平行线的性质课件ppt..

合集下载

平行线的性质ppt课件

平行线的性质ppt课件
(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=



BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .

沪科版七下数学10.3平行线的性质教学课件

沪科版七下数学10.3平行线的性质教学课件

等),因为∠B=∠C(已知),
所以∠DAE=∠EAC(等量代换).
所以AE平分∠CAD(角平分线的定义).
总结
知2-讲
本题同时运用了“两直线平行,同位角相等” 和“两直线平行,内错角相等”提供了一种说明 两个角相等的新思路.
知2-练
1 (中考·邵阳)将直尺和直角三角板按如图方式摆 放,已知∠1=30°,则∠2的大小是( C ) A.30° B.45° C.60° D.65°
知2-讲
导引:要说明AE平分∠CAD,即说明∠DAE=∠CAE. 由于AE∥BC,根据两直线平行,同位角相等和 内错角相等可知∠DAE=∠B,∠EAC=∠C, 这就将说明∠DAE=∠CAE转化为说明∠B= ∠C了.
解:因为AE∥BC(已知),
知2-讲
所以∠DAE=∠B(两直线平行,同位角相
等),∠EAC=∠C(两直线平行,内错角相
总结
知1-讲
当题目已知条件中出现两直线平行时,要考 虑是否出现了相等的角.平行线和角的大小关系
是紧密联系在一起的,由平行线可以得到相等的 角,反过来又可以由相等的角得到新的一组平行
线,这种由角的大小关系与直线的位置关系的相 互转化在解题中会经常涉及.
1 (中考·荆州)如图,直线l1∥l2,直线l3与 l1,l2分别交于A,B两点,若∠1=70°, 则∠2=( C ) A.70° B.80°
类似于研究平行线的判定,我们先来研究两条 直线平行时.它们被第三条直线截得的同位角的关系.
知识点 1 两直线平行,同位角相等
视察 如图,练习本上的横线都是相
互平行的,从中任选两条分别记为 AB,CD;画一条直线EF分别与 AB, CD相交得8个角.
知1-导
(1)任选一对同位角(如∠1与∠5),量一量它们的度知1-导 数,它们的大小有什么关系?

平行线的性质 课件(共22张PPT)

平行线的性质  课件(共22张PPT)

3
∴∠2=∠3(两直线平行,同位角相等),
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
你发现了什么?
两条平行直线被第三条直线所截,内错角相等. 简写成:两直线平行,内错角相等. 表达方式:如图,
∵a∥b(已知),
∴∠1=∠2(两直线平行,内错角相等).
如图,直线a∥b,直线a、b被直线c所截
试一试
翻开你的数学练习横格本,每一页上都有许多如图所示的互 相平行的横线条,随意画一条斜线与这些横线条相交, 找出其中 任意一对同位角.观察或用量角器度量这对同位角,你有什么发现?
∠1=∠2
那么,一般情况下,如图,如果直线a与直线b平行,直线l与 直线a、b分别交于点O和点P,其中的同位角∠1与∠2也必定相等吗?
A.65°
B.55°
C.45°
D.35°
课堂小结
知识点 平行线的性质
1.两直线平行,同位角 相等 . 2.两直线平行,内错角 相等 . 3.两直线平行,同旁内角 互补 .
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
(2)从∠1=110o可以知道 ∠3是多少度?为什么?
(3)从 ∠1=110 o可以知道∠4 是多少度?为什么?B
D
解:(1)∠2=110o 理由:两直线平行,内错角相等;
(2)∠3=110o 理由:两直线平行,同位角相等;
(3)∠4=70o 理由:两直线平行,同旁内角互补.
C 2E 43
2.如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为 ( B )
例3 将如左图所示的方格图中的图形向右平行移动4格,再向上 平行移动3格,画出平行移动后的图形.

