循环矩阵与矩阵对角化

合集下载

KCF中的循环矩阵

KCF中的循环矩阵

KCF 中的循环矩阵在学习KCF ⽬标跟踪算法时,会⽤到⼀个数学概念:循环矩阵,其对KCF 的速度提升起到了⾮常关键的作⽤,值得了解下。

1. 傅⾥叶矩阵(DFT Matrix) 在了解循环矩阵的定义前,需要先了解下离散傅⾥叶矩阵:2. 循环矩阵定义形状如下的矩阵X 称为循环矩阵,x 为循环矩阵X 的⽣成向量,为矩阵第⼀⾏, 其他⾏都是x 向右循环位移得到。

X =C (x )=x 1x 2x 3x 4x 4x 1x 2x 3x 3x 4x 1x 2x 2x 3x 4x 1通过x ⽣成X , 可以由排列矩阵和x 相乘,连续平移x 得到,⽰例代码如下:import numpy as npx = np.array([[1, 2, 3, 4]])P = np.array([[0, 0, 0, 1],[1, 0, 0, 0],[0, 1, 0, 0],[0, 0, 1, 0]])X = np.zeros((4, 4))X[0, :] = xfor i in range(1, 4):X[i, :] = np.dot(P, X[i-1, :]).T # 排列矩阵P 每作⽤⼀次x ,x 向右移动⼀位print(X)输出:[[1. 2. 3. 4.][4. 1. 2. 3.][3. 4. 1. 2.][2. 3. 4. 1.]][]3. 循环矩阵性质循环矩阵很多优秀的性质,其中最重要的⼏个性质为如下:1. 任意循环矩阵可以被傅⾥叶变换矩阵对⾓化⼀般⽤如下⽅式表达这⼀概念:X=C(x)=F⋅diag(ˆx)⋅F H其中X是⼀个循环矩阵,x是X的⽣成向量, ˆx(读作x hat)为原向量x的傅⾥叶变换;F是傅⾥叶变换矩阵,F H表⽰共轭转置: F H=(F∗)T。

换句话说,X 相似于对⾓阵,X的特征值是ˆx的元素。

另⼀⽅⾯,如果⼀个矩阵能够表⽰成两个傅⾥叶矩阵夹⼀个对⾓阵的乘积形式,则它是⼀个循环矩阵。

其⽣成向量是对⾓元素的傅⾥叶逆变换:F⋅diag(y)⋅F H=C(−1(y)),(−1(y)表⽰y的傅⾥叶逆变换)2. 循环矩阵乘向量等价于⽣成向量的逆序和该向量卷积数学表⽰如下:(Xy)=(C(x)y)=(¯x∗y)=∗(x)⊙(y)这⾥¯x表⽰x的逆序排列,∗表⽰卷积。

浅谈矩阵的对角化问题(浓缩稿)

浅谈矩阵的对角化问题(浓缩稿)

浅谈矩阵的对角化问题(浓缩版)学号:0807402069 学生姓名:马莉莹 指导老师:朱广俊数学科学学院,2008级,数学与应用数学(师范)摘要:矩阵的对角化是矩阵理论中的一个重要问题,本文利用高等代数的有关理论给出了矩阵可对角化的若干条件;从初等变换、线性方程组、特征子空间等不同角度探究了将一般矩阵和实对称矩阵对角化的若干方法;最后,分析了一些特殊矩阵的对角化问题,如幂等矩阵、幂零矩阵、实对称矩阵和Hermite 矩阵等. 关键词:对角化,特征值,特征向量,相似变换,线性变换.Abstract: Diagonalization of Matrix is an important problem in the matrix theory. We give several conditions of matrix diagonalization by the use of higher algebra related theory. We give some methods of diagonalization of general matrix and real symmetric matrix from different aspects, such as elementary transformation, system of linear equations and characteristic subspace. In the end, we analysis the diagonalization of some special matrix, such as idempotent matrix, nilpotent matrix ,real symmetric matrix and hermite matrix. Keywords : diagonalization ,eigenvalue ,eigenvectors ,similarity transformation ,linear transformation.一.矩阵相似对角化的条件由于矩阵的类型和所在数域的不同,其对角化的条件也不同. 1.任意数域上矩阵相似对角化的条件 充要条件设1,,m λλ 为n 阶方阵A 的m 个互异的特征值,且它们的重数分别为1,,m s s ,1,2,,i m = .A 可对角化⇔A 有n 个线性无关的特征向量⇔对于A 的每个特征值i λ,其代数重数等于其几何重数 ⇔()i i r n s λ-=-I A ⇔A的最小多项式无重根⇔1()mii λ=-=∏I A 0⇔对于A 的每个特征值i λ,都有2()()r r λλ-=-I A I A⇔A 的初等因子都是1次的 ⇔A与某个循环矩阵相似充分条件A 有n 个不同特征值⇒A可对角化A的零化多项式无重根⇒A可对角化2.复数域上Hermite 矩阵必可酉相似于对角矩阵.3.实数域上对称矩阵必可正交相似于对角矩阵.二.矩阵对角化的若干方法(一)一般矩阵对角化的方法特征向量法是将矩阵对角化的常规方法,用该方法解决问题时需要求解齐次线性方程组,过程繁琐.下面介绍其它四种将矩阵对角化的方法. 1.矩阵乘积运算法设12,,,s λλλ 是A在数域F 上全部互异的特征值.其重数分别为12,,,s n n n ,且1sii nn ==∑,记i V λ为A 的属于i λ()1,2,,i s = 的特征子空间. 对()i λ-=I A X 0,有:(1)若A 可对角化,则对A 的每一特征值i λ,都有i n 个与之对应的线性无关的特征向量. (2)A 可对角化的充要条件是对于A 的每个特征值i λ,()ii dim V n λ=.采用类比推测,可得定理1.定理1:设12,,,s λλλ 是A 在数域F 上全部互异的特征值,其重数分别为12,,,s n n n ,且1sii nn ==∑,记i W =()1sj j j iλ=≠-∏I A ()1,2,,i s = . 对()()()12s λλλ---= I A I A I A 0,有:(1)若A 可对角化,则矩阵i W 的列向量组中有对应于i λ的i n 个线性无关的特征向量. (2)A 可对角化的充要条件是()i i rank n =W ()1,2,,i s = .定理1表明,要构造可对角化矩阵A 的相似变换矩阵P ,只需对每一特征值i λ,从矩阵乘积()1sj j j i λ=≠-∏I A 中找出i n 个与之对应的线性无关的特征向量,以这样所得的in n=∑个特征向量为列作一个n 阶矩阵即可.例1:设12202120221001⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭A ,求可逆矩阵P ,使得1-P A P 为对角矩阵. 解:由2(1)(5)(1)0λλλλ=-+--=I A ,得 11λ=-(二重),25λ=,31λ= ()()()()()123()50λλλ---=----=因为 I A I A I A I A I AI A ,所以A 可对角化.当11λ=-(二重)时:()()()()123584404840448000λλ--⎛⎫ ⎪-=--=-⎪= ⎪-- ⎪⎝⎭--W I A I A I A I A 取1W 中两个线性无关的特征向量()()12844,04,8,4,0TT=--=--,,,αα. 当25λ=时:()()()()21388808880888000λλ=--⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭=---W I A I A I A I A 取2W 中的特征向量()38,8,8,0T=α当31λ=时:()()()()312000000000050008λλ=--=--⎛⎫ ⎪⎪= ⎪ ⎪--⎝⎭W I A I A I A I A 取3W 中的特征向量()40,0,0,8T=-α.令()1234=,,,P αααα,则1(1,1,5,1)diag -=--P A P2.Jordan 标准形法由于复数域C 上任意n 阶矩阵A 都相似于一个Jordan 矩阵J ,所以存在可逆矩阵P ,使得1-=P A P J .如果J 为对角矩阵,则A 可对角化,否则,A 不可对角化.由于矩阵P 可逆,所以存在一系列的初等矩阵12,,,t P P P ,使得12t = P P P P .于是有:1112112t t ---= P P P A P P P J .可对A 先施行一次初等行变换后,接着施行一次相应的初等列变换,我们称此种初等变换为对A 施行了一次相似变换.显然,可对A 施行一系列的相似变换,将A 化为Jordan 形矩阵J .例2:设460350361⎛⎫⎪-- ⎪ ⎪--⎝⎭=A ,求可逆矩阵P ,使得1-P A P 为对角矩阵. 解:将A 化为Jordan 标准形3121121346026026011350010010(1)(1)361361001r r r r c c c c --⎛⎫⎛⎫⎛⎫+⨯+⨯⎪⎪⎪--−−−−−−→−−−−−−→ ⎪⎪⎪+⨯-+⨯- ⎪ ⎪ ⎪---⎝⎭⎝=⎝⎭⎭A1221200(2)0102001r r c c -⎛⎫+⨯- ⎪−−−−−−→ ⎪+⨯ ⎪⎝⎭由A 的Jordan 标准形知,矩阵A 可对角化且它的特征值为-2,1,1.上述过程对A 共施行了三次相似变换,且三次初等列变换对应的矩阵分别为:123100100120110,010,010001101001⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭P P P所以123120110121⎛⎫⎪==-- ⎪ ⎪--⎝⎭P P P P ,且1211--⎛⎫⎪= ⎪ ⎪⎝⎭P A P .3.λ矩阵标准形法引理1:设A 是n 阶方阵,则必能用初等变换将λ-I A 变为对角矩阵:12()()()()n t t t λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭T 并且多项式 ()(1,2,,)i t i n λ= 的所有根恰好是A 的所有特征值.定理2:设A 是n 阶方阵,{}12()(),(),()n diag t t t λλλλ= T 是对角形λ矩阵,()λP ,()λQ 是可逆的λ矩阵,且满足()()()()λλλλ-=P I A Q T .如果()()()((),)((),())()TTTTTTλλλλλλλ--−−−−−−−−−−→Q I A P I A I T Q Q I.即对()T λ-I A 作初等行变换和初等列变换,使其变为对角矩阵()λT .I 随着()T λ-I A 行的变化而变为()T λQ .则(1) 若12(),(),()n t t t λλλ 的所有根12,,s λλλ 都在F 内,则12,,s λλλ 就是A 的所有特征值.(2) 对于A 的特征值12,,s λλλ ,设第12,,,m ik k k 行是()i λT 的全部为零的行,则()T i λQ 的第12,,,m ik k k 行即构成iV λ的基.其中iV λ为特征值i λ的特征子空间.(3)A 可对角化⇔,(1,2,)i i i r m i s λ∀== ,此处i r 是i λ的重数.根据定理2即可得到λ矩阵标准形法: (1) 作初等变换:()()()((),)((),())()TTTTTTλλλλλλλ--−−−−−−−−−−→Q I A P I A I T Q Q I设{}12()(),(),,()n diag t t t λλλλ= T ,求出12(),(),,()0n t t t λλλ= 的所有解. (2) 若12(),(),,()0n t t t λλλ= 的解都在F 内,并且对每个解i λ都有()i λT 中零行的数目 等于i λ的重数,则A 可对角化,转(3);否则A 不可对角化,结束.(3) 对于A 的任一特征值i λ,若()i λT 的第12,,,m i k k k 行都为零,则取出()T i λQ 的第 1k ,2k , ,m ik 行构作:1111((),,(),,(),,())m s m sT TTTk kk s k s λλλλ= T Q Q Q Q则12112(,,,)sm m s m diag λλλ-= T AT I I I .例3:设132132264⎛⎫⎪=--- ⎪ ⎪⎝⎭A ,求可逆矩阵T ,使得1-T A T 为对角矩阵. 解:作初等变换:()2112100100100,33601002011222410021T λλλλλλλλ--⎛⎫⎛⎫⎪ ⎪-=-+-→-+-+- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭I A I 按上述方法:(1)记2100002()00λλλλ⎛⎫⎪= ⎪ +⎪⎝⎭-T ,100()112201T λλ⎛⎫⎪=-+- ⎪ ⎪-⎝⎭Q 则1230,2λλλ===(2)当120λλ==时,(0)T 中零行的数目0=的重数2=-当32λ=时,(2)T 中零行的数目2=的重数1=-.所以A 可对角化.(3)当120λλ==时,()()()1001000,00001120021T ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭T Q 取(0)T Q 中与(0)T 中零行所对应的特征向量()11,1,2T=-α,()22,0,1T=-α 当32λ=时,()()()1001002,200011200221T ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭T Q 取(2)T Q 中与(2)T 中零行所对应的特征向量()31,1,2T=--α.令()123121,,101212--⎛⎫ ⎪== ⎪ ⎪--⎝⎭T ααα,则1002-⎛⎫⎪⎪ ⎪⎝⎭T A T =4. 数字矩阵对角形法若矩阵A 在数域F 上可对角化,则存在F 上的可逆矩阵T ,使得1-=T AT B 为对角矩阵,且B 的主对角线上的元素为A 的全体特征值.由于矩阵T 可逆,所以存在一系列的初等矩阵12,,,s T T T ,使得12s = T T T T .于是:11111112s s s ----- B =TA T =T T T A T T T ,做初等变换:⎛⎫⎛⎫→⎪ ⎪⎝⎭⎝⎭A B I T . 即对A 施行一系列的初等行变换和初等列变换,使其变为对角矩阵B ,对I 只施行相应的初等列变换变为T .在施行初等变换时,可施行若干次行(或列)变换后再施行若干次相应的列(或行)变换,只要保持变换后所得矩阵与A 相似即可.例4:若1111111111111111⎛⎫ ⎪-- ⎪= ⎪-- ⎪--⎝⎭A ,求可逆矩阵T ,使得1-T A T 为对角矩阵.解:作初等变换:200002001111002011110002111111111111444100031110100444001013114440011131444-⎛⎫ ⎪ ⎪⎛⎫⎪ ⎪-- ⎪ ⎪⎪ ⎪-- ⎪⎪⎪--⎛⎫ ⎪=→ ⎪ ⎪ ⎪⎝⎭⎪ ⎪--- ⎪ ⎪⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎝⎭⎪ ⎪--- ⎪⎝⎭A I 所以A 可对角化.令1111444311144413114441131444⎛⎫ ⎪ ⎪ ⎪---⎪=⎪ ⎪--- ⎪ ⎪ ---⎪⎝⎭T ,则有120000200002002--⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭T A T .利用初等变换将矩阵对角化时,我们可以从变换后的最终矩阵中直接读出相似变换矩阵和对角矩阵,大大简化了求解过程.(二)实对称矩阵对角化的方法Schmidt 正交法是将实对称矩阵对角化的基本方法,使用该方法时需要牢记公式且计算量较大.下面我们介绍另外两种方法. 1.直接正交法该方法从向量正交的基本定义出发,直接从特征子空间中求出正交向量,易于理解和掌握,且在特征值出现重根的情况下,计算量也大为减少.例5:设 1333313333133331---⎛⎫ ⎪--- ⎪= ⎪--- ⎪---⎝⎭A ,求正交矩阵P , 使得1-P A P 为对角矩阵. 解:由3(4)(8)0λλλ-=+-=I A ,得14λ=-(三重),28λ=. 设41234(,,,)T x x x x R =∈X当14λ=-时,解齐次线性方程组(4)--=I A X 0,得1243x x x x =+-.先取一个特征向量1(1,1,0,0)T =α. 设特征向量22222(,,,)T a b c d =α.因2α与1α正交,从而有220a b +=.又因为2222a b d c =+-,所以可得2222a d c =-. 取211(,,0,1)22T =-α.再设特征向量33333(,,,)T a b c d =α.因3α与1α和2α都正交,从而有330a b +=,33311022a b d -+=.又因为3333a b d c =+-,所以可得333a c =-.取3(2,2,6,2)T =---α. 现将1α,2α,3α都单位化:122,,0,022T⎛⎫= ⎪⎪⎝⎭β,2666,,0,663T ⎛⎫=- ⎪ ⎪⎝⎭β,33333,,,6626T⎛⎫=--- ⎪ ⎪⎝⎭β. 当28λ=时,可求得单位特征向量:41111,,,2222T⎛⎫=-- ⎪⎝⎭β.令1234(,,,)=P ββββ,则()14,4,4,8T diag ----P AP =P AP =.2.度量矩阵法对于n 维欧氏空间V ,令1,,n αα是它的一个基,它的度量矩阵()()()()1111,,,,n n n n ⎛⎫⎪= ⎪⎪⎝⎭A αααααααα是正定矩阵,于是A 合同于单位矩阵I ,即可求得n 阶可逆矩阵U ,使得T =U AU I .利用U 和V 的基1,,n αα作一个新基:121(,,,)(,,)n n = βββααU .那么,新基的度量矩阵即为:()()()()1111,,,,n Tn n n ⎛⎫⎪= ⎪ ⎪⎝⎭=U A U Iββββββββ.所以12,,,n βββ是欧式空间V 的标准正交基.例6:设0111101111011110-⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭A ,求正交矩阵P , 使得1-P A P 为对角矩阵. 解:由3(1)(3)0λλλ-=-+=I A ,得11λ=(三重),23λ=-. 当11λ=时,解齐次线性方程组()-=I A X 0,得基础解系 1(1,1,0,0)T =α,2(1,0,1,0)T =α,3(1,0,0,1)T =-α当23λ=-时,解齐次线性方程组(3)--=I A X 0,得基础解系4(1,1,1,1)T =--α 则 1234,,,αααα是4R 一组基.记其度量矩阵为B ,那么21101210112004-⎛⎫ ⎪-⎪= ⎪-- ⎪⎝⎭B 对矩阵⎛⎫ ⎪⎝⎭B I 作合同变换:⎛⎫ ⎪⎝⎭B I =2110121011200004100001000010001-⎛⎫ ⎪- ⎪ ⎪--⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭→1000010000100001263026663003630002102⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭.取263026663003630002102⎛⎫-⎪ ⎪ ⎪⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭U ,则有1111T ⎛⎫⎪⎪= ⎪ ⎪⎝⎭U B U . 利用U 和基1234,,,αααα作新基:12341234(,,,)(,,,)=ββββααααU .则: 122,,0,022T⎛⎫= ⎪⎪⎝⎭β, 2666,,,0663T⎛⎫=- ⎪ ⎪⎝⎭β. 33333,,,6662T⎛⎫=- ⎪ ⎪⎝⎭β, 41111,,,2222T⎛⎫=-- ⎪⎝⎭β.由于1234,,,ββββ的度量矩阵T =U B U I ,故1234,,,ββββ是4R 的标准正交基.令1234(,,,)=P ββββ,则P 是正交矩阵且1T -P AP =P AP .三.特殊矩阵的对角化 1.幂等矩阵定理3:n 阶幂等矩阵A一定可以对角化,并且A的相似标准形是 0r⎛⎫⎪⎝⎭I ,其中()r rank =A ,r I 是r阶单位矩阵.证明: 因为2=A A ,所以A 有零化多项式2()(1)g λλλλλ=-=-,因为()g λ无重根,所以A可对角化.而A 的特征值只有0和1,所以A 的相似标准形是0r⎛⎫⎪⎝⎭I ,其中()r rank =A .由该定理可以推出幂等矩阵的若干性质: 性质1:幂等矩阵A 的迹等于A 的秩.证明:设A 是数域F 上的一个n 阶幂等矩阵,()r rank =A .如果0r =,则()0()rank tr ==A A .如果r n =,则=A I .从而()()rank n tr ==A A .下面设0r n <<.由A 的相似标准形0r⎛⎫⎪⎝⎭I 得: ()((,0))()r rank r tr diag tr ===A I A .性质2:任意n 阶矩阵A 都可以表示成为一个可逆矩阵与一个幂等矩阵的乘积. 证明:设n 阶方阵A 的秩为r ,则存在n 阶可逆矩阵,P Q 使得: 000r ⎛⎫=⎪⎝⎭I PA Q 所以1111100()()0000r r -----⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭I I A PQ P Q Q Q . 令11--=B P Q ,1000r -⎛⎫=⎪⎝⎭I C Q Q .易知B 为可逆矩阵.因为2=C C ,所以C 为幂等矩阵.即任意n 阶矩阵A 都可以表示成为一个可逆矩阵与一个幂等矩阵的乘积.2.幂零矩阵引理2:若()f λ 为A 的特征多项式,()m λ为A 的最小多项式,则()()f m ==A A 0. 引理3:设12,,,n λλλ 为n 阶矩阵A 的特征值,则对任意的多项式()f x 有()f A 的特征值为12(),(),,()n f f f λλλ .幂零矩阵具有下列性质:性质3:A 为幂零矩阵的充分必要条件是A 的特征值全为0.证明:(必要性) 若A 为幂零矩阵,则存在正整数k ,使得k =A 0.令0λ为A 的任意一个特征值,则存在≠α0,使得0λ=A αα.由引理3知0k λ为k A 的特征值. 所以存在 ≠β0,使得 0k k λ=A ββ,从而有00k λ=即有00λ=.又由k =A 0,知00kk ==⇒=A A A ,所以 0(1)(1)00k k ⨯-=-=-=-⋅=I A A A . 所以00λ=为A 的特征值.由0λ的任意性知A 的特征值全为0.(充分性)因为A 的特征值全为0, 所以A 的特征多项式为()n f λλλ=-=I A ,由引理2知()n f ==A A 0,所以A 为幂零矩阵.性质4:若A 为幂零矩阵且≠A 0,则A 不可对角化.证明:若A 可对角化,则存在可逆矩阵P ,使得1-=A P DP ,此处D 是n 阶对角形.若A 为 幂零矩阵,则存在正整数k ,使得k =A 0,即: 11()k k k --===A P DP P D P 0,因为1110kk k k k ---=====P D P P D P P P D D D ,所以有: 10,,-====D D 0A P DP 0, 与题设矛盾.3.幂幺矩阵性质5:幂幺矩阵在复数域上可对角化.证明:若A 为幂幺矩阵,则存在正整数k ,使得k =A I ,所以A 有零化多项式()1k g λλ=-. 因为在复数域上,()g λ的根都是k 次单位根,故()g λ无重根,所以A 可对角化.注意:A 在实数域上不一定可对角化! 例如0110-⎛⎫=⎪⎝⎭A ,满足4=A I ,即A 为幂幺矩阵,但是2()1f λλλ=-=+I A 在实数域上无根,所以A 在实数域上不可对角化.4.实对称矩阵性质6:实对称矩阵的不同特征值的特征向量相互正交.性质7:设λ是实对称矩阵的k 重特征值,则对应于特征值λ,矩阵有k 个线性无关的特征向量. 定理4:设A是一个n n ⨯实对称矩阵.则存在一个正交矩阵P,使得()112,,,Tn diag λλλ-== P AP PAP ,并且i λ是实数,1,2,,i n = .证明:设A的互不相等的特征值为12,,,()s s n λλλ≤ ,并且它们的重数依次为1212,,,()s s r r r r r r n +++= .则对于特征值(1,2,,)i i s λ= ,恰有i r 个线性无关的实特征向量.把它们正交化并单位化,即得i r 个单位正交的特征向量.由12s r r r n +++= 知,这样的特征向量共可得n 个.由于不同特征值的特征向量正交,故这n 个单位特征向量两两正交,以它们为列向量作成正交矩阵P ,则:1T -=P AP P AP 为一个实对称矩阵111,,,,,,s s sdiag r r λλλλ⎛⎫⎪ ⎪⎝⎭.5.Hermite 矩阵欧氏空间实质上是实数域上的一个内积空间.类似地考虑复数域上的内积空间—酉空间和酉空间上的线性变换.与正交变换和实对称矩阵类似,酉空间中有酉变换与Hermite 矩阵.性质8:设n n C ⨯∈A 是Hermite 矩阵,则A 的特征值均为实数.证明:设λ为A 的特征值,α为其对应的特征向量,即λ=A αα,那么: (,)(,)(,)(,)(,)(,)λλλλ=====ααααααααααααA A 但(,)0>αα,所以λλ=,即λ为实数.性质9:设n n C ⨯∈A 是Hermite 矩阵,则对应于A 的不同特征值的特征向量必正交. 证明:设,λμ是A的两个不同的特征值,,αβ分别是它们所对应的特征向量,则有λ=A αα,μ=A ββ.(,)(,)(,)(,)(,)(,)λλμμ=====αβαβαβαβαβαβA A ,即()(,)0λμ-=αβ.由于A 的特征值为实数,也即()(,)0λμ-=αβ.又因为λμ≠,所以(,)0=αβ,即,αβ正交.引理4:设n n C ⨯∈A ,则存在一个酉矩阵P ,使得1-P A P 是一个上三角形矩阵.定理5:设n n C ⨯∈A ,并且A是Hermite 矩阵,则存在一个酉矩阵P , 使得()112,,,Hn diag λλλ-== P AP PAP ,并且i λ是实数,1,2,,i n = .证明:由引理4知存在一个酉矩阵P ,使得 ()1H ij n n g -⨯===G P AP P AP 是一个上三角形矩阵.又P 是一个酉矩阵,故G 也是Hermite 矩阵.于是,对任意,,1i j i j n ≤<≤,都有ij ji g g =,这迫使当1,2,,,1,2,,,i n j n i j ==≠ 时,有0ij g =;并且i ii g λ=是实数,1,2,,i n = .因此,Hermite 矩阵必定可以对角化,且它的特征多项式的复数根都是实数.。

