F Z Z p Z ασααα查表得7.从某企业工人中随机抽选部分进行调查,所得工资分布数列如下:试求:(1)以95.45%的置信度估计该企业工人平均工资的置信区间,以及该企业工人中工资不少于800元的工人所占比重的置信区间;(2)如果要求估计平均工资的允许误差范围不超过30元,估计工资不少于800元的工人所占比重的允许误差范围不超过10%,置信度仍为95.45%,试问至少应抽多少工人? 解(1)通过EXCEL 计算可得: X =816元,n =50人,s =113.77元。
中级统计师考试-3统计方法知识考试重点归纳(私藏)
2014中级统计师考试-统计方法知识考试重点归纳第一章统计和数据●统计是用来处理数据的,是关于数据的一门学问。
1、统计学:是用以收集数据、分析数据和由数据得出结论的一组概念、原则和方法。
2、统计分析数据的方法分为:(1)描述统计(2)推断统计3、描述统计:是研究数据搜集、处理和描述的统计学方法。
4、推断统计:是研究如何利用样本数据来推断总体特征的统计学方法。
5、推断统计包括:(1)参数估计(2)假设检验6、定性变量的特点:只反映现象的属性特点,不能说明具体量的大小和差异。
●定性变量包括分类变量和顺序变量。
●只反映现象分类特征的变量称分类变量。
分类变量没有数值特征,所以不能对其数据进行数学运算。
●如果类别具有一定的顺序,这样的变量称为顺序变量。
顺序变量不仅能用来区分客观现象的不同类别,而且还可以表明现象之间的大小、高低、优劣关系。
7、定量变量的特点:可以用数值表示其观察结果,而且这些数值具有明确的数值含义,不仅能分类而且能测量出来具体大小和差异。
●数值型数据(定量数据)作为统计研究的主要资料,其特征在于它们都是以数值的形式出现的,有些数值型数据只可以计算数据之间的绝对差,而有些数值型数据不仅可以计算数据之间的绝对差,还可以计算数据之间的相对差。
其计量精度远远高于定性数据。
在统计学研究中,数值型数据有着最广泛的用途。
8、数据按获取的方法不同分为:(1)观测数据(2)实验数据9、观测数据:是对客观现象进行实地观测所取得的数据,在数据取得的过程中一般没有人为的控制和条件约束。
10、实验数据:一般是在科学实验环境下取得的数据。
11、统计数据资料的来源:(1)通过直接的调查或实验获得的原始数据,这是统计数据的直接来源;(2)别人调查的间接数据,并将这些数据进行加工和汇总后公布的数据,这是数据的间接来源。
12、数据的直接来源:(1)统计调查(2)实验法●通过统计调查得到的数据,一般称为观测数据。
●运用实验法时,实验组和对照组的产生应当是随机的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X ~ N ( ,
2
n
)
第三章
抽样分布与参数估计
• 例:某高校在研究生入学体检后对所有结果进 行统计分析,得出其中某一项指标的均值是7, 标准差2.2。从这个总体中随机选取一个容量 为31的样本。 • (1)计算样本均值大于7.5的概率, • (2)计算样本均值小于7.2的概率, • (3)计算样本均值在7.2和7.5之间的概率。
10 5
8
7 10
{8,10} 9 {7,10} 8.5 {10,10} 10
{8,5} 6.5 {7,5} 6 {10,5} 7.5
{8,8} 8 {7,8} 7.5 {10,8} 9
{8,7} 7.5 {7,7} 7 {10,7} 8.5
{8,10} 9 {7,10} 8.5 {10,10} 10
第三章
抽样分布与参数估计
x
的分
• 样本容量大于30,由中心极限定理可知,样本均值 布近似均值为
2.2 7, 标准差 X= = =0.39的正态分布 n 31
即
X ~ N (7,0.39 )
2
第三章
• (1)
抽样分布与参数估计
X 7 7.5 7 X 7 ) P( 1.28) 0.1 0.39 0.39 0.39
第三章
抽样分布与参数估计
第三章
抽样分布与参数估计
第三章
抽样分布与参数估计
总体分布与样本抽样分布的关系
第三章
抽样分布与参数估计
第三章
抽样分布与参数估计
第三章
抽样分布与参数估计
第三章
抽样分布与参数估计
样本均值的抽样分布
• 一个总体10,5,8,7,10 ,
直方图 3 2 1 0 5 7 9 11 其他 接收 150.00% 100.00% 50.00% 0.00%
总体庞大,难以对总 体的全部元素进行 研究
抽 样 原 因
检查具有破坏性
炮弹、灯管、砖等
第三章
抽样分布与参数估计
统计学基本概念
• 总体 (全体) Population • 所有感兴趣的对象 • 样本Sample • 总体的一部分 • 总体参数Parameter • 关于总体的概括性度量 • 统计量Statistic • 关于样本的概括性度量 • 抽样 • 从所研究的对象中随机取出一部分进行观察,由此获 得有关总体的信息。
P( X 7.5) P(
X 7 7.2 7 X 7 • (2) P( X 7.2) P( 0.39 0.39 ) P( 0.39 0.51) 0.69
• (3)
P(7.2 X 7.5) P( 7.2 7 X 7 7.5 7 ) P(0.51 Z 1.28) 0.21 0.39 0.39 0.39
样本方差
从100个样本中推断总体的净重均值为343.76g,方差为17.053
描述统计模块
• Analyze→Descriptive Statistics→Descriptives→Options
均值 标准差 方差
N 净重 100 100 Descriptive Statistics
Mean 343.76
• 样本统计量是一个随机分布量。
第三章
• • • •
抽样分布与参数估计
设由四个同学组成的总体, 样本总体N=4。 随机变量X表示某个学生的年龄 X的所在取值为18,20,22,24。 21 2.236
• 总体均值和总体方差各为多少?