平行线的性质定理和判定定理课件

平行线的性质定理和判定定理课件

简单说成:同旁内角互补,两直线平行. ∵ ∠1+ ∠2=180°, ∴ a∥b.
证明一个命题的一般步骤: (1)弄清题设和结论;
a1 b2
c
(2)根据题意画出相应的图形;
(3)根据题设和结论写出已知,求证;
(4)分析证明思路,写出证明过程.
【议一议】 据说,人类知识的75%是在操作中学到的.
小明用下面的方法作出平行线,你认为他的作法对吗?为 什么? 通过这个操作活动,得 到了什么结论?
每一个命题都有逆命题,只要将原命题的条件改成 结论,并将结论改成条件,便可得到原命题的逆命题.
但是原命题正确,它的逆命题未必正确.例如真命 题“对顶角相等”的逆命题为“相等的角是对顶角”, 此命题就是假命题.
【跟踪训练】
1.举例说明下列命题的逆命题是假命题. (1)如果一个整数的个位数字是5 ,那么这个整数能被 5整除. 逆命题:如果一个整数能被5整除,那么这个整数的个位 数字是5. 例如,10能被5整除,但它的个位数字是0. (2)如果两个角都是直角,那么这两个角相等. 逆命题:如果两个角相等,那么这两个角是直角. 例如,60°= 60°,但这两个角不是直角.
4.到一个角的两边距离相等的点,在这个角的平分线上.
条件:到一个角的两边距离相等的点. 结论:它在这个角的平分线上. 逆命题:角平分线上的点到角两边的距离相等. 5.线段的垂直平分线上的点到这条线段的两个端点的距离相等. 条件:线段垂直平分线上的点. 结论:它到这条线段的两个端点的距离相等. 逆命题:到一条线段的两个端点的距离相等的点在这条线段 的垂直平分线上.
a
∵∠1+∠2=180°, ∴ a∥b.
b
c
1
2
c

平行线ppt课件

平行线ppt课件

02
平行线判定方法的 误用
提醒学生注意不同判定方法的使 用条件和限制,避免误用或混淆。
03
忽略平行线的存在 性
提醒学生在解题时,不要忽略题 目中可能存在的平行线,否则可 能导致解题错误。
拓展延伸内容推荐
平行线与相似三角形的关系
探讨平行线与相似三角形之间的联系,以及如 何利用平行线的性质解决相似三角形的问题。
交通信号灯
交通信号灯中的红灯、绿灯、黄灯等灯光的排列 也遵循平行线的原则,使得驾驶员和行人能够清 晰地辨认交通信号。
导向标志 道路两侧的导向标志牌上的文字、图案等也采用 平行线排列,方便驾驶员快速获取道路信息。
日常生活用品设计美学体现
家居用品
家居用品中的桌子、椅子、床等家具的设计中经常运用到平行线, 使得家具外观简洁大方,符合现代审美。
图形示例
判定步骤
首先确定两条被截直线和截线,然后 找出同旁内角并测量其角度之和是否 为180度,如果是,则两条直线平行。
在图形中,画出两条被第三条直线所 截的直线,并标出同旁内角。
实际应用场景分析
建筑设计中
在建筑设计中,平行线的概念经常被用来确保建筑物的稳定性和美观性。例如,在设计墙壁、 地板和天花板时,需要确保它们是平行的,以避免出现倾斜或不平整的情况。
在物理学中,平行线的概念被广泛应用于光 学、力学等领域的研究中,如光的反射、折 射等现象都与平行线密切相关。
计算机图形学
工程测量与建设
在计算机图形学中,平行线的绘制和处理是 图形渲染、图像处理等任务中的重要环节之 一。
在工程测量与建设中,平行线的运用可以确 保建筑物的精确度和稳定性,提高工程质量。
05
预备工作
建议学生提前预习相关知识点,回顾平行线的定义、性质及判 定方法,并尝试思考一些与平行线相关的实际问题,为下一讲 的学习做好准备。

北师大版数学八年级上册平行线的性质课件

北师大版数学八年级上册平行线的性质课件
线平行,同旁内角互补;②同位角相等,两直线
平行;③内错角相等,两直线平行;④两直线平行,同
位角相等.
其中是平行线特征的是( D )
A. ①
B. ②③
C. ④
D. ①④
2.如图所示,A,C两地之间要修一条公路,在A地测得公路的
走向为北偏东50°,如果A,C两地同时开工,那么在C地应按
B
M D
F
例2.如图,AB∥DE,已知∠B=40°,∠BCD=20°,则 ∠D=__2_0_°_.
解析:过点C作GH∥AB.
GH//AB, AB//DE GH∥DE
∠B=∠BCH ∠B=40°
∠BCH=40° ∠BCD=20°
∠D=∠DCH ∠DCH=20°
∠D=20°
例3.如图,已知∠1=∠2,∠3+∠4=180°,证明:AB∥EF.
来证明这个定理吗?
已知:如图,直线l1 //l2,∠1和∠2是直线l1,l2被直线l截出
的内错角. 求证:∠1=∠2.
l
1
l1
证明:∵ l1//l2(已知),
2
3
l2
∴∠1=∠3(两直线平行,同位角相等).
又∵∠2=∠3(对顶角相等),
∴∠1=∠2(等量代换).
定理 两条平行直线被第三条直线所截,同旁内角互补. 简述为:两直线平行,同旁内角互补.
解:∵∠1=∠2 (已知) , ∴AB∥CD (内错角相等,两直线平行). ∵∠3+∠4=180° (已知), ∴CD∥EF (同旁内角互补,两直线平行). ∴AB∥EF.
课堂小结
平行线的判定与性质的区分 1.平行线的判定是根据两角的数量关系得到两条直线 的位置关系,而平行线的性质是由两条直线的位置关 系得到两角的数量关系. 2.平行线的判定的条件是平行线的性质的结论, 而平行线的判定的结论是平行线的性质的条件.