关于反循环矩阵的对角化问题

关于反循环矩阵的对角化问题

)′
132
工科数学 第 14卷
是 A 的 n 个线性无关的特征向量 , 而且 ! i ( i= 0, 1, 2, …, n- 1) 与 A 无关. 证 因为 T ≠0, !0, !1, … , !n- 1当然线性无关. 又由( 2) 式知: A !i = f ( i ) ! i ( i= 0, 1, …, n- 1) , 即 !0 , !1, …, !n- 1 是 A 的 n 个线性无关的特征向量, 又由推论1 知, !i 与 A 无关. 定理2 设 A 为一个 n 阶方阵, 则 A 在复数域上可对角化的充要条件是 : A 与某个 n 阶反 循环矩阵相似 . 证 充分性. 若 A 和某个 n 阶反循环矩阵相似. 由定理1和相似关系的传递性知 A 可以对 角化. 必要性. 若 A 可以对角化, 则存在满秩方阵 C , 使
On the Diagonalization of Contra-Circulant Matrix
Chen X iaolan
( Shandong Finance Institute, Jinan 250014) Abstract T his paper discusses on the diagonalization of contra circulant matrix , and studies the relationship betw een n th square matr ix A and Contr acirculant matrix w hen A is a diag onalization matrix . Key words Contracir culant matr ix , diago nalizat ion.
二、 反循环矩阵与矩阵对角化

循环矩阵的性质及其应用概要

循环矩阵的性质及其应用概要

目录一。

相关概念................................................. - 2 -定义1.1 ............................................... - 2 -定义1。

2 .............................................. - 3 -定义1。

3 .............................................. - 3 -定义1.4 ............................................... - 3 -二. 循环矩阵的性质.......................................... - 3 -2.1 循环矩阵基本性质................................... - 3 -2。

2 关于循环矩阵的判定相关性质........................ - 5 -2.3 循环矩阵可逆的判定及互素推论....................... - 6 -2.4 循环矩阵的一个定理及其得出的推论................... - 7 -2。

5 循环矩阵对角化相关性质............................ - 7 -2。

6 等比数列构成的循环矩阵相关性质.................... - 9 -2.7 循环矩阵行列式与特征值相关性质.................... - 10 -2。

8 循环矩阵的奇异性................................. - 12 -2。

9 循环矩阵与向量空间相关性质....................... - 12 -三.广义循环矩阵............................................ - 12 -定义3.1 .............................................. - 13 -定义3。

线性代数课件4-1矩阵的对角化

线性代数课件4-1矩阵的对角化
解得特征值为$lambda_1 = 2, lambda_2 = lambda_3 = 3$。
对于$lambda_2 = lambda_3 = 3$,解方程 组$(B - 3I)X = 0$得特征向量$beta_2 = (0, 1,
0)^T, beta_3 = (4, 0, 1)^T$。
对于$lambda_1 = 2$,解方程组$(B - 2I)X = 0$得特征向量$beta_1 = (0, -4, 1)^T$。
通过相似变换,将线性方程组的系数矩阵转换为对角矩 阵,从而简化方程组的形式。
简化后的方程组求解
对角化后的方程组具有更简单的形式,可以直接求解各 个未知数。
提高线性方程组求解效率
减少计算量
通过对角化,可以避免对原始系数矩阵 进行复杂的运算,从而减少计算量。
VS
并行计算
对角化后的方程组可以方便地进行并行计 算,进一步提高求解效率。
02
性质
03
反身性:$A sim A$(任何矩阵都与自身相似)。
04
对称性:若$A sim B$,则$B sim A$。
05
传递性:若$A sim B$且$B sim C$,则$A sim C$。
06
相似矩阵具有相同的特征多项式,从而有相同的特征值。
相似对角化条件与方法
01
条件
02
$n$阶矩阵$A$可对角化的充分必要条件是$A$有$n$个线性 无关的特征向量。
Jordan标准型概念及性质
Jordan标准型定义:对于n阶方阵A,如果存在一个可逆 矩阵P,使得$P^{-1}AP$为Jordan矩阵,则称A为 Jordan可约的,对应的Jordan矩阵称为A的Jordan标准 型。 性质

