半导体材料的发展现状及趋势概要
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Si 1.1 1.0
1.3 0.3 1350
GaAs 1.4 2.1
0.6 0.4 8500
应
光学应用
用 情
高频性能
况
高温性能
发展阶段
相对制造成本
无 差 中 成熟 低
红外 好 差 发展中 高
GaN 3.4 2.7
2.0 5.0 900
蓝光/紫外 好 好 初期 高
? 硅材料具有储量丰富、价格低廉、热性能 与机械性能优良、易于生长大尺寸高纯度 晶体等优点,处在成熟的发展阶段。目前, 硅材料仍是电子信息产业最主要的基础材 料,95%以上的半导体器件和99%以上的 集成电路(IC)是用硅材料制作的。在21世
高得多,这就使得宽带隙材料成为毫米波 放大器的首选者。
? 氮化镓材料的禁带宽度为硅材料的3倍多, 其器件在大功率、高温、高频、高速和光 电子应用方面具有远比硅器件和砷化镓器 件更为优良的特性,可制成蓝绿光、紫外 光的发光器件和探测器件。
? 近年来取得了很大进展,并开始进入市场。 与制造技术非常成熟和制造成本相对较低 的硅半导体材料相比,第三代半导体材料 目前面临的最主要挑战是发展适合氮化镓 薄膜生长的低成本衬底材料和大尺寸的氮 化镓体单晶生长工艺。
硅
? 半导体硅材料自从 60年代被广泛应用于各类电 子元器件以来,其用量平均大约以每年 12~ 16%的速度增长。目前全世界每年消耗约 18000 ~25000 吨半导体级多晶硅,消耗 6000~7000吨单晶硅,硅片销售金额约 60~80 亿美元。可以说在未来 30~50年内,硅材料仍 将是LSI工业最基础和最重要的功能材料。电子 工业的发展历史表明,没有半导体硅材料的发 展,就不可能有集成电路、电子工业和信息技 术的发展。
半导体材料的发展现状及趋势
? 半导体材料是指电阻率在10-3~108Ωcm, 介于金属和绝缘体之间的材料。半导体材 料是制作晶体管、集成电路、电力电子器 件、光电子器件的重要基础材料,支撑着 通信、计算机、信息家电与网络技术等电 子信息产业的发展。
? 电子信息产业规模最大的是美国。近几年 来,中国电子信息产品以举世瞩目的速度 发展,2003年中国电子信息产业销售收 入1.88万亿元,折合2200~2300亿美元,
? 宽带隙半导体材料的高介电强度最适合用 于高功率放大器、开关和二极管。宽带隙 材料的相对介电常数比常规材料的要小, 由于对寄生参数影响小,这对毫米波放大 器而言是有利用价值的。电荷载流子输运 特性是许多器件尤其是工作频率为微波、 毫米波放大器的一个重要特性。
? 宽带隙半导体材料的电子迁移率一般没有 多数通用半导体的高,其空穴迁移率一般 较高,金刚石则很高。宽带隙材料的高电 场电子速度(饱和速度)一般较常规半导体
? 主要半导体材料的用途如表2所示。可以 预见:以硅材料为主体、GaAs半导体材
料及新一代宽禁带半导体材料共同发展将 成为集成电路及半导体器件产业发展的主 流。
材料名称 硅
砷化镓
氮化镓
表2 半导体材料的主要用途
制作器件 二极管、晶体管
集成电路 整流器 晶闸管
射线探测器 太阳能电池 各种微波管
激光管 红外发光管
小功率红外光源 磁场控制 激光通讯
高速计算机、移动通讯 太阳能发电
光学存储、激光打印机、医疗、军事应用 信号灯、视频显示、微型灯泡、移动电话
分析仪器、火焰检测、臭氧监测 通讯基站(功放器件)、永远性内存、电子开关、导弹
二、半导体材料发展现状
1、半导体硅材料
? 从目前电子工业的发展来看,尽管有各 种新型的半导体材料不断出现,半导体硅 材料以丰富的资源、优质的特性、日臻完 善的工艺以及广泛的用途等综合优势而成 为了当代电子工业中应用最多的半导体材 料。
? 从表1看出,选择宽带隙半导体材料的主要理由 是显而易见的。氮化镓的热导率明显高于常规 半导体。这一属性在高功率放大器和激光器中 是很起作用的。带隙大小本身是热生率的主要 贡献者。在任意给定的温度下,宽带隙材料的 热生率比常规半导体的小 10~14个数量级。这
一特性在电荷耦合器件、新型非易失性高速存 储器中起很大的作用,并能实质性地减小光探 测器的暗电流。
? 将宽禁带(Eg>2.3eV) 的氮化镓、碳化硅、硒化 锌和金刚石等称为第三代半导体材料。
? 上述材料是目前主要应用的半导体材料,三代 半导体材料代表品种分别为硅、砷化镓和氮化 镓。
? 材料的物理性质是产品应用的基础,表1
列出了主要半导体材料的物理性质及应用 情况。表中禁带宽度决定发射光的波长, 禁带宽度越大发射光波长越短(蓝光发射);
霍尔元件 激光调制器 高速集成电路 太阳能电池
激光器件 发光二极管 紫外探测器
集成电路
主要用途 通讯、雷达、广播、电视、自动控制 各种计算机、通讯、广播、自动控制、电子钟表、仪表
整流 整流、直流输配电、电气机车、设备自控、高频振荡器
原子能分析、光量子检测 太阳能发电
雷达、微波通讯、电视、移动通讯 光纤通讯
纪,它的主导和核心地位仍不会动摇。但 是硅材料的物理性质限制了其在光电子和 高频高功率器件上的应用。
? 砷化镓材料的电子迁移率是硅的6倍多,
其器件具有硅器件所不具有的高频、高速 和光电性能,并可在同一芯片同时处理光 电信号,被公认是新一代的通信用材料。 随着高速信息产业的蓬勃发展,砷化镓成 为继硅之后发展最快、应用最广、产量最 大的半导体材料。同时,其在军事电子系 统中的应用日益广泛,并占据不可取代的 重要地位。
硅
? 硅是集成电路产业的基础,半导体材料中 98%是硅。半导体器件的95%以上是用硅 材料制作的,90%以上的大规模集成电路 (LSI)、超大规模集成电路(VLSI)、甚大规 模集成电路(ULSI)都是制作在高纯优质的 硅抛光片和外延片上的。硅片被称作集成 电路的核心材料,硅材料产业的发展和集 成电路的发展紧密相关。
产业规模已超过日本位居世界第二(同期 日本信息产业销售收入只有1900亿美
元),成为中国第一大支柱产业。半导体 材料及应用已成为衡量一个国家经济发展、 科技进步和国防实力的重要标志。
? 在半导体产业的发展中,
? 硅、锗称为第一代半导体材料;
? 将砷化镓、磷化锢、磷化镓、砷化锢、砷化铝 及其合金等称为第二代半导体材料;
禁带宽度越小发射光波长越长。其它参数 数值越高,半导体性能越好。电子迁移速 率决定半导体低压条件下的高频工作性能, 饱和速率决定半导体高压条件下的高频工 作性能。
表1 主要半导体材料的比较
材料
物
禁带宽度(ev)
Leabharlann Baidu
理 性
饱和速率(×10-7cm/s)
质
热导(W/c·K)
击穿电压(M/cm)
电子迁移速率(cm2/V·s)