七年级数学下册教学课件《平行线的性质》

七年级数学下册教学课件《平行线的性质》

d
c
21 a
34
65 b
78
对应训练
1.如图,直线a∥b,c是截线,若∠1=60°,则∠2的度数为 __1_2_0_°_.
2.如图,已知AB∥CD,BC是∠ABD 的平分线,若∠2=64°, 则∠3=__5_8_°__.
探究点2 两直线平行,内错角相等
你能结合图形,由性质1推出两条平行线被第三条直线截得的
内错角之间的关系吗?
c
两条直线平行
21 a
34
同位角相等
转化
内错角相等
65 b
78
探究点2 两直线平行,内错角相等
你能结合图形,由性质1推出两条平行线被第三条直线截得的
内错角之间的关系吗?
c
解:∵a∥b(已知), ∴∠1=∠5(两直线平行,同位角相等).
21 a
34
又∵∠1=∠3(对顶角相等),
∴∠3=∠5(等量代换).
拓展提升
我们生活中经常接触的小刀刀柄外形是一个直角梯形(下底 挖去一小半圆),刀片上、下是平行的.把处于闭合状态的 刀片打开,得到如图所示的图形. (1)若∠1=55°,求∠2的度数; (2)在刀片打开过程中,若∠2始终为钝角,试说明 ∠2=∠1+90°.
解:(1)如图,延长CB交AD于点E. 由题意可知∠BAG=90°,AG∥CE, ∴∠EAG=∠1+∠BAG=55°+90°=145°, ∠EAG=∠DEC. ∴∠DEC=145°. ∵刀片上、下是平行的,即AD∥CF, ∴∠2=∠DEC=145°. (2)由(1)可知 ∠DEC=∠DAG=∠1+∠BAG=∠1+90°, ∠2=∠DEC,∴∠2=∠1+90°.
21 a

平行线的性质(优质课)获奖课件

平行线的性质(优质课)获奖课件

3, 1
不是原方程组的解;
(3)把,
②,发现能使方程
x 4,
y

1. 2
①, ②左右两边相等,所以
是原方程组的解.
【跟踪训练】
把下列方程组的解和相应的方程组用线段连起来:
x=1,
y=3-x,
y=2. x=3, y=-2. x=2, y=1.
y3=x2+x2,y=8. x+y=3. y=1-x, 3x+2y=5.
4 5
5.已知2x+3y=4,当x=y 时,x,y的值为_____,当x+y=0时,
-4
4
1
x=_____x,=-y3=______.
2
y=-2
6.已知-1
8
是方3 程2x-4y+2a=3的一个解,则a=______.
8.已知二元一次方程3x-2y=5,若y=0,则x=
.
5
答案: 3
9.下列4组数值中,哪些是二元一次方程2x+y=10的解?
你还累?这么大的 个,才比我多驮 了2个.
哼,我从你背上拿来 1个,我的包裹数就 是你的2倍!
真的?!
我从你背上拿来 1个,我的包裹数 就是你的 2 倍!
你还累?这么大 的个,才比我 多驮了2个.
它们各驮了多少包裹呢?
【解析】设老牛驮了 x 个包裹 , 小马驮了 y个包裹. 老牛的包裹数比小马的多2个,
∵a∥b,∴∠1=∠2,
同理∠2=∠3,∴∠1=∠3,∴a∥c.
【跟踪训练】
根据下列命题,画出图形,并结合图形写出已知、求证
(不写证明过程):两条平行线的一对内错角的平分线互相
平行.
已知:如图,AB、CD被直线EF所截,且AB∥CD,EG、