矩阵的对角化方法

矩阵的对角化方法

矩阵的对角化方法矩阵的对角化是一种重要的矩阵变换方法,在线性代数中具有广泛的应用。

对于一个可对角化的矩阵,可以将其通过相似变换转化为对角矩阵,这样可以简化矩阵的计算和分析过程。

在本文中,我将介绍矩阵的对角化方法,并详细解释其原理和应用。

首先,我们需要明确一下矩阵的对角化定义。

一个n×n的矩阵A称为可对角化的,如果存在一个可逆矩阵P,使得P-1AP为对角矩阵。

其中,对角矩阵是指非对角线上的元素全部为0的方阵。

对角化的主要目的是将原矩阵化简为对角形式,以方便计算和理解。

对于一个可对角化的矩阵A,其对应的对角矩阵D的对角线元素是A的特征值,而P的列向量组成的矩阵则是对应于特征值的特征向量。

因此,对角化的关键在于求解矩阵A的特征值和特征向量。

求解矩阵A的特征值和特征向量的方法有多种,下面将介绍两种常见的方法:特征值分解和相似对角化。

一、特征值分解方法特征值分解方法是求解矩阵特征值和特征向量的最常用方法之一。

对于一个n×n的矩阵A,其特征值和特征向量的计算步骤如下:1. 求解特征多项式。

将A的特征多项式定义为det(A-λI)=0,其中I为n阶单位矩阵,λ为特征值。

解特征多项式可以得到n个特征值λ1,λ2,...,λn。

2. 求解特征向量。

对于每一个特征值λi,将其代入方程组(A-λiI)X=0,并求解出特征向量X。

3. 归一化特征向量。

将每个特征向量进行归一化处理,使其模长等于1。

4. 构造P和D矩阵。

将特征向量按列组成P矩阵,特征值按对角线组成D矩阵,得到P和D满足P-1AP=D。

特征值分解方法的优点是求解过程直观简单,容易理解,适用于一般情况。

但是,对于大规模矩阵,求解特征多项式和连续的特征值比较困难,计算量较大。

二、相似对角化方法相似对角化方法是通过相似变换将矩阵A转化为对角矩阵的方法。

它的基本思路是寻找一个可逆矩阵P,使得P-1AP=D。

P矩阵的列向量正好是A的特征向量。

相似对角化的步骤如下:1. 求解矩阵A的特征值和特征向量。

矩阵对角化及应用论文

矩阵对角化及应用论文

矩阵对角化及应用理学院 数学082 缪仁东 指导师:陈巧云摘 要:本文是关于矩阵对角化问题的初步研究,对矩阵对角化充要条件的归纳,总结,通过对实对称矩阵,循环矩阵,特殊矩阵对角化方法的计算和研究,让读者对矩阵对角化问题中求特征值、特征向量,求可逆矩阵,使对角化,提供了简便,快捷的求解途征.关键词:对角矩阵;矩阵对角化;实对称矩阵;特征值;特征向量.矩阵对角化是矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,关于矩阵对角化问题的研究,这方面的资料和理论已经很多.但是他们研究的角度和方法只是某个方面的研究,没有进行系统的分类归纳和总结.因此,我就针对这方面进行系统的分类归纳和总结,对一些理论进行应用和举例,给出算法.特别给出了解题时方法的选择.1.矩阵对角化概念及其判定所有非主对角线元素全等于零的n 阶矩阵,称为对角矩阵或称为对角方阵.定义1.1 矩阵A 是数域P 上的一个n 级方阵. 如果存在一个P 上的n 级可逆矩阵X ,使1X AX - 为对角矩阵,则称矩阵A 可对角化.矩阵能否对角化与矩阵的特征值特征向量密切相关.定义 1.2 设A 是一个n 阶方阵,λ是一个数,如果方程组AX X λ= (1)存在非零解向量,则称λ为的A 一个特征值,相应的非零解向量X 称为属于特征值λ的特征向量.(1)式也可写成,()0E A X λ-= (2)这是n 个未知数n 个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式=0E A λ-, (3)即1112121222120n nn n nna a a a a a a a a λλλ------=---上式是以λ为未知数的一元n 次方程,称为方阵A 的特征方程. 其左端A E λ-是λ的n 次多项式,记作()f λ,称为方阵的特征多项式.111212122212()||n nA n n nna a a a a a f E A a a a λλλλλ------=-=---111n n n n a a a λλλ--=++++显然,A 的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,n 阶矩阵A 有n 个特征值.设n 阶矩阵()ij A a =的特征值为12,,n λλλ,由多项式的根与系数之间的关系,不难证明(ⅰ)121122n nn a a a λλλ+++=+++;(ⅱ)12n A λλλ=.若λ为A 的一个特征值,则λ一定是方程=0A E λ-的根, 因此又称特征根,若λ为方程=0A E λ-的i n 重根,则λ称为A 的i n 重特征根.方程 ()0A E X λ-=的每一个非零解向量都是相应于λ的特征向量,于是我们可以得到求矩阵A 的全部特征值和特征向量的方法如下: 第一步:计算A 的特征多项式E A λ-;第二步:求出特征方程=0E A λ-的全部根,即为A 的全部特征值;第三步:对于的每一个特征值λ,求出齐次线性方程组:()0E A X λ-= 的一个基础解系12,,,s ξξξ,则A 的属于特征值λ的全部特征向量是 1122s s k k k ξξξ+++(其中12,,,s k k k 是不全为零的任意实数).设P 是数域, Mn (P ) 是P 上n ×n 矩阵构成的线性空间, A ∈Mn (P ) , 1,2t ,,λλλ 为A 的t 个互不相同的特征值,高等代数第二版(北京大学数学系几何与代数教研室编)第四版(张和瑞、郝炳新编)课程中,我们学过了矩阵可对角化的若干充要条件如: (1) A 可对角化当且仅当A 有n 个线性无关的特征向量; (2) A 可对角化当且仅当特征子空间维数之和为n ; (3) A 可对角化当且仅当A 的初等因子是一次的; (4) A 可对角化当且仅当A 的最小多项式无重根我们知道线性变换A 的特征多项式为f (λ) ,它可分解成一次因式的乘积1212()()()()i r r r i f λλλλλλλ=---则V 可分解成不变子空间的直和其中i V = {ξ|iri 12-==s V V V V λ⊕⊕⊕(A E );ξ∈V}引理 1.1:设A, B 都是n 阶矩阵, 则秩( AB) ≥秩( A) + 秩( B) - n.定理 1.1:设A 是实数域F 上的一个n 阶矩阵, A 的特征根全在F 内, 若1λ, 2λ,...,K λ 是A 的全部不同的特征根, 其重数分别为1r , 2r ,... k r , 那么 (Ⅰ) 可对角化的充要条件是()i j i jE A r λ≠⎛⎫-= ⎪⎝⎭∏秩 j=1, 2,.......k(Ⅱ) 当( 1) 式成立时,()ii jE A λ≠-∏ 的列空间就是A 的属于特征根iλ的特征子子空间.证明: (Ⅰ) 设A 可对角化, 则存在可逆阵T, 使{}11122,,...,k K T AT diag E E E λλλ-=这里右边是分块对角矩阵, j E 为i r 阶单位阵, 于是有()()()11i i i i j i j i j E A T E A T E T AT λλλ--≠≠≠⎛⎫⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∏∏∏秩秩秩={}()122,,...,i K K i j E diag E E E λλλλ≠⎛⎫-⎪⎝⎭∏秩=()()(){}12,,...,,i j i j i j Ki j diag E E E λλλλλλ≠⎛⎫---⎪⎝⎭∏秩 =()0,0,...0,,0,0,...,0i j j j i jdiag E r λλ≠⎛⎫⎧⎫-= ⎪⎨⎬ ⎪⎩⎭⎝⎭∏秩 j=1,2, ......k.反之,若()()ijE A r λ-=∏秩i=1,2,.....k, 反复用引理可得()()()()()22i j i i i ji jE A E A K n n r k n λλ≠≠-≥---≥---∑∑∏秩r 秩 i j i jn r r ≠=-=∑ j=1,2,...,k.这里用到了齐次线性方程组()0i E A X λ-=的解空间的维数不大于i λ的重数不大于j r 这个结论.于是又()()iii j i jE A n r λ≠≠-=-∑∑秩从而()i iA n r λ-=-秩 i=1,2,......k. 这样的矩阵可以对角化.(Ⅱ)设( Ⅰ)式成立,则A 可对角化.故A 的最小多项式为()1kii x λ=-∏从而()10kii E A λ=-=∏ 即 ()()0i ii jE A E A λλ≠--=∏这就是说,列空间包含在i λ的特征子空间中,但是由(1), ()ii jE A λ≠-∏的列空间的维数是n,它正是j r 的特征子空间的维数,所以结论(Ⅱ) 成立.推论: 设A 为实数域F 上的n 阶矩阵,A 的特征根全为F 内,且1λ, 2λ 是A 的全部不同的特征根, 其维数分别为1r , 2r , 若秩()12E A r λ-=,秩()21E A r λ-=,则A 可以对角化,且()E A λ-的列向量组的极大无关组恰是属于2λ 的极大线性无关的特征向量组,2E A λ-的列向量组的极大无关组恰是属于1λ的极大无关的特征向量组.例1: 判断A=460350361⎛⎫⎪-- ⎪ ⎪-⎝⎭能否对角化,并求特征向量.解: 易知A 的特征根1λ =-2 , 2λ =1.1E A λ- =660350363--⎛⎫ ⎪ ⎪ ⎪--⎝⎭ 和2E A λ- =360360360--⎛⎫⎪⎪ ⎪⎝⎭的秩分别为2与1,故A 可对角化. 又因为可以选取001⎛⎫ ⎪ ⎪⎪⎝⎭和210-⎛⎫⎪⎪ ⎪⎝⎭为的列空间的一个基,111⎛⎫ ⎪- ⎪ ⎪-⎝⎭是属于1λ的特征向量.定理和推论把判断矩阵是否对角化的问题与求它的特征向量的问题联系起来,给出了一个不用解线性方程组而求得可对角化矩阵的特征向量的方法, 在矩阵的不同特征根较少时, 这个方法较方便.2.实对称矩阵对角化的计算方法我们知道任意实对称矩阵,总正交相似于一对角阵. 该对角阵的对角元即为实对称矩阵的特征值, 正交相似变换矩阵的各列构成相应的特征向量. 给定一实对称阵A ,如何求正交相似变换矩阵P ,使1T P AP PAP -=为对角阵. 理论上的解决方法为:首先利用特征方程: | λI - A | = 0 求出全部特征值,针对不同特征值求出相应的完全特征向量系,合在一起构成实对称阵A 的完全特征向量系. 再利用施密特正交化法得到 A 的规范化正交特征向量系. 以此作为列向量得到正交相似变换矩阵P , 1T PAP PAP -=为对角阵, 参见文献[5 ]. 此方法理论可行,但在具体操作时,由于要事先求出实对称阵A 的全部特征值,操作上有如下困难: (1) 特征方程: | λI- A | = 0 给出困难; (2) 特征方程求根困难(5 次以上的代数方程没有统一的求根公式) . 因此有必要寻求方法.定义2.1 (瑞雷商) 设A 为n 阶实对称阵,对于任一n 维非零列向量x ,称R ( x) =( A x , x)/( x , x) 为关于向量x 的瑞雷商.引理2.1 设A 为n 阶实对称阵, 1λ≥2λ≥......≥n λ 为A 的特征值.()()()()11/{0}/{0},,max ,min,,nnx R x R Ax x Ax x x x x x λλ∈∈== 定义2.2 设w 为n 维列向量,且T w w = 1 ,则n 阶矩阵H = I - 2Tww 称为Householder 阵.引理2.2 Householder 矩阵具有如下性质: (1) TH H =(2) T TH H HH I == ( H 是正交阵) .引理2.3 设x , y ∈nR , x ≠y , X Y =,则存在Householder 矩阵H, 使Hx = y. 其中()()22/TH I x y x y x y =----定理2.1 设A 是实对称矩阵,λ, x (2X= 1) 是A 的一个特征值和相应的特征向量,则存在P 为一个正交阵,使Px =1e = ()1,0,0 0. 且TPAP 的第一行和第一列的第一个元素为λ,其余元素均为零.证 设A 是实对称矩阵, 1λ≥ 2λ≥ ...≥ n λ为A 的特征值. 根据引理2.1 ,利用多元函数求极值的拉格朗日乘数法,可求得1λ 及相应的规范化特征向量1X . 不妨假设‖1X ‖ = 1 ,由引理2.3 ,存在1P 为一个正交阵,使11P X =1e =()1,0,0, 0.且TPAP 的第一行和第一列的第一个元素为1λ , 其余元素均为零. 设111100TP AP A λ⎛⎫=⎪⎝⎭, 为对称阵,故1A 也为对称阵,设2λ 及2X 为1A 最大特征值及相应的规范化特征向量,则根据引理2.3 ,存在2Q 为一个正交阵,使()2211,0,0, 0Q x e ==.且212T Q A Q 的第一行和第一列除2λ 外其余元素均为零. 令22100P Q ⎛⎫= ⎪⎝⎭,容易验证2P 亦为正交阵, 满足:1121122212200000000T TT P P AP P Q AQ A λλλ⎛⎫⎛⎫⎪==⎪ ⎪⎝⎭ ⎪⎝⎭依此类推, 存在正交阵1p ,2p , ⋯,1n p -, 使得1n p -...2p 1p 121...T T Tn Ap p p D -=,则T PAP =D,其中 D 为对角阵,令121P P P P n -=,则TPAP D =,P 即为将实对称阵对角化的正交相似变换矩阵.例2: 设矩阵210210582811A ⎛⎫⎪=- ⎪ ⎪-⎝⎭, 1λ≥2λ≥3λ为A 的特征值.按上面的算法进行对角化,求出正交矩阵P 及特征根和特征向量.解: (1)利用瑞雷商和多元函数求极值的拉格朗日乘数法,可求得1λ = 18 ,相应的特征向量为1122,,333Tx ⎛⎫=- ⎪⎝⎭(2) 计算正交矩1p =()()211112/Tp I x e x e x e =----=122333221333212333⎛⎫- ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪--- ⎪⎝⎭,满足()1111,0,0T p x e ==且111800090009TP AP ⎛⎫⎪=- ⎪ ⎪⎝⎭,至此已实现对角化. 借此可求得= 2λ=9 , 3λ = - 9. 相应的特征向量分别为2212,,333Tx ⎛⎫=--- ⎪⎝⎭,3221,,333Tx ⎛⎫=-- ⎪⎝⎭.3.循环矩阵对角化方法的研究在复数域 C 上,形如012110121230........................n n n a a a a a a a a A a a a a ---⎛⎫⎪⎪= ⎪⎪⎝⎭的矩阵,称关于元素列011,,...,n a a a -的循环矩阵.已知n 阶循环矩阵010 (00)01...0 (1)00...0K ⎛⎫⎪⎪= ⎪⎪⎝⎭,并令ii K K = (1,2,,)i n =,称121,,,....,n E K K K -为循环矩阵基本列(其中E = n K 为单位矩阵).循环矩阵基本列有如下特点: ①121,,,...,n E K K K -都是循环矩阵;②n i i K K += ,即n i iK K +=;③n 阶循环矩阵K 有n 个特征根: cossinm mx mxi n nλ=+ (0,1,,1)m n =-④关于元素列0121,,,...,n a a a a -的n 阶循环矩阵 A 可用循环矩阵基本列表示为210121...n n A a E a K a K a K --=++++,反之,能用循环矩阵基本列线性表示的矩阵,则一定是循环矩阵. 循环矩阵的性质性质1 同阶循环矩阵的和矩阵为循环矩阵. 性质2 同阶循环矩阵的乘积满足交换律.性质3 同阶循环矩阵的乘积为循环矩阵. 性质4 循环矩阵的逆矩阵为循环矩阵.n 阶矩阵A 关于多项式函数f (x) 生成的矩阵为f (A) ,A 的特征根与f (A) 的特征根有下面的结论:命题3.1 设f (x) 是一个n - 1 次多项式函数,若λ是矩阵A 的特征根,则 f (λ) 是矩阵f (A) 的特征根.命题3.2 设f (x) 是一个n - 1 次多项式函数,若矩阵A 相似于矩阵B , 则矩f (A) 相似于矩阵f (B) .考察n 阶循环矩阵K,K 的特征多项式为:()211,(n i njjnj E K ei πλλληη-=-=-=-==∏如果n 阶循环矩阵A 记为()210121...n A n A f K a E a K a K a K --==++++不难求得K 中与特征值j η相应的特征向量,记:()11...j j n x ηη-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, ()()22......11j j j j j j j j kx x ηηηηηη⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则由命题3.1得()()()()()jjj j A A Ax f K x f x η==,可以验证()()()()1111000,1,.11,1n n m kmkk k m xxm k mηη---==≠⎧==-=⎨=⎩∑∑.将这n 个两两正交的向量()j x 单位化,可得标准正交基()()()011,,...,n x x x -⎫⎬⎭,令矩阵()()()21011242(1)(1)2(1)(1)(1)111 (1)1...,,...,1..................1...n n n n n n n T x x ηηηηηηηηη-------⎛⎫ ⎪⎪⎫⎪==⎬⎪⎭⎪ ⎪⎝⎭则()()())0111',...n TT x x x --==命题 3.3 任意n 阶循环矩阵()A A f K = 在复数域 C 上都可对角化,即1T AT -=11[(0)(),...,()]n A A A diag f f f ηη-推论 n 阶循环矩阵A 可逆的充要条件是()0iA f η≠(i=0,1,...,n-1).