• 总体概率分布?
第三章
抽样分布与参数估计
• 所有样本容量为2的样本
设置指定的百分点
最小值 标准差 方差 最大值与最小值之差 最大值 均值标准差 数据分布的斜度 数据分布的峰度
频次分析模块(续)
Statistics 净 重 N 样本均值 Mean Std. Deviation Variance Valid Missing 100 0 343.76 4.130 17.053
n
1 ln L 2 ( xi ) 0 i1 n 1 n 2 ln L ( x ) 0 i 2 2 2 2 2( ) 2( ) i1 ( )
1 n ˆ mle xi x n i 1 n 2 mle 1 ( x x ) 2 i n i 1
抽样分布与参数估计
正态分布 总体分布
指数分布
均匀分布
样本均值 分布(n=2)
样本均值 分布(n=10)
样本均值 分布(n=30)
第三章 抽样分布与参数估计 中心极限定理的作用
• 建立起 Z 值与样本均值之间的数值关系. • 不论该总体服从何种分布,只要当样本容量足够大 ( n 30 ),样本均值的分布都大致服从正态分布。
3.2.2 点估计的优良性标准
• 无偏性
ˆ) ˆ ,如果E ( – 设总体的参数为 ,其估计量为 ˆ 的数学期望等于被估计的总体参数, 即估计量 ˆ 我们称估计量 是参数 的无偏估计量 – 样本平均数是总体平均数的无偏估计量 – 无偏性是对估计量的一个常见而重要的要求
点估计的优良标准(续)
矩估计法
• 借助样本矩去估计总体的矩
– 用样本的一阶原点矩来估计总体的均值 – 用样本的二阶中心矩来估计总体的方差
例3.1 矩法估计例题
X 1 , X 2 ,, X n 为总体的样本, • 设总体 X ~ N , 2 , 求, 的矩法估计量。 2
– 解:
ˆ 2矩
ˆ矩 X
• 一致性
ˆ( X ,..., X ) 是参数 估计量,若对于任意的 , –设 1 n ˆ( X ,..., X ) 依概率收敛于 ,则称 ˆ 为 当 n 时 1 n 的一致估计量 ˆ | ) 0 – 对任意 0 有,lim P(| n
频率 累积 %
频率
第三章
抽样分布与参数估计
• 有放回(with replacement)抽样
{X i , X j }
X
10 {10,10} 10 {5,10} 7.5
5 {10,5 } 7.5 {5,5} 5
8 {10,8} 9 {5,8} 6.5
7 {10,7} 8.5 {5,7} 6
10 {10,10} 10 {5,10} 7.5
第三章
抽样分布
抽样分布与参数估计
• 从一个总体中随机抽出容量相同的各种样本,从这些 样本计算出的某统计量所有可能值的概率分布,称为 这个统计量的抽样分布。 • 从一个给定的总体中抽取(不论是否有放回)容量 (或大小)为n的所有可能的样本,对于每一个样本, 计算出某个统计量(如样本均值或标准差)的值,不 同的样本得到的该统计量的值是不一样的,由此得到 这个统计量的分布,称之为抽样分布。
– 解:
10 1 ˆ ) x x 1147(h) E( X i 10 i 1
ˆ ) 2 7578.889 D( X
极大似然估计法
• 求极大似然估计的一般步骤
– – – – 写出似然函数 对似然函数取对数,并整理 求导数 解似然方程
例3.4 极大似然估计例题
2 • 设总体X服从N(, ),是X 的样本值,求, 2 的极大似然估计
n
• 有效性
ˆ ˆ ( X ,..., X )都是参数的无偏 ˆ ˆ ( X ,..., X )和 –设 2 2 1 n 1 1 1 n ˆ ) D( ˆ ) ,且至少对于 估计量,若对任意 , D( 1 2 ˆ 较 ˆ 有效 某个 上式中的不等号成立,则称 1 2
– 解: L( x1 , x2 ,, xn ; , 2 )
n
,
i 1
1 e 2
( xi ) 2 2 2
1 (2 ) ( )
n 2 n 2 2
e
i 1
n
( xi ) 2 2 2
• 似然方程为:
n
( xi )2 n n 2 ln L ln( 2 ) ln( ) 2 i 1 2 2 2
第三章
抽样分布与参数估计
• 例:在北京一居室的房租平均为每月1500元, 房租的分布并不服从正态分布,随机抽取容量 为50的样本,样本的标准差是200元,请问样 本均值至少为1600元的概率是多少?
第三章
抽样分布与参数估计
第三章
抽样分布与参数估计
第三章
抽样分布与参数估计
第三章
抽样分布与参数估计
N1 P N
第三章
抽样分布与参数估计
• 样本平均数
• 样本方差 • 样本标准差
x
X
i 1
n
i
2 ( X x ) i i 1 n
n
s2
s
n 1
• 样本比率(样本成数)
n1 p n
第三章
抽样分布与参数估计
• 样本统计量经常被用作估计总体参数。 • 点估计就是运用样本数据值计算出一个样本统计量的 值,将其作为总体参数的估计值。 • 如用 x 50 去估计 • 问题是不同的样本提供不同的估计值 • 样本越大,估计的性质越好,但成本也越高 • 了解估计的性质有多好 • 解决办法:以样本的抽样分布作为理论基础。
第三章
抽样分布与参数估计
第三章
抽样分布与参数估计
• 例:已知某高校女生比例为46%,现对全体学 生做两次随机抽样, n=200和n=1000 ,求这 两次抽样中女生的比例在50%以上的概率。
第三章
抽样分布与参数估计
3.2 点估计
第三章
抽样分布与参数估计