认识平行线ppt优秀课件

认识平行线ppt优秀课件

平行线理论的发展历程
随着数学的发展,人们对平行线 理论的认识逐渐深入。
中世纪欧洲数学家进一步探索了 平行线的性质和定理,并尝试解
决一些关于平行线的难题。
19世纪,非欧几里德几何学的 出现对平行线理论产生了深远影 响,人们开始认识到平行线并非
总是相交于无穷远点。
平行线在现代数学中的应用
01
02
03
02 平行线的应用
CHAPTER
几何作图中的应用
平行线在几何作图中具有重要作用, 可以用于确定图形的基本形状和尺寸 。
平行线还可以用于解决几何作图问题 ,例如通过平行线将一个复杂图形分 解为简单图形,便于分析和计算。
通过平行线,可以绘制出各种几何图 形,如三角形、四边形、圆形等,为 进一步研究几何性质和定理奠定基础 。
03 平行线的历史与发展
CHAPTER
平行线理论的起源
平行线理论最早可以追溯到古 希腊时期,当时数学家们开始 研究几何学,并探索了平行线 的性质和定义。
欧几里德在《几何原本》中首 次给出了平行线的定义,并研 究了它们的性质和定理。
古希腊数学家还发现了一些关 于平行线的有趣定理,如“平 行线间的角相等”和“同位角 相等”。
平行线具有传递性、同位角相等、内 错角相等、同旁内角互补等性质。
平行线的表示方法
用平行符号“//”表示两条直线平行 。
平行线的性质
同位角相等
内错角相等
两条平行线被一条横截线所截,同位角相 等。
两条平行线被一条横截线所截,内错角相 等。
同旁内角互补
平行线的性质的应用
两条平行线被一条横截线所截,同旁内角 互补,即两个同旁内角之和为180度。
在线性代数中,向量空间中的子空间可以由平行线定义,而线性变换可以用来研究平行线的 性质和行为。

人教版七年级数学下册《平行线的性质》公开课PPT

人教版七年级数学下册《平行线的性质》公开课PPT

判断下列说法是否正确 1.两直线被第三条直线所截,同位角相等。 2.两直线平行,同旁内角相等。 3.“内错角相等,两直线平行”是平行线的性质。 4.“两直线平行,同旁内角互补”是平行线的性质。
A1
D
B
C
1、如果AD//BC,根据___________
可得∠B= _______
2、如果AD//BC,根据___________
为∠1=85º
1
如图,梯子的各条横档互相 平行,∠1=1000,求∠2的度 数。
A
2 B
C
1D
如图,在汶川大地震当 中,一辆抗震救灾汽车 经过一条公路两次拐弯 后,和原来的方向相同, 也就是拐弯前后的两条 路互相平行.第一次拐的 角∠B等于1420,第二次 拐的角∠C是多少度?为 什么?
1420
AB
C
D

如图,是举世闻名的三星堆考古中发掘出 的一个梯形残缺玉片,工作人员从玉片上已经 量得∠A=115°,∠D=100°。已知梯形的两底 AD//BC,请你求出另外两个角的度数。
A
D
115° 110°
B
C
已知:直线a∥b, ∠1=115°. 则: ∠2=___,理由:________.
若∠3= 115°,则:直线c与d有
把下列句子颠倒一下前后顺序,能得到 怎样的一句话?这句话正确吗?
1.对顶角相等;
2.如果两个数的和为0,那么这两个数互 为相反数; 3.我爱我的学生;
• 同位角相等,两直线平行 • 内错角相等,两直线平行 • 同旁内角互补,两直线平行
两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补
何位置关系?并说明理由.
c