例3:求四阶循环矩阵1234412334122341A ⎛⎫⎪⎪= ⎪⎪⎝⎭的特征根,并对角化.解: 令23()1234f x x x x =+++ 得 ()()A A f K =,0100001000011000K ⎛⎫⎪⎪= ⎪ ⎪⎝⎭由于2i nei πη==, 所以A 的特征根分别为:()()0A f η=10 , ()()1A f η=-2-2i, ()()2A f η=-2, ()()3A f η=-2+2i11111111111211i i T i i ⎛⎫ ⎪--- ⎪= ⎪-- ⎪---⎝⎭, 111111*********i i T i i -⎛⎫ ⎪--⎪= ⎪-- ⎪--⎝⎭4.特殊矩阵特殊对角化的研究前面对实对称矩阵循环矩阵的对角化问题作了研究,本部分主要讨论,当矩阵只有两个特征根时的对角化问题,方法简捷. 对于数域F 上的n 阶矩阵A ,若仅有的两个特征根都在F 内,并且可以对角化,不通过解线性方程组求特征向量,而用初等变换求出可逆矩阵T,使1T AT -为对角形矩阵.定理4.1 设数域F 上的n 阶矩阵A 可以对角化,其特征根为1λ,2λ,如果()10n s n n s B I A p I λ⨯⨯-⎛⎫-⎛⎫−−−−→ ⎪ ⎪ ⎪*⎝⎭⎝⎭初等变换P,B 为列满秩矩阵,那么(i) A 的属于1λ 的线性无关的特征向量为P 的n s -个列向量;A 的属于2λ的线性无关的特征向量为B 的s 个列向量.(ii) 令T = ( P ,B) ,则T 可逆,且有11122......T AT λλλλ-⎛⎫ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭其中1λ 有n s -个, 2λ有s 个.证 因为初等矩阵不改变矩阵的秩,且B 为列满秩,则()12s B I A λλ==-=秩秩的重数. (i )根据矩阵的初等变换和分块矩阵的运算性质,可得()())()(1,0n n s I A P B λ⨯--*=,从而()10I A P λ-= 因P 为列满秩矩阵,则P 的n s -个列向量为齐次线性方程组()10I A X λ-= 的基础解系,亦即P 的n s - 个列向量为A 的属于1λ的线性无关的特征向量. 又A 可以对角化,且2λ的重数为s ,则有可逆矩阵Q,使得11122......A Q Q λλλλ-⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 令1122......D λλλλ⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,则有()()()()111212I A I A I Q DQ I Q DQ λλλλ----=--=()()1112QI D QQ I D Q λλ----=()()112Q I D I D Q λλ--- = 10Q OQ -=由于B 的列向量为1I A λ- 的列空间的基,则B 的s 个列向量为齐次线性方程组()10I A X λ-=的基础解系, B 的s 个列向量为A 的属于2λ的线性无关的特征向量.(ii) 因矩阵A 的属于不同特征根的特征向量线性无关,且特征向量的个数之和等于A 的阶数n ,于是, 令 )(,T P B = 即有1T AT D -=例4:令矩阵001010100A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求可逆矩阵T,使得1T AT -为对角形式.解: 方法一,先求A 的特征根()0101010A f λλλλ-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭= ()()211λλ-+则1λ = 1 (二重) , 2λ = - 1. 可见,此例为定理所述的情况.对矩阵1I A I λ-⎛⎫⎪⎝⎭作初等列变换,即11011000000001011000100101010010001001I A B I P λ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪---⎛⎫⎛⎫=→= ⎪ ⎪ ⎪ ⎪*⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以,由定理4.1 知,A 的属于2λ = - 1 的线性无关的特征向量为()11,0,1Ta =-;A 的属于1λ = 1 的线性无关的特征向量为()20,1,0Ta = , ()31,0,1Ta =令011100011T ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则有1111T AT -⎛⎫⎪= ⎪ ⎪-⎝⎭. 这与[1 ]的结果一致.方法二 在矩阵()I A λ-中,亦可取21λ=-,这时1011000200201011000100101010010001001I A B I P ---⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪⎪ ⎪-----⎛⎫⎛⎫=→= ⎪ ⎪ ⎪ ⎪-*⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则A 的属于1λ=1 的线性无关的特征向量为()11,0,1Ta =-- , ()20,2,0Ta =- ;A 的属于2λ=- 1 的线性无关的特征向量为()21,0,1Ta =-令101020101T --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则有1111T AT -⎛⎫ ⎪= ⎪ ⎪-⎝⎭.5.常规矩阵对角化方法的新探众所周知,对数域P 上一个n 阶矩阵A 是否存在一个可逆矩阵T ,使得1T AT -为对角形矩阵,当这种矩阵存在时,如何去寻求它.一般有关教材中都是先计算一个行列式,求出A 的特征值,再利用线性方程组和特征向量的有关理论及求法解决此问题的.在这里利用矩阵的初等变换解决此问题的,它比教材中的常规方法简单一些,因为不必解若干的齐次线性方程组,有时也不必计算行列式.5.1理论依据为说话方便,我们规定如果数域P 上,对n 阶矩阵存在一个可逆矩T ,使得1T AT -为对角形矩阵, 则称矩阵在数域P 上可对角化.当可对角化时, 我们说将A 对角化,即指求矩阵T ,使1T AT -为对角形矩阵.若矩阵n 在数域P 上可对角化, 则有P 上可逆矩阵T ,使得1T AT B-=为对角形矩阵.于是B 的主对角线上的元素,即为A 的全体特征值, 并且可表示:12,...S T Q Q Q = 其中i Q 为初等矩阵,i=1,2,...,s,于是,1111112......SS S B QQ Q AQ Q Q ----=,又1i Q -也是初等矩阵, 由初等矩阵与矩阵的初等变换的关系, 即知11Q AQ - , 相当于对A 施行了一次初等行变换与一次初等列变换.这里, 我们称此种初等变换为对A 施行了一次相似变换.显见, 可对A 施行一系列的相似变换化为B .又由, 12...S T EQ Q Q =(E 此处表单位矩阵)可如下进行初等变换, 则可将A 化为对角形矩阵B , 且可求得T :A AB E T ⎛⎫⎛⎫−−−−−−−→ ⎪ ⎪⎝⎭⎝⎭对施行一系列相似变换,对E 只施行其中的初等列变换. 当A 不可对角化时, 也可经相似变换化简A 后, 求得其特征值, 判定它可否对角化. 类似地, 可由111111...S S TQ Q Q E -----=,做如下初等变换则可将A 化为对角形矩阵B,且可求得T 或由B 求A 的特征值, 判定可否对角化:()()A AE B T −−−−−−−→对施行一系列相似变换,对E 只施行其中的初等行变换.并且在施行相似变换时, 不必施行一次行变换后接着施行一次列变换这样进行, 可施行若干次行或列变换后再施行若干次相应的列或行变换, 只要保持变换后, 最后所得矩阵与A相似即可.5.2 应用举例为叙述简便,这里用i r 表示i 第行,i c 表示第i 列,i j r kr +表示用数k 乘第j 行后再加到第i 行上,i j c kc +表示用数k 乘第j 列后再加到第i 列上.例5 求如下矩阵的特征值, 并判定它们可否对角化,若可则将其对角化:(1)511602311A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭, (2)1111111111111111B ⎛⎫⎪-- ⎪= ⎪-- ⎪--⎝⎭. 解:(1)由31511`602202r r A +-⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭ 13411402002c c C --⎛⎫⎪−−−→= ⎪ ⎪⎝⎭,知A 与C 相似. 易得,C 的特征值为2,2,2,且2E-C 的秩为2,所以C 不能对角化,从而知A 的特征值为2,2,2且A 不可以对角化.(2)由1,2,3,41111111111112200111120201111200210001000010001000010001000010000i r r i +=⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪--⎪ ⎪−−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1,2,3,4i c c i -=−−−−−→ 1111,2,3,4,2,3,4441112111222202000200002000200002000210001000110011001010101010011001i i r r i c c i -=+=⎛⎫--⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−−−−−→−−−−−→ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪- ⎪- ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭-⎝⎭20000200002000021111444311144413114441131444-⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪--- ⎪⎝⎭, 知B 可以对角化,B 的特征值为-2,2,2,2.令1111444311144413114441131444T ⎛⎫ ⎪⎪ ⎪--- ⎪=⎪ ⎪--- ⎪ ⎪ ---⎪⎝⎭, 则12000020000200002T AT --⎛⎫⎪⎪= ⎪⎪⎝⎭.当不易直接用相似变换化简判定时, 可先求出特征值, 再用相似变换.例6判定1200320000230043A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭可否对角化,若可,则将其对角化. 解法1(教材中的方法)由120032000023043x x xE A x x ---=-- ()()()2461x x x =--+,知A 的特征值为4,6,-1,-1.解 齐次线性方程组()40E A X -=得一基础解系23100⎛⎫- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭解 齐次线性方程组()60E A X -=得一基础解系00341⎛⎫ ⎪ ⎪⎪- ⎪ ⎪ ⎪⎝⎭解 齐次线性方程组()0E A X --=得一基础解系1100⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,0011⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭于是可,A 可对角化,且取201031010*******01T ⎛⎫- ⎪⎪ ⎪=⎪- ⎪ ⎪ ⎪⎝⎭,则140060000100001T AT -⎛⎫⎪⎪= ⎪-⎪-⎝⎭.解法2由12003200002300431000010000100001-⎛⎫ ⎪- ⎪ ⎪- ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 2143,r r r r --−−−−→ 12,3412004400002300661000010000100001c c c c ++-⎛⎫ ⎪- ⎪ ⎪- ⎪- ⎪−−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭12000400001300061000110000100011--⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭123423,57r r r r --−−−−−→2100504003001700061000110000100011⎛⎫-- ⎪⎪⎪⎪-- ⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎝⎭214323,57c c c c --−−−−−→100004000010000621005310053001740017-⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭知,A 可对角化,且取.21005310053001740017T ⎛⎫- ⎪ ⎪⎪ ⎪= ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭,11000040000100006T AT --⎛⎫⎪⎪= ⎪- ⎪⎝⎭两法比较, 法2比法1简便, 因不必计算行列式和解几个线性方程组.上述内容为本人对各类基本常见的矩阵类型的对角化计算方法,计算技巧的一些探讨,比较传统的计算方法、计算技巧,有一些优越性.计算简便,步骤简单具体,有较强的实用性.参考文献:[1] 张禾瑞 赫炳新 高等代数[M] 第四版 北京 :高等教育出版社 1998.166-410[3] 毛纲源 线性代数[M] 解题方法与技巧归纳 第二版 华中科技大学出版社 1997,7.213-241. [4] 丘维声 抽象代数[M] 北京 :高等教育出版社 2003.160-190.[5] 王萼芳 石生明 高等代数[M] 北京 :高等教育出版社 1987.176-254. [6] 王萼芳 高等代数教程[M] 北京清华大学 1996.91-184.[7] 张爱萍 循环矩阵的性质及其对角化[J] 广西师范自然科学报,2000,12.No.8.168-170. [8] 高吉全 矩阵特征根与特征向量的同步求解方法探讨[J] 数学通报,1991.12.No.7.23-26. [9] 郭亚梅.最小多项式与矩阵的对角化[J]河南机电高等专科学校学报.2006.No.4.106-108. [10]张正成 可对角化矩阵的应用[J] 科技资讯.2007.No.24.252-253.[11]张学元 线性代数能力试题解题[M] 武汉:华中理工大学出版社, 2000.34-37 [12]向人晶 矩阵可对角化的简单判定[J] 数学通报,2003,3.No.12.13-15.[13]靳廷昌有两个特征根矩阵对角化[J] 数学通报,1997,11.No.23.53-57.[14]李世余代数学的发展和展望[J] 广西大学学报.1985.No.1.146-148.[15]周立仁矩阵同时对角化的条件讨论[J] 湖南理工学院学报.2007.Vol.20.No.1.8-10.致谢本论文是在指导师陈巧云老师细心指导下完成.陈老师认真、负责、真诚的做人态度和作为教师对学生不倦教诲的精神,令我很受触动.同时,在论文的选题、修改、定稿都凝聚了陈老师的大量心血.陈老师尽心的指导与严格的监督,促使我最终完成了论文.值此论文完成之际,我谨向陈老师致以深深的敬意和感谢!On the martix diagonatization and application College of science Mathematics 082 Miao Rendong Director:Chen QiaoyunAbstract:This paper initially studied about matrit diagonatization concluding and summarizing about the necessary condition of matrix diagonalization,Through caclulation and research on read synmetrices matrices,cycle matrix,and special matrix diagonalizational ways it proride simple and fast ways of solution on the question of matrix diagonalization in the characteristic root,charateristic rector,and reversible matrix.Key words:diagonal matrix; matrix diagonalizationv; real symmetric matrix;eigenvalue; eigenvectors。

循环矩阵的性质及其应用

循环矩阵的性质及其应用

循环矩阵的性质及其应⽤\S 1循环矩阵的定义及多项式表⽰设\mathbb{K}为数域. 任取\mathbb{K}中n个数a_1,a_2,\cdots,a_n,下列矩阵称为\mathbb{K}上的n阶循环矩阵:A=\begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \\ \end{pmatrix}.\quad(1)取a_2=1, a_1=a_3=\cdots=a_n=0, 则可得到如下基础循环矩阵:J=\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \\ \end{pmatrix}.\quad(2)由复旦⾼代⽩⽪书的例 2.1 可知, J^k=\begin{pmatrix} 0 & I_{n-k} \\ I_k & 0 \\ \end{pmatrix}\,(1\leq k\leq n), 从⽽A=a_1I_n+a_2J+a_3J^2+\cdots+a_nJ^{n-1}.\quad(3)令g(x)=a_1+a_2x+a_3x^2+\cdots+a_nx^{n-1}, 则g(x)是\mathbb{K}上次数不超过n-1的多项式, 使得A=g(J), 这就是循环矩阵关于基础循环矩阵的多项式表⽰.记C_n(\mathbb{K})为\mathbb{K}上所有n阶循环矩阵构成的集合, 容易验证: 在矩阵的加法和数乘下, C_n(\mathbb{K})是⼀个n维线性空间, 它的⼀组基为\{I_n,J,\cdots,J^{n-1}\}. 再任取循环矩阵B=h(J), 其中h(x)是\mathbb{K}上次数不超过n-1的多项式, 则利⽤多项式乘法和J^n=I_n可知AB=g(J)h(J)仍然是⼀个循环矩阵 (参考⾼代⽩⽪书的例 2.12). 因此, C_n(\mathbb{K})是\mathbb{K}上的n维交换代数, 同构于\mathbb{K}[x]/(x^n-1).\S 2循环矩阵的性质下⾯将依次研究循环矩阵的特征值、特征向量和可对⾓化等性质, 由此可得循环矩阵的⾏列式、秩和⾮异性等信息. 这些内容包含在⾼代⽩⽪书的例 2.52, 例 6.9, 例 6.32 和例 6.39 的推论中.容易计算出基础循环矩阵J的特征多项式|\lambda I_n-J|=\lambda^n-1, 从⽽J在复数域中有n个不同的特征值, 即n次单位根\omega_k=\cos\dfrac{2k\pi}{n}+i\sin\dfrac{2k\pi}{n}\,(0\leq k\leq n-1), 因此J在复数域上可对⾓化. 经计算可知, 特征值\omega_k的特征向量是\alpha_k=(1,\omega_k,\omega_k^2,\cdots,\omega_k^{n-1})'. 将这些特征向量按列分块拼成⼀个矩阵: P=\begin{pmatrix} 1 & 1 & 1 &\cdots & 1 \\ 1 & \omega_1 & \omega_2 & \cdots & \omega_{n-1} \\ 1 & \omega_1^2 & \omega_2^2 & \cdots & \omega_{n-1}^2 \\ \vdots &\vdots & \vdots & & \vdots \\ 1 & \omega_1^{n-1} & \omega_2^{n-1} & \cdots & \omega_{n-1}^{n-1} \\ \end{pmatrix},\quad(4)则由Vandermonde ⾏列式或特征值特征向量的性质可知, P是⾮异阵, 并且满⾜P^{-1}JP=\mathrm{diag}\{1,\omega_1,\omega_2,\cdots,\omega_{n-1}\},\quad(5)从⽽P^{-1}AP=P^{-1}g(J)P=g(P^{-1}JP)=\mathrm{diag}\{g(1),g(\omega_1),g(\omega_2),\cdots,g(\omega_{n-1})\}.\quad(6)由 (6) 式可知循环矩阵A=g(J)具有如下基本性质:(P1) A的特征值为g(1),g(\omega_1),g(\omega_2),\cdots,g(\omega_{n-1}), 对应的特征向量是\alpha_0,\alpha_1,\alpha_2,\cdots,\alpha_{n-1};(P2) |A|=g(1)g(\omega_1)g(\omega_2)\cdots g(\omega_{n-1});(P3) 循环矩阵A可对⾓化;(P4) r(A)=\sharp\{0\leq k\leq n-1\mid g(\omega_k)\neq 0\};(P5) A⾮异当且仅当g(\omega_k)\neq 0\,(0\leq k\leq n-1), 也即当且仅当(\lambda^n-1,g(\lambda))=1.定理 1 n阶复循环矩阵全体C_n(\mathbb{C})与n阶复对⾓矩阵全体D_n(\mathbb{C})之间存在⼀个⾃然的代数同构\xi.证明n阶复对⾓矩阵全体在矩阵的加法、数乘和乘法下成为复数域上的代数. 我们通过 (6) 式来定义映射\xi, 即\xi: C_n(\mathbb{C})\toD_n(\mathbb{C})定义为\xi(A)=P^{-1}AP=\mathrm{diag}\{g(1),g(\omega_1),g(\omega_2),\cdots,g(\omega_{n-1})\}. 容易验证\xi保持矩阵的加法、数乘和乘法, 从⽽是⼀个代数同态. 对任⼀\Lambda=\mathrm{diag}\{\lambda_0,\lambda_1,\cdots,\lambda_{n-1}\}, 利⽤ Lagrange 插值公式可知, 存在次数不超过n-1的复系数多项式h(\lambda), 使得h(\omega_k)=\lambda_k(0\leq k\leq n-1). 令B=h(J), 则\xi(B)=\Lambda, 即\xi是满射. ⼜\dim C_n(\mathbb{C})=\dim D_n(\mathbb{C})=n, 从⽽\xi是⼀个线性同构, 从⽽是代数同构. \Box推论 2 n阶复矩阵B可对⾓化的充要条件是B相似于某个循环矩阵.证明由定理 1 中的代数同构\xi是通过相似变换实现的即得结论. \Box推论 3 设A\in C_n(\mathbb{K}), 则A^*也是循环矩阵.证法 1 由 (6) 式可知P^*A^*(P^*)^{-1}=(P^{-1}AP)^*=\mathrm{diag}\{g(1),g(\omega_1),g(\omega_2),\cdots,g(\omega_{n-1})\}^*仍为对⾓阵. 注意到P^*=|P|P^{-1}, 故上述等式可化为P^{-1}A^*P=(P^{-1}AP)^*=\mathrm{diag}\{g(1),g(\omega_1),g(\omega_2),\cdots,g(\omega_{n-1})\}^*.因此由定理 1 可知, A^*=\xi^{-1}\bigg(\xi(A)^*\bigg)也是循环矩阵.证法 2 由⾼代⽩⽪书的例 6.62 可知, 存在多项式h(\lambda)\in\mathbb{K}[\lambda], 使得A^*=h(A). 设A=g(J), 则A^*=h(A)=h(g(J))仍为J的多项式, 从⽽是循环矩阵.证法 3 设A=(a_{ij})的代数余⼦式为A_{ij}\,(1\leq i,j\leq n), 要证A^*是循环矩阵, 根据定义只要证明: 对任意的1\leq i,j\leq n,A_{ij}=A_{i+1,j+1}成⽴即可, 其中若i+1>n或j+1>n, 则需要把i+1或j+1换成i+1-n或j+1-n. 证明A_{ij}=A_{i+1,j+1}只需要简单的⾏列式计算即可. ⽐如先把A_{ij}的最后⼀列经过n-2次相邻对换换⾄第⼀列, 再把得到⾏列式的最后⼀⾏经过n-2次相邻对换换⾄第⼀⾏, 最后就能得到A_{i+1,j+1}. 我们把验证的细节留给读者完成. \Box推论 4 若A\in C_n(\mathbb{K})是⾮异阵, 则A^{-1}也是循环矩阵.证法 1 由定理 1 可知, A^{-1}=\xi^{-1}\bigg(\xi(A)^{-1}\bigg)也是循环矩阵.证法 2 由 Cayley-Hamilton 定理可知, 存在多项式h(\lambda)\in\mathbb{K}[\lambda], 使得A^{-1}=h(A) (参考⾼代⽩⽪书的例 6.61). 设A=g(J), 则A^{-1}=h(A)=h(g(J))仍为J的多项式, 从⽽是循环矩阵.证法 3 设A=g(J), 则由A⾮异可知(\lambda^n-1,g(\lambda))=1. 由互素多项式的性质可知, 存在u(\lambda),v(\lambda)\in\mathbb{K}[\lambda], 使得(\lambda^n-1)u(\lambda)+g(\lambda)v(\lambda)=1. 令\lambda=J, 代⼊上式可得g(J)v(J)=I_n, 从⽽A^{-1}=v(J)也是循环矩阵.证法 4 由A^{-1}=\dfrac{1}{|A|}A^*以及推论 3 即得结论. \Box推论 5 \mathbb{K}上的n阶⾮异循环矩阵全体GC_n(\mathbb{K})在矩阵乘法下成为⼀个 Abel 群.推论 6 设A为n阶复循环矩阵, f(z)是收敛半径等于+\infty的复幂级数, 则f(A)也是循环矩阵.证法 1 注意到f(P^{-1}AP)=P^{-1}f(A)P, 从⽽f(A)=\xi^{-1}\bigg(f(\xi(A))\bigg)也是循环矩阵.证法 2 由可知, 存在多项式h(z), 使得f(A)=h(A)也是循环矩阵.证法 3 设f(z)=\sum\limits_{i=0}^\infty a_iz^i, f_p(z)=\sum\limits_{i=0}^p a_iz^i为f(z)的部分和多项式. 设A=a_1I_n+a_2J+a_3J^2+\cdots+a_nJ^{n-1}, 则f_p(A)=b^{(p)}_1I_n+b^{(p)}_2J+b^{(p)}_3J^2+\cdots+b^{(p)}_nJ^{n-1}. 由于矩阵序列\lim\limits_{p\to\infty}f_p(A)收敛到f(A), 故每个数列\lim\limits_{p\to\infty}b^{(p)}_i都收敛. 若设\lim\limits_{p\to\infty}b^{(p)}_i=b_i\,(1\leq i\leq n), 则f(A)=\lim\limits_{p\to\infty}f_p(A)=b_1I_n+b_2J+b_3J^2+\cdots+b_nJ^{n-1}仍为循环矩阵. \Box\S 3循环矩阵的应⽤下⾯我们给出循环矩阵的⼀个应⽤.命题 7 设有\mathbb{K}中n^2\,(n\geq 2)个不同的数, 则存在⼀个全排列, 记为a_1,\cdots,a_{n^2}, 使得\begin{vmatrix} a_1 & a_2 & \cdots & a_n \\ a_{n+1} & a_{n+2} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n^2-n+1} & a_{n^2-n+2} & \cdots & a_{n^2} \\\end{vmatrix}\neq 0.证明对n进⾏归纳. n=2时, 先取到a_1,a_2, 使得a_1+a_2\neq 0, 从⽽\begin{vmatrix} a_1 & a_2 \\ a_2 & a_1 \\ \end{vmatrix}=(a_1-a_2) (a_1+a_2)\neq 0, 于是B=\{(a_1,a_2),(a_2,a_1)\}是\mathbb{K}^2的⼀组基. 注意到(a_3,a_4)\neq 0, 故由基扩张定理, 必可从基B中选取⼀个基向量, 不妨设为(a_1,a_2), 使得\{(a_1,a_2),(a_3,a_4)\}成为\mathbb{K}^2的⼀组新基, 因此\begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \\\end{vmatrix}\neq 0. 设n-1时结论成⽴, 现证n的情形.证法 1 先取到a_1,a_2,\cdots,a_n, 使得a_1+a_2\omega_k+\cdots+a_n\omega_k^{n-1}\neq 0对0\leq k\leq n-1都成⽴. 这⼀定能做到, ⽐如先选定a_2,\cdots,a_n, 则不满⾜上述条件的a_1最多只有n个, 从⽽可取到满⾜上述条件的a_1. 由循环矩阵的性质可知, (1) 式中的循环矩阵A是⾮异阵, 特别地, A的n个⾏向量\{\beta_1,\beta_2,\cdots,\beta_n\}是\mathbb{K}^n的⼀组基. 由归纳假设, 可从剩下n^2-n个数中选出(n-1)^2个数的全排列, 使得\begin{vmatrix} a_{n+2} & \cdots & a_{2n} \\ \vdots & & \vdots \\ a_{n^2-n+2} & \cdots & a_{n^2} \\\end{vmatrix}\neq 0,后⾯随便选取a_{n+1},\cdots,a_{n^2-n+1}, 均可使n-1个⾏向量(a_{n+1},a_{n+2},\cdots,a_{2n}), \cdots, (a_{n^2-n+1},a_{n^2-n+2},\cdots,a_{n^2})线性⽆关 (参考复旦⾼代教材的习题 3.4.9). 因此由基扩张定理, 必可从基\{\beta_1,\beta_2,\cdots,\beta_n\}中选出⼀个基向量, 不妨设为\beta_1, 使得\{(a_1,a_2,\cdots,a_n), (a_{n+1},a_{n+2},\cdots,a_{2n}), \cdots, (a_{n^2-n+1},a_{n^2-n+2},\cdots,a_{n^2})\}构成\mathbb{K}^n的⼀组新基, 从⽽结论得证.证法 2 ⽤反证法, 设对n^2个数的所有全排列, 对应的⾏列式都等于零, 我们来推出⽭盾. 先取到a_1,a_2,\cdots,a_n, 使得a_1+a_2+\cdots+a_n\neq 0, 再由归纳假设, 不妨设取到的⾏列式中, a_1的代数余⼦式A_1\neq 0. 设其余元素a_i的代数余⼦式为A_i\,(2\leq i\leq n), 因此a_1A_1+a_2A_2+\cdots+a_nA_n=0. 在取到的⾏列式中, 对换第⼀⾏的a_1与a_i\,(2\leq i\leq n), 其余n^2-2个元素保持不变, 则有a_iA_1+\cdots+a_1A_i+\cdots+a_nA_n=0. 由此可得(a_1-a_i)(A_1-A_i)=0, 但a_1\neq a_i, 从⽽A_1=A_i\,(2\leq i\leq n). 最后,0=a_1A_1+a_2A_2+\cdots+a_nA_n=(a_1+a_2+\cdots+a_n)A_1\neq 0, ⽭盾. \Box注 1 命题 7 的证法 1 是构造性的, 利⽤这⼀证法可以给出满⾜条件的全排列的总个数的⼀个粗略估计. 命题 7 的证法 2 由复旦数学学院 16 级本科⽣朱民哲提供.注 2 本⽂的主要结论还可以推⼴到特征零的域或者特征p>0的域 (要求p\nmid n) 及其分裂域或代数闭包上. 另外, ⾼代⽩⽪书第⼆章的解答题 13 还给出了b-循环矩阵的推⼴. 有兴趣的读者可以⾃⾏学习和验证这些结论.参考⽂献[1] ⾼代教材: 姚慕⽣, 吴泉⽔, 谢启鸿编著, ⾼等代数学 (第三版), 复旦⼤学出版社, 2014.[2] ⾼代⽩⽪书: 姚慕⽣, 谢启鸿编著, 学习⽅法指导书: ⾼等代数 (第三版), 复旦⼤学出版社, 2015.Processing math: 0%。