7.4 平行线的性质课件 (30张PPT)北师大版八年级数学上册

7.4  平行线的性质课件 (30张PPT)北师大版八年级数学上册

所以梯形的另外两个角的度数分别是 80°、65°.
3、如图,由AB//CD,可以得到(C)易错
(A)∠1=∠2
(B)∠2=∠3
(C)∠1=∠4
(D)∠3=∠4
4、如图,已知A、B、C同在一条直线上,D、E、F同在一 条直线上,且∠A=∠F,∠C=∠D,判断AE与BF的位置关 系,并说明理由.
解: ∵∠C=∠D
∴∠1 = ∠D(两直线平行,内错角相等)
∵∠B = ∠D(已知)
∴∠1 = ∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
D C
例2 已知:如图,AB∥CD,∠B =∠D.
求证:AD∥BC. 证法三: 如图,连接 BD (构造两组内错角). ∵ AB∥CD (已知),
A
12
B
D
3 4
C
∴∠1 =∠4 (两直线平行,内错角相等).
条直线与这条直线平行”相矛盾. 这说明∠1 ≠ ∠2 的假设不成立,所以 ∠1 =∠2.
总结归纳
一般地,平行线具有如下性质: 性质1 (定理) 两条平行线被第三条直线所截,同位角
简单说成:两直线平行,同位角相等.
c
应用格式:
1
∵ a∥b(已知),
a
∴∠1 =∠2
2
(两直线平行,同位角相等). b
议一议
(1) 从∠1 = 110° 可以知道∠2 是多少度?为什么?
(2) 从∠1 = 110° 可以知道∠3 是多少度?为什么?
(3) 从∠1 = 110° 可以知道∠4 是多少度?为什么?
解:(1) ∠2 = 110°,
两直线平行,内错角相等. (2)∠3 = 110°,
两直线平行,同位角相等. (3)∠4 = 70°,

《平行线的性质》课件(共33张PPT)000

《平行线的性质》课件(共33张PPT)000

如图,是举世闻名的三星堆考古中发掘出 的一个梯形残缺玉片,工作人员从玉片上已经 量得∠A=115°,∠D=110°。已知梯形的两底 AD//BC,请你求出另外两个角的度数。
A
D
115° 110°
B
C
苹果
草莓
梨子
桃子
香蕉
桔子
西瓜
桃子题:
如图,梯子的各条横档互相平行, ∠1=1000,求∠2的度数。
解:∠1=∠3; ∠2 =∠4 理由如下:
∵AB∥DE (已知) A
DC
F
∴∠1=∠3(两直线平行, 同位角相等) ∵ ∠1=∠2 ,∠3=∠4
1
23
4
B
E
∴ ∠2=∠4 (等量代换)
(2 )反射光线BC与EF也平行吗?
平行:∵ ∠2=∠4 ∴ BC∥EF(同位角相等,两直
线平行)
比一比 、乐一乐:(分组比赛)
4
31
56
8
7
∠1=∠5
a b
探索新知
①已知直线a,画直线b,使b∥a,c
②任画截线c,使它与a、
11718°25°8°b
b都相交,则图中∠1与 ∠2是什么角?它们的 大小有什么关系?
21185728°° a
③旋转截线c,同位角
∠1与∠2的大小关系又
如何? ∠1=∠2
通过上面的实验测量,可以得到性质1(公理):
3 2
目前,它与 地面所成的 较小的角
为∠1=85º
1
苹果
草莓
梨子
桃子
香蕉
桔子
西瓜
杨梅
草莓题:
1 A
D
B
C
1、如果AD//BC,根据___________ 可得∠B= _______

《平行线的性质》PPT

《平行线的性质》PPT

∵ ∠2=∠3 ( 对顶角相等)
C
1
D
∴∠1=∠2 ( 等量代换 )
F
7-5-2
结论:两直线平行,内错角相等
如图7-5-3, AB∥CD,直线AB,CD被直线EF所截, ∠1和∠2是同旁内角.对∠1+∠2=180°说明理由:
E
理由:
∵ AB∥CD ( 已知)
A
∴ ∠1=∠3 ( 两直线平行,同位角相等)
巩固练习:
A1
D
B
C
1、如果AD//BC,根据__两__直__线__平__行__,__同__位__角__相__等____
可得∠B=∠1 2、如果AB//CD,根据__两__直__线__平__行__,__内__错__角__相__等_____
可得∠D=∠1 3、如果AD//BC,根据__两__直__线__平__行__,__同__旁__内__角__互__补___
为什么?
(2)由∠1=∠5.能推出两对同旁内角互补吗?为什么?
65
a 78
21 b
34
l 7-5-1
如图7-5-2, AB∥CD,直线AB,CD被直线EF所截,∠1和∠2是 内错角.对∠1=∠2说过程如下:
理由:∵ AB∥CD ( 已知 ) ∴ ∠1=∠3 ( 两直线平行,)同位角相A等
E
3 2
B
考考你:
3、如图是举世闻名的三星堆考古中发掘出的一个梯形 残缺玉片,工作人员从玉片上已经量得∠A=115°, ∠D=100°。已知梯形的两底AD//BC,请你求出另外 两个角的度数。
一起探究:如果两个角的两条边分别平行,那么这两 个角的大小有什么关系?
G
G F
A
E