循环矩阵的性质及其对角化 - 台州学院数信学院

循环矩阵的性质及其对角化 - 台州学院数信学院

+ isin
mx n
(
m
=0
,1
,
…,n
-
1)
④关于元素列 a0 ,a1 ,a2 , …,an - 1的 n 阶循环矩阵 A 可用循环矩阵基本列表示为 A = a0 E + a1 K + a2 K2
+ …+ an - 1 Kn - 1 ;反之 ,能用循环矩阵基本列线性表示的矩阵 ,则一定是循环矩阵 。
1 引 言
(1) 设 n - 1 次多项式 f ( x) = a0 + a1x + a2x2 + …+ an - 1 xn - 1 ,A 为 n 阶矩阵 ,则称 f (A) 为多项式 f ( x) 关 于矩阵 A 的生成矩阵 ,f (x) 为矩阵 f (A) 的 n - 1 次生成多项式 。
a0 a1 a2 … an - 1
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
第 4 期 张爱萍 :循环矩阵的性质及其对角化 · 1 3 ·
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
·1 2 · 广 西 师 院 学 报 (自 然 科 学 版) 第 17 卷
(证略)
命题 2 设 f (x) 是一个 n - 1 次多项式函数 ,若矩阵 A 相似于矩阵 B ,则矩阵 f (A) 相似于矩阵 f (B) 。
(证略)
考察 n 阶循环矩阵 K , K 的特征多项式为 :

任意循环矩阵对角化证明

任意循环矩阵对角化证明

任意循环矩阵对角化证明任意循环矩阵对角化证明引言在线性代数中,矩阵是一种广泛使用的数学工具,用于描述线性变换。

对于某些矩阵而言,可以通过对角化来简化其计算和分析。

本文将探讨任意循环矩阵的对角化问题。

定义循环矩阵是指在每行或每列上将该行或该列向右移动一个单位得到的矩阵。

具体而言,若$A$为$n\times n$的循环矩阵,则其可以写成如下形式:$$A=\begin{pmatrix}a_1 & a_2 & \cdots & a_{n-1} & a_n \\a_n & a_1 & \cdots & a_{n-2} & a_{n-1} \\\vdots & \vdots & \ddots & \vdots & \vdots \\a_2 & a_3 & \cdots & a_n & a_{n-1} \\a_{n-1} & a_n & \cdots & a_2& a_1\end{pmatrix}$$其中$a_i$表示第$i$行和第$i+1$列的元素。

证明首先,我们需要证明任意循环矩阵都可以对角化。

具体而言,我们需要找到一个可逆矩阵$P$和一个对角矩阵$D$,使得$A=PDP^{-1}$。

由于循环矩阵的特殊性质,我们可以通过观察其特征向量来解决这个问题。

具体而言,我们可以通过以下步骤来证明:Step 1:求出$A$的特征值。

对于任意循环矩阵$A$,其有$n$个特征值,分别为:$$\lambda_1=\sum_{i=1}^na_i,\quad\lambda_2=a_1+a_n+\sum_{i=2}^{n-1}a_i,\quad \cdots,\quad \lambda_n=a_1+a_2+\cdots+a_{n-1}+a_n$$其中$\lambda_i$表示第$i$个特征值。

相似族矩阵可对角化的一个充要条件

相似族矩阵可对角化的一个充要条件

( , A , 1A , …A 一)



( , 一,:】…A :) 1A 1A 一, ::
令 矩 阵 P=( o ,
) 则有 P~A da ( , lA , , ) , P= i 1 A ,2 … A g
又 P—A p:( A ( A =da ( , A , , , 2 P P) P P) ig 1 A , … A ~ ) …
f r sm ia a i a r x 0 i l r f m l m ti y
LIH o ni n ng a
( e at e t f u d m na C uss i h i nv r t, iig8 0 1 , hn ) D p r n n a e t ore ,Qn a U i s y X nn 10 6 C ia m oF l g ei
Ke r s:dig n l a l t x;c ci t x;smi rt t x y wo d a o a i b e mar z i y lc mar i i l iy mar a i
~ ~
复数 域 C上任 意 n阶矩 阵集合 称 为相 似族 矩 阵若 集 合 中 的任 意 两个 矩 阵都 相 似 , 因此凡 属 同族 的 矩 阵彼 此 相似 , 属于 另族 的任 意 两个 矩 阵都 不相 似 。本 文讨 论 了包 含有 循 环 矩 阵 的 相似 族 矩 阵 一定 可
Ab t a t T e it n i e tr so y l t xw r nrd c da d da o aiaino i lrfmi sr c : h nr scfau e f ci mar ee ito u e n ig n l t fsmi i c c i z o a a l y

循环矩阵的相关介绍

循环矩阵的相关介绍
2 0 1 4 , 8 ( 6 】 : 6 3 3 — 6 3 8 .
从定 义可 以得. 循环矩 阵的每一行 均由第一行按 同一 方 向向右依 序循环 , 循环矩 阵所组成 的集合 可简记 为。循 环矩阵是 由它 的第一行 所决定 的。 性质 1 设 C是n阶循环矩阵, 若 C可逆 , 那么 C的逆矩阵 也是 n 阶循环矩. L i n e a r A l g e b r a a n d I t s Ap p l i c a t i o n s , 2 0 0 3 , 3 6 7 : 3 01 - 3 1 1 .
[ 3 ] D . Z . L i n , “ F i b o n a c c i — L u c a s q u a s i - c y c l i c m a t r i c e s , F i b o n a c e i Q u a r t ” f J ] . 2 0 0 2 ,
4 0 : 2 8 0 — 2 8 6 .
[ 4 ] S . S o l a k . O n t h e n o r m s o f c i r c u l a n t m a t i r c e s w i t h t h e F i b o n a c c i a n d L u c a s n u m b e r s 叨. Ap p 1 . Ma t h . C o mp u t , 2 0 0 5 , 1 6 0 : 1 2 5 — 1 3 2 .
[ 2 ] H . K a r n e r d . S c h n e i d , a n d C . W. U e b e r h u b e r . S p e c t r a l d e c o m p o s i t i o n o f r e l a c i r c u l a n t

矩阵对角化的方法

矩阵对角化的方法

矩阵对角化的方法
矩阵对角化是将一个方阵通过相似变换,转化为对角矩阵的过程。

常用的矩阵对角化方法有以下几种:
1. 特征值分解:对于一个可对角化的矩阵,可以通过求解其特征值和特征向量来进行对角化。

首先求解矩阵的特征值,然后求解每个特征值对应的特征向量,并将这些特征向量排列成一个矩阵,将原矩阵相似变换到对角矩阵。

2. 正交对角化:对于实对称矩阵,可以通过正交对角化的方法进行对角化。

首先通过特征值分解求解出特征值和对应的特征向量,然后将特征向量单位化得到正交矩阵,再进行相似变换得到对角矩阵。

3. Jordan标准形:对于不可对角化的矩阵,可以通过Jordan标准形对其进行对角化。

首先求解矩阵的特征值和对应的特征向量,然后通过Jordan标准形的分块结构将矩阵进行相似变换得到对角矩阵。

需要注意的是,并不是所有矩阵都可以对角化。

只有满足一定条件的矩阵才可以进行对角化。

关于矩阵对角化的一种判别方法

关于矩阵对角化的一种判别方法

关于矩阵对角化的一种判别方法矩阵对角化是线性代数中一个重要的概念。

对于一个方阵A,如果存在一个可逆矩阵P,使得P逆乘以A乘以P等于一个对角矩阵D,则称矩阵A对角化,即A=PDP^-1、对角矩阵是一个所有非主对角线元素均为零的方阵。

矩阵对角化有很多应用,例如在求解线性方程组、求解一些特殊的广义特征值问题、研究线性变换等方面都具有重要作用。

因此,研究矩阵对角化的判别方法对于深入理解线性代数的相关概念和应用都非常有帮助。

下面将介绍一种常见的矩阵对角化的判别方法,即利用特征值和特征向量来判断一个矩阵是否可对角化。

对于一个矩阵A,设其特征值为λ1, λ2, …, λn,对应的特征向量为v1, v2, …, vn。

矩阵A可对角化的条件为:存在n个线性无关的特征向量v1, v2, …, vn,即特征向量v1, v2, …, vn构成矩阵A的一个特征向量组。

判定方法如下:1.对于每个特征值λi,求解特征方程(A-λiI)x=0,其中I为单位矩阵,x为未知向量。

2. 令 r = n - rank(A - λiI),其中rank(A - λiI)表示(A -λiI)的秩。

3.如果r等于特征值λi的重数(即λi的代数重数),则特征值λi的几何重数等于n-r,满足矩阵A可对角化的条件。

4. 重复步骤1-3,对于每个特征值λi,判断其几何重数是否等于n - rank(A - λiI)。

5. 如果所有特征值的几何重数都等于n - rank(A - λiI),则矩阵A可对角化。

否则,不可对角化。

这种判别方法的核心思想是要通过求解特征方程和计算秩来分析特征值和特征向量之间的关系。

如果对于每个特征值,几何重数等于n - rank(A - λiI),则意味着存在n个线性无关的特征向量,从而能够对角化矩阵A。

需要注意的是,有些矩阵可能不是对角化的,但可以使用其他形式的标准形式表示,例如Jordan标准形式。

对于一些特殊类型的矩阵,可能需要使用其他的判别方法来确定矩阵是否可对角化。

n阶R循环矩阵的性质和对角化

n阶R循环矩阵的性质和对角化

收稿日期:2002-06-14作者简介:张爱平,女,1967年生,讲师1 文章编号:1006-0456(2002)04-0089-04n 阶R 循环矩阵的性质和对角化张爱平,陈志彬(湖南冶金职业技术学院,湖南株州412000) 摘要:本文利用循环群上生成矩阵的方法,讨论n 阶R 循环矩阵的性质与对角化的问题,揭示一类可对角化相似矩阵与R 循环矩阵的关系.关键词:循环群;对角化;相似矩阵;n 阶R 循环矩阵中图法分类号:O 151121 文献标识码:A1 预备知识定义 如果矩阵A =(a ij )∈C n ×n 满足a ij =a j -i j ≥i Ra n +j -i j <i其中R 为非零的常数,那么称矩阵A 为由元素列a 0,a 1,…,a n -1生成的n 阶R 循环矩阵,简记A R (a 0,a 1,…,a n -1);当R =1时,A R 为通常的循环矩阵.令n 阶矩阵K =1nRA R (0,1,0,…,0),可以验证K n =E ,Kn +i=K i ,集合U n ={K i ,i =1,2,…,n}含有单位元E ,其中的每一个元都有逆元,关于矩阵的乘法运算封闭且可交换.因此,U n 是一个周期T =n 的循环群.矩阵K 的特征多项式|λE -K |=λn -1,其特征根与特征向量为:1)特征根λm =λm ,其中λ=e 2πn i(m =0,1,…,n -1)2)特征向量X m =diag (R 1n ,R 2n ,…,R nn )X(m )其中X(m )=(1,λm ,λ2m,…,λ(n -1)m )T ,(m =0,1,…,n -1)矩阵A R (a 0,a 1,…,a n -1)在群U n 上可线性表示为:A R =f R (K )=a 0E +R 1n a 1k +R 2n a 2k 2+…+Rn -1n a n -1k n -12 主要结论R 循环矩阵具有如下主要性质:性质1 同阶R 循环矩阵的和矩阵为R 循环矩阵性质2 同阶R 循环矩阵的乘积满足交换律.性质3 同阶R 循环矩阵的乘积为R 循环矩阵.性质4 可逆R 循环矩阵的逆矩阵为R 循环矩阵(性质1,2,3略证).证明性质4 设n 元行向量X 1=(x 0,x 1,…,x n -1),E 1=(1,0,…,0),考虑线性方程组X 1A R =E 1.由于A R 可逆,所以线性方程组X 1A R =E 1的解X 1是唯一确定的:将方程组X 1A R =E 1表示为如下形式:第24卷第4期2002年12月南昌大学学报(工科版)Journal of Nanchang University (Engineering &T echnology )V ol.24N o.4Dec.2002(x0,x1,…,x n-1)a0a1a2…a n-1Ra n-1a0a1…a n-2Ra n-2Ra n-1a0…a n-3……………Ra1Ra2Ra3…a0=(1,0, 0上线性方程组可以改写为如下n种形式:(a0,a1,…,a n-1)x0x1x2…x n-1Rx n-1x0x1…x n-2Rx n-2Rx n-1x0…x n-3……………Rx1Rx2Rx3 (x0)=(1,0,…,0)(Ra n-1,a0,…,a n-2)x0x1x2…x n-1 Rx n-1x0x1…x n-2 Rx n-2Rx n-1x0…x n-3……………Rx1Rx2Rx3…x0=(0,1, 0……(Ra1,Ra2,…,a0)x0x1x2…x n-1Rx n-1x0x1…x n-2Rx n-2Rx n-1x0…x n-3……………Rx1Rx2Rx3 (x0)=(0,0, (1)令X=x0x1x2…x n-1Rx n-1x0x1…x n-2Rx n-2Rx n-1x0…x n-3……………Rx1Rx2Rx3 (x0)以上n种形式的线性方程组可表示为如下方程:A R·X=E,所以A-1R=X,且X为R循环矩阵,证毕.由性质4的证明可知,求R循环矩阵的逆矩阵可转化为解方程组XA R=E1的转置方程A′R X′1=E′1的解,而行向量X1就是矩阵A-1R的第一行的元素.命题1 在向量组{X(0),X(1),X(2),…,X(n-1)}上定义运算关系〈X(1),X(m)〉=∑n-1k=0λlk·λmk,对于矩阵T= 1n[X(0),X(1),X(2),…,X(n-1)],则矩阵T的逆矩阵T-1=1nT′.证明 在向量组上任取两个向量X(1),X(m)(1,m=0,1,…,n-1)即X(1)=(1,λ1,λ21,…,λ(n-1)1),X(m)=(1,λm,λ2m,…,λ(n-1)1)由运算关系得:〈X(1),X(m)〉=∑n-1k=0λlk·λmk=∑n-1k=0λ(1-m)k=n 当m=1时0 当m≠1时于是向量组在定义的运算关系上是正交向量组,将向量组单位正交化得向量组·9·南昌大学学报(工科版)2002年{1nX(0),1n X(1),…,1nX(n -1)}令矩阵T =[1nX(0),1nX(1),1n X (2),…,1n X(n -1)]有T ′·T =〈X (0)n,X (0)n〉〈X (0)n,X (1)n〉…〈X (0)n,X (n -1)n〉〈X(1)n ,X(0)n 〉〈X (1)n ,X(1)n 〉…〈X(1)n ,X(n -1)n 〉〈X(n -1)n,X(0)n〉〈X(n -1)n,X(1)n〉…〈X(n -1)n,X(n -1)n〉=E 由上得T -1=T ′.命题2 令矩阵H =n diag (R 1n ,R 2n ,…,R nn )T ,对于矩阵K 对角化后有H-1KH =diag (1,λ,λ2,…,λn -1).证明 由矩阵K 的特征多项式|λE -K |=λn -1得K 的特征根λm =λm,其中λ=e 2πn i (m =0,1,…,n -1)根据线性方程组(λm E -K )X m =0,即:λm-1n R00 (000)λm -1nR0 (00)…………………0000…λm -1nR-1nR…λmx m 1X m 2⁝X mn=0得λm 的特征向量X m =diag (R 1n ,R 2n ,…,R nn )X(m )其中X(m )=(1,λm ,λ2m,…,λ(n -1)m )T ,(m =0,1,…,n -1)令H =diag (R 1n ,R 2n ,…,R nn )(X (0),X (1),…,X(n -1))=n diag (R 1n ,R 2n ,…,R nn )T于是有H -1KH =diag (1,λ,λ2,…,λn -1)命题3 已知λm (m =0,1,…,n -1)是矩阵K 的n 个特征根,则f R (λm )(m =0,1,2,…,n -1)是矩阵A R的n 个特征根.定理1 在复数域C 上任意n 阶R 循环矩阵A R (a 0,a 1,…,a n -1)都可对角化.证明 因为A R =f R (K )=a 0E +R 1n a 1k +R 2n a 2k 2+…+R n -1n a n -1kn -1且H -1KH =diag (1,λ1,λ2,…,λn -1)于是有:H-1A R H =H-1(a 0E +R 1n a 1k +R 2n a 2k 2+…+Rn -1n a n -1kn -1)H =H -1a 0EH +R 1n a 1(H -1kH )+R 2n a 2(H -1kH )2+…+Rn -1n a n -1(H -1kH )n -1=a 0E +R 1n a 1diag (1,λ1,λ2,…,λn -1)+R 2n diag (1,λ21,λ22,…,λ2n -1) +…+R n -1n a n -1diag (1,λn -11,λn -12,…,λn -1n -1)=diag (f R (1),f R (λ1),f R (λ2),…,f R (λn -1))·19·第4期张爱平等:n 阶R 循环矩阵的性质和对角化 所以任意n 阶R 循环矩阵都可对角化。

关于反循环矩阵和矩阵对角化

关于反循环矩阵和矩阵对角化

摘要 讨论了含反循环矩阵的相似类 , 指出它们可以被对角化 , 并且反循环矩阵一定与循 环矩阵相似. 关键词 反循环矩阵; 基本反循环矩阵 ; 对角化 O151. 21 文献标识码 A 文章编号 1003- 8019( 2001) 02- 0008- 02 中图分类号
1
引言
由文献[ 1] 我们知道循环矩阵可以对角化 , 对于反循环矩阵对角化的问题, 目前还未见文章讨论, 本文将 就这一方面作一些探讨. a0 定义 1 复数域C 上形如 A = - an 1
i ( 2 k + 1) n
,
n- 1) .
令f (x)
k
+ a n- 1 x 1 w
n- 1
, 考虑以下关于 a 0 , a 1 , 1 w
n- 1
, a n - 1 的线性方程组 f (
k)=
k(
k = 0, 1,
, n - 1,
) , 其中系数矩阵为
1 H= 1
,
且 det H ! 0, 所以存在唯一的 a 0 , a 1 ,
- 1
由理定 1 可知存在可逆矩阵 T 可将 A 对角化, 即 T 关系的传递性, 欲使 A 与 B 相似, 只须 B 与 T e
2 i n - 1
AT = diag ( f (
0)
,f (
1) , k) (
,f (
n- 1) )
. 再由相似
AT 相似 , 所以令 g ( w k ) = f ( 1
收稿日期 : 2000 12 06 作者简介 : 徐玉华 ( 1975 ) , 男 , 大学本科 , 助教 , 主要从事基础数学方面的研究 .
第 24 卷
第2期
徐玉华等 : 关于反循环矩阵和矩阵对 角化

矩阵的对角化

矩阵的对角化

第四章矩阵的对角化对于一个矩阵,如何寻找一个适当的变换,在将其变为简单矩阵的同时,保留原矩阵的一些重要特征,这是矩阵论中一个非常重要的问题.在这一问题的研究中,矩阵的特征值和特征向量的概念起着非常重要的作用.拉普拉斯在19世纪初提出了矩阵的特征值的概念.1854年,若尔当研究了矩阵化为标准形的问题.1885年,埃尔米特证明了一些特殊矩阵的特征根的性质,后人称之为埃尔米特矩阵的特征根性质,凯莱1858年发表了一篇论文《矩阵论的研究报告》,文中研究了方阵的特征方程和特征值的一些基本结果,克莱布什等证明了对称矩阵的特征根性质.在这一问题的研究史上,值得重点介绍的是下面两位数学家:第一位是柯西,他首先给出了特征方程的术语,并证明了阶数超过3的矩阵有特征值及任意阶实对称矩阵都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值.第二位是弗罗贝尼乌斯,正是他引入了矩阵的相似变换、合同矩阵、正交矩阵等重要概念,并讨论了正交矩阵和合同矩阵的一些重要性质.矩阵的特征值、特征向量和仿真的对角化理论与方法是矩阵理论的重要组成部分,它不仅在数学的各个分支有重要作用,而且在其他学科如工程技术、数量经济分析等领域有着广泛的应用.本章主要讨论方阵的特征值与特征向量理论及方阵在相似意义下的对角化问题,并应用这些理论和方法解决一些实际问题.§4.1 矩阵的特征值和特征向量一、特征值和特征向量的概念在工程实践及经济管理等许多领域中,经常会遇到矩阵的特征值和特征向量的问题.例 4.1.1 经济发展与环境污染是当今世界亟待解决的两个突出问题.为了研究某地区经济发展与环境污染之间的关系,可建立如下数学模型:设,分别为某地区目前的环境污染水平与经济发展水平,,分别为该地区若干年后的环境污染水平与经济发展水平,且有如下关系,令,,,则上述关系的矩阵形式为:若该地区目前的环境污染水平与经济发展水平,则若干年后的环境污染水平与经济发展水平为,即这里,4就是矩阵的一个特征值,是矩阵的对应于4的一个特征向量.定义 4.1.1 设为阶矩阵,若存在数和维非零列向量,使得;则称为矩阵的特征值,是矩阵一个特征值,称为的属于(或对应于)特征值的特征向量.由特征值、特征向量的定义可得(1)若为的属于的特征向量,则对于非实数,也是的属于的特征向量. (2)若,为的属于的特征向量,则当时,也是的属于的特征向量.(3)若,为的互异特征值,,分别为的属于,的特征向量,则.证若,则,即,故.由于,所以,矛盾.因此.例 4. 1. 2 求阶方阵的一个特征值与所对应的特征向量.解取维向量,,,则,故是的一个特征值,是属于特征值的一个特征向量.将(4.1.1)写成下面形式.根据定义,特征向量就是齐次线性方程组. (4.1.2)的非零解.由于(4.1.2)有非零解的充要条件是其系数行列式等于零,故知阶矩阵的特征值满足方程.为叙述方便,引入下面的概念.定义4. 1. 2 .,称为矩阵的特征多项式,称为的特殊矩阵,称为的特征方程.二、特征值与特征向量的计算求阶矩阵的特征值和特征向量,可按如下步骤进行:(1)计算的特征多项式,求出特征方程的全部根,,,. 对每个特征值,,,,求解齐次线性方程组.设它的一个基础解系为,,,,则的属于的全部特征向量为其中,,,为不全为零的任意常数.限于本教材适用范围,我们将不讨论的复特征值和特征向量.例 4.1.3 求矩阵的特征值与特征向量解矩阵的特征多项式=由,得的特征值为,,.对于,解齐次线性方程组,即解方程组,得基础解系,,,所以对应于,的全部特征向量为().对于,解齐次线性方程组,即解方程组得基础解系,,,所以对应于的全部特征向量为()..对于,解齐次线性方程组,即解方程组,得基础解系,,,所以对应于的全部特征向量为()..例4.1.4 求矩阵的特征值与特征向量解矩阵的特征多项式为=,由,得的特征值为,.对于,解齐次线性方程组,即解方程组,得基础解系,,,,,,所以对应于的全部特征向量为(,不全为零).对于,解齐次线性方程组,即解方程组,得基础解系,,,所以对应于的全部特征向量为().例4.1.5 求矩阵的特征值与特征向量解矩阵的特征多项式为=,由,得的特征值为,.对于,解齐次线性方程组,即解方程组,得基础解系,,,所以对应于的全部特征向量为(). 对于,解齐次线性方程组,即解方程组,得基础解系,,,所以对应于的全部特征向量为(). 三、特征值与特征向量的性质定理4.1.1 阶矩阵与有相同的特征值.证由,知与有相同的特征多项式,故有相同的特征值.定理4.1.2 设,,,,为方阵的个特征值,则有(1)(2)证(1)根据多项式因式分解与方程根的关系,有(4.1.3)令,得,即(2)比较(4.1.3)式两端的系数,右端为,而左端含的项来自的主对角线元乘积项,其含的系数为,因此.我们将阶矩阵的主对角线元之和称为矩阵的迹,记为(),即( )= ∑=n k 1推论4.1.1 阶矩阵 可逆的充分条件是它的任一特征值不等于零.定理4.1.3 若 为 的特征值, 是对应的特征向量,则(1) 为 的特征值( 为常数);(2) 为 的特征值( 为正整数);(3) 若 为 的多项式,则 为 的特征值;(4) 若 可逆,则 为 的特征值, 为 的特征值.证 由题意,对于 ,有 .(1) 因为 ,故 为 的特征值.(2) 由 ,得 ,假设 , 于是 ,由数学归纳法知结论成立.(3) 设 ,由(2)可得(4) 由于 可逆,故 ,从而 ,故, ,即 为 的特征值, 为 的特征值.下面给出方阵 的特征向量的性质定理4.1.4 设 , , , 为 阶矩阵 的 个互异特征值, , , , 分别是 的属于 , , , 的特征向量,则 , , , 线性无关.证 设有常数 , , , ,使得(4.1.4) 上式两边左乘 ,并注意到 , , , ,有.按这种方法再依次用 , , 左乘(4.1.4),并应用定理4.1.3(2)的结论,得,,,上式的矩阵形式为,,,(,,,),上式左端第二个矩阵的行列式是范德蒙德行列式,因为,,,互不相同,所以该行列式的值不为零,从而该矩阵可逆.用该矩阵的逆右乘上述等式两边,得,,,(,,,)于是,,,,由于特征向量,,,非零,因此只有,,,上式才能成立,故,,,为线性无关.定理4.1.5设,,,为阶矩阵的个互异特征值,,,,分别是的属于,,,的线性无关的特征向量,则向量组,,,,,,,,,,,线性无关.证明略.关于对应同一个特征值的特征向量间的关系,有定理4.1.6 设是阶矩阵的重特征值,则对应于的线性无关特征向量个数不超过个.显然,依据定理4.1.6,当特征值为单根时,对应的线性无关特征向量个数只能是一个.根据上述定理,对于阶矩阵的每一个不同的特征值,求出齐次线性方程组的基础解系,就得到的属于的线性无关的特征向量.然后,把它们合成一起所得的向量组仍然线性无关.阶矩阵的线性无关特征向量个数不大于.例4.1.6设三阶矩阵的特征值为,,求(1)的特征值.(2)的特征值.(3)的特征值及.解(1)由于,因此可逆,由定理4.1.3知,的特征值为,,.(2)由定理4.1.3知,的特征值为6,6,4.(3)因为,所以).设,由定理4.1.3知,的特征值为,1,2,3.由此得的特征值为,,,.例4.1.7 设为正交矩阵,若,则有特征值证,则.另一方面,由于及,则因此,即为的特征值.§4.2 相似矩阵在矩阵的运算中,对角矩阵的运算最方便.我们自然要问,一个阶矩阵是否可化为对角矩阵,且保持矩阵的一些重要性质不变.本节将讨论这个问题.一、相似矩阵定义4.2.1 设,为阶矩阵,如果存在阶可逆矩阵,使得,则称矩阵和相似,也称是的相似矩阵,记作.可逆矩阵称为相似变换矩阵. 例 4.2.1 设,,,不难验证可逆,且.由于,因此.两个相似矩阵是等价矩阵,相似是方阵之间的一种关系,这种关系具有如下性质:(1)反身性:;(2)对称性:若,则;(3)传递性:若,,则;此外,相似矩阵之间有许多共同的性质定理4.2.1 若阶矩阵与相似,则(1);(2);(3),有相同的特征值;(4).证由于,故存在阶可逆矩阵,使得,从而(1);(2);(3)由于,即,有相同的特征多项式,于是,有相同的特征值.(4)由(3)即得.推论4.2.1 若阶矩阵与对角矩阵=相似,则,,,是的个特征值.例4.2.2 若,求,.解对角矩阵的特征值为,,,由于,因此的特征值也为,,,再根据相似矩阵有相同的迹,可得,,解此方程组得,.两个相似的矩阵还具有下面的性质(1)若,则,(为正整数);(2)若,为多项式,则;(3)若,且,均可逆,则;证只证,故存在阶矩阵,使得,从而个即.二、矩阵的对角化定义 4.2.2 若阶矩阵与对角矩阵相似,则称可对角化.相似矩阵有许多共同性质.在我们熟悉的矩阵中,形式最简单的一类是对角矩阵,若矩阵相似于对角矩阵,就可以借助对角矩阵来研究,如何求相应的可逆矩阵?下面我们就来讨论这个问题.定理4.2.3 阶矩阵相似于对角矩阵(可对角化)的充要条件是有个线性无关的特征向量.证必要性.设存在可逆矩阵,使得==.设,,,,由=,得=,或,,,,,,.即,,,,,,因此,,,,,由于可逆,因此,从而,,,都是非零向量,故,,,分别是的属于特征值,,,的特征向量,再由可逆知,,,线性无关.充分性.设,,,分别是的属于特征值,,,的个线性无关的特征向量,则有,,,取,,,,因为,,,线性无关,所以可逆,于是有=.,即==因此矩阵相似于对角矩阵.因为特征向量不是唯一的,所以矩阵不具有唯一性.推论4.2.2若阶矩阵有个互异的特征值,则必可对角化.推论4.2.3阶矩阵可对角化的充分必有条件是的每个重特征值都有个线性无关的特征向量.即.由上述结论可知,例4.1.3和例4.1.4给出的矩阵可对角化,而例4.1.5给出的矩阵不能对角化.根据上述结论,可以归纳出将矩阵对角化的具体计算步骤:(1)求出阶矩阵的全部互异特征值,,,,它们的重数依次为,,,;(2)求的特征向量.对每个特征值求方程组的基础解系,即为的对应的线性无关的特征向量,设为,,,,,,;(3)判定是否可对角化.若对每一个特征值都有,,,,则可对角化,否则不可对角化;(4)当可对角化时,令,,,,,,,,,,,,)个个个且可逆,且有=例4.2.3判断下列矩阵能否对角化,若能,求出可逆矩阵,使得为对角矩阵.(1);(2)解(1)矩阵的特征多项式为=由,得的特征值为,,.由推论4.2.2知,矩阵可对角化.下面求可逆矩阵.对于,解齐次线性方程组,即解方程组,得基础解系,,,即为即为的属于特征值的一个特征向量.对于,解齐次线性方程组,即解方程组得基础解系,,,即为的属于特征值的一个特征向量.对于,解齐次线性方程组,即解方程组,得基础解系,,,即为的属于特征值的一个特征向量.取,,,则有==(2)矩阵的特征多项式为=由,得的特征值为,.当,即为的二重特征值时,.故,依据推论4.2.3知,矩阵可对角化,且对应的线性无关的特征向量为,,,,,.对于,解齐次线性方程组,得的属于特征值的一个特征向量,,.取取,,,则有==对于可对角化的矩阵,我们可应用来求方程的幂,例如,对上例的矩阵,我们有.例4.2.4 设,求为何值时,(1)可对角化,并求相似变换矩阵;(2)为可逆矩阵.解(1)矩阵的特征多项式为=,故的特征值为,.对于,解齐次线性方程组,得的属于特征值的特征向量为,,,,,.对于,解齐次线性方程组,得的属于特征值的特征向量为,,.依据推论4.2.3知,无论为何值,矩阵均可对角化.令,,,则有==.()的特征值分别为,,,故当且时,为可逆矩阵.§4.3 实对称矩阵的对角化我们已经知道,不是每个矩阵都能对角化.但本节讨论的实对称矩阵一定可以对角化,而且还能正交相似于对角矩阵,本节将讨论实对称矩阵的对角化.一、实对称矩阵的特征值与特征向量的性质实对称矩阵的特征值和特征向量具有一些特殊的性质,这些性质可以保证实对称矩阵一定可以对角化.定理4.3.1 实对称矩阵的特征值都是实数.证设为实对称矩阵的特征值,为对应的特征向量,即,.用表示的共轭复数,用表示的共轭复向量.则,于是有,及,以上两式相减得,以为所以.因而,即为实数.由于实对称矩阵的特征值为实数,那么为实矩阵,则齐次线性方程组的解可取为实向量,亦即实对称矩阵的特征向量为实向量.定理4.3.2实对称矩阵不同的特征值对应的特征向量正交,证设,为实对称矩阵的两个不同的特征值,,分别为它们对应的特征向量,则,,,,从而,因是对称矩阵,又有,于是,因,故,即与正交.定理4.3.3 设为阶实对称矩阵,为的重特征根,则,从而特征值恰好对应个线性无关的特征向量.证明略.二、实对称矩阵的对角化由定理4.3.2和定理4.3.3可得定理4.3.4 设为阶实对称矩阵,则存在正交矩阵,使得=其中,,,为的全部特征值.(1)求出阶实对称矩阵的全部互异特征值,,,,它们的重数依次为,,,;(2)求实对称矩阵的特征向量.对每个特征值求方程组的基础解系,即为的对应的线性无关的特征向量,设为,,,;(3)用施密特正交化方法,将特征向量,,,,,,正交,,,单位化,得到一个标准正交向量组,,,,,,;(4)令,,,,,,,,,,,(,,,,,,,,,,,,)个个个且为正交矩阵,且有=例4.3.1 设实对称矩阵,求正交矩阵,使得=为对角矩阵.解矩阵的特征多项式为=,因此,矩阵的特征值为,,.对于,解齐次线性方程组,得基础解系,,;对于,解齐次线性方程组,得基础解系,,;对于,解齐次线性方程组,得基础解系,,.将,,单位化,可得,,,,,,,,令,,,且为正交矩阵,且有=例4.3.2 设实对称矩阵,求正交矩阵,使得=为对角矩阵.解矩阵的特征多项式为=,因此,矩阵的特征值为,.对于,解齐次线性方程组,得基础解系,,,,,;先将向量,正交化,令,,,,再单位化,得,,对于,解齐次线性方程组,得基础解系,,,将其单位化,得.令,,,且为正交矩阵,且有=.例 4.3.3 设三阶实对称矩阵的特征值为,,且属于的特征矩阵为,,,求矩阵.解设的属于特征值的特征向量为,,,则与正交,即,解此齐次线性方程组,得基础解系,,,,,,易见,,正交.将,,单位化,可得,,令,,,则为正交矩阵,且有=,从而=.习题四 (A )一、填空题1. 为 阶矩阵, 有非零解,则 必有一个特征值__________.2.若 阶可逆方阵 的每行元之和 ,则 的一个特征值为__________.3.设 为三阶可逆矩阵,其逆矩阵的特征值为,,,则行列式 __________.4.设 是非奇异矩阵的一个特征值,则矩阵有一个特征值为__________.5.若 为四阶实对称矩阵, ,且2是 的三重特征值,则 的相似对角矩阵为__________.6. 设 为 阶矩阵, 有 个互异特征值 , , , ,则有 __________ , , , .7. 设 是三阶实对称矩阵, 的特征值是 , ,则有 __________. 8.若四阶矩阵 与 相似,矩阵 的特征值为,,,,则9.已知矩阵只有一个线性无关的特征向量,则10.设 , ,,矩阵 , 为自然数,则行列式 11.已知三阶实对称矩阵 的一个特征值为 ,对应的特征向量 , ,,且 的主对角线上的元全为零,则 二、单选题1.设三阶矩阵,则 的特征值是()(A )1,0,1 (B )1,1,2 (C )-1,1,2 (D )1,-1,12.若可对角化的 阶矩阵 只有一个特征值为零,则 =() (A ) (B ) (C )1 (D )03.设 , , , 是矩阵 对应于特征值 的特征向量,当线性组合∑=ni 1满足()时,∑=ni 1也是矩阵 对应于特征值 的特征向量.(A)其中不全为零(B)其中全不为零(C)是非零向量(D)是任一向量4.当满足下列()条件时,矩阵与相似.(A)(B)(C)与有相同的特征多项式.(D)阶矩阵与有相同的特征值且个特征值不相同.5.已知二阶实对称矩阵的特征向量为,且,则必为的特征向量的是()(A)(B),(C),,(D),,不同时为零6.设是阶非零矩阵,,下列命题不正确的是().(A)的特征值只有零(B)必不能对角化(C)必可逆(D)只有一个线性无关的特征向量7.设,是矩阵的两个不同的特征值,对应的特征向量分别为,,则,线性无关的充要条件是()(A)(B)(C)(D)8.若,且,,则以下结论错误的是().(A)(B)(C)为不可逆矩阵(D)必有特征值9.设,有特征值,(二重),且有三个线性无关的特征向量,则.(A)4(B)(C)(D)10.设,为阶矩阵,且与相似,则()(A)(B)与均相似于同一个对角矩阵.(C)与有相同的特征值与特征向量(D)对任意常数,与相似.三、综合题1.求下列矩阵的特征值与特征向量:(1);(2);(3);(4).2.判断下列矩阵与是否相似:(1),;(2),;(3),;(4),.3.求下列矩阵的次幂:(1);(2).4.求正交矩阵,使得为对角矩阵.(1);(2).5.设是阶方阵的一个特征值,且的伴随矩阵为,试证:的非零列向量是的属于的特征向量.6.考察栖息地在同一地区的兔子和狐狸的生态模型,对两种动物的数量的相互依存的关系可用以下模型描述:,,,,,其中,分别表示第年时兔子和狐狸的数量,而,分别表示基年时兔子和狐狸的数量,记,,,,(1)写出该模型的矩阵形式;(2)如果,求.(3)求7.设,相似,求:(1),的值;(2)求正交矩阵,使得.8.设向量,,,,,,,,且,记,求的所有特征值及特征向量.9.设,为三维单位列向量,且,令,证明与相似.10.设三阶实对称矩阵的特征值是1,2,3,矩阵的属于特征值1,2,3的特征向量分别是,,,,,.(1)求的属于特征值3的特征向量;(2)求矩阵.11.设,若为的一个特征值,求;(2)求.12.若存在正交矩阵,使矩阵,同时相似于对角矩阵,则必有.13.设为三阶实对称矩阵,且满足条件,的秩.求的全部特征值.14.设,求实对称矩阵,使.15.设矩阵,求.16.已知三阶矩阵与相似,,是的两个特征值,,计算,其中是的伴随矩阵.(B)1.设矩阵与相似,与相似,试证:与相似.2.已知与对角矩阵相似,求.3.设是阶实幂等矩阵(即),且,.(1)设,,试证.(2)试证:;(3)求4.设,为阶矩阵,,证明(1)是与的相同特征值;(2)与的基础解系线性相关.5.设是阶矩阵,且任一非零维向量都是的特征向量,试证:(即为数量矩阵)6.已知三阶非零矩阵,满足,,,证明:(1)0和1必是与的特征值;(2)若是关于的特征向量,的个特征值两两互异,若的特征向量总是的特征向量,证明.8.设,均为阶非零矩阵,且满足,,证明:(1)是,的特征值.(2)若,,分别是,对应于的特征向量,则,线性无关.答案:一、填空题1.02.3.-64.5..6.7.8.14 7639.10.11.二、单选题1-5 CBCDB6-10 DDADD三、综合题1.(1),,的属于的特征向量,;的属于的特征向量,.(2),;的属于的特征向量为,,不全为零;的属于的特征向量为,(3),;的属于的特征向量为,,不全为零;的属于的特征向量为,.(4)(三重);的属于的特征向量为,,不全为零;2.(1)不相似;(2)相似;(3)相似.3.(1);(2)当为偶数时,;当为奇数时,.。

矩阵对角化论文 最终版

矩阵对角化论文 最终版

矩阵对角化的判定条件及应用摘要:对角矩阵是矩阵中简单的一种,在高等代数中占有极其重要的位置。

本文归纳总结了矩阵对角化的若干方法,并且分情况讨论了有n个特征根的n阶矩阵的对角化方法。

然后基于定义及判定定理,引出了实对矩阵、反循环矩阵的若干重要性质,为读者对矩阵对角化中求特征值、特征向量、求可逆矩阵、使对角化问题,提供了简便、快捷的求解途径。

最后列举了几种常用矩阵的对角化问题。

关键词:矩阵,对角化,特征根,反循环矩阵Criterions of Matrix Diagonalization and GeneralizationsDiagonal matrix is a simple matrix in algebra occupies an extremely important position. This article summarizes some of the matrix diagonalization method, and the Points of discussion are n characteristic roots of the n-order matrix diagonalization. Then determined based on the definition and theorem, leads to the fact of the matrix, a number of important anti-cyclic nature of the matrix, matrix diagonalization for the readers in the eigenvalue, eigenvector, Inverse Matrix, so that diagonalization, to provide a simple, efficient way to solve. Finally, several commonly cited problem of matrix diagonalization.Key words: matrix, diagonalization, eigenvalues, anti-cyclic matrix引言可对角化矩阵是一类重要矩阵,它与有限维线性空间的线性变换的对角化问题密切相关,因而是矩阵论重点研究的内容之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档