平行线的性质ppt课件

平行线的性质ppt课件

如图1,若AB∥DE , AC∥DF,请说出∠A和∠D之间的数量关系,
并说明理由.
F
解: ∠A =∠D.理由:
C
∵ AB∥DE( 已知 )
∴∠A=_∠_C__P_E__ ( 两直线平行,同位角相等)
∵AC∥DF( 已知 )
P
D
E
∴∠D=_∠_C_P_E__ ( 两直线平行,同位角相等 )
A
B
∴∠A=∠D (等量代换 )
1.如图,已知平行线AB、CD被直线AE所截 (1)从∠1=110o可以知道∠2 是多少度?为什么? (2)从∠1=110o可以知道∠3是多少度?为什么? (3)从∠1=110o可以知道∠4 是多少度?为什么?
A
2C E
1
43
B D
2. 如图,一条公路两次拐弯前后两条路互相平行.第一次拐的 角∠B是142o,第二次拐的角∠C是多少度?为什么?
∠3,∠4的度数吗?为什么?
解:∵DE∥BC(已知),
∴∠4=∠1=65°(两直线平行,内错角相等), ∠2+∠1=180°(两直线平行,同旁内角互 补). ∴∠2=180°-∠1=180°-65°=115°.
又∵DF∥AB(已知),
∴∠3=∠2(两直线平行,同位角相等). ∴∠3=115°(等量代换).
E P
∴∠A+∠D=180o( 等量代换

B
A
图2
归纳小结
两直线平行
性质 判定
同位角相等 内错角相等 同旁内角互补
1
3 2
c
探究三
三、平行线的基本性质3 思考:类似的,已知两直线平行,能否可以得到同旁内角之间的数 量关系?
如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?

七年级数学下册教学课件《平行线的判定》

七年级数学下册教学课件《平行线的判定》
1.如图,直线AB,CD被直线EF所截,∠1=55°,下列条件
中能判定AB//CD的是( C )
A.∠2=35° B.∠2=45° C.∠2=55° D.∠2=125°
2.如图,若∠1=∠2,则 _A_B__//_D__E_;若∠2=∠3, 则_B__C_∥__E_F_.
问题3 能否利用内错角,或同旁内角来判定两条直线
同一个平面内,两条直线 不__相__交___
同__位__角__相__等__,两直线平行
内__错__角__相__等__,两直线平行
同__旁__内__角__互__补__,两直线平行
作业布置 1.教材P15习题5.2第1,2,4,5题.
(1)由∠CBE=∠A可以判定哪两条直线平行?
根据是什么?
D
C
答:(1)AD∥BC,根据是
“同位角相等,两直线平行”;
A
B
E
(2)由∠CBE=∠C可以判定哪两条直线平行? 根据是什么?
D
(2)DC∥AB,根据是“内
错角相等,两直线平行”;
A
C
B
E
知识结构
随堂训练,课堂总结
平行线的 判定
定义法 判定方法
总结
判定方法2:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.
c 3
a
2 b
符号语言: 因为∠2=∠3 , 所以 a∥b.
对应训练
1.如图是一条街道的两个拐角,若∠ABC与∠BCD均 为140°,则街道AB与CD的位置关系是__A_B__//_C_D__.
例 (1)如图,当∠1=∠3时,直线a,b平行吗? (2)当∠2+∠3=180°时,直线a,b平行吗? 为什么?

平行线的性质ppt课件

平行线的性质ppt课件

A. 100°
B. 110°
C. 120°
D. 130°
(第 8 题图)
(第 9 题图)
9. 如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF= (
A. 120°
B. 180°
C. 270°
) D. 360°
-5-
7.5 平行线的性质
10. 如图,AB∥CD,AE 平分∠CAB 交 CD 于点 E,若 ∠C=48°,则∠AED 等于 ______.
答案:解:EF∥BC,DE∥AB. 理由:∵∠1∶∠2∶∠3=2∶3∶4, ∴ 可设∠1=2k,∠2=3k,∠3=4k. ∵∠1+∠2+∠3=180°(平角的定义), ∴2k+3k+4k=180°, ∴9k=180°,k=20°, ∴∠1=40°,∠2=60°,∠3=80°. ∵∠AFE=60°(已知), ∴∠AFE=∠2(等量代换), ∴DE∥AB(内错角相等,两直线平行). ∵∠BDE=120°, ∴∠BDE+∠2=180°, ∴EF∥BC(同旁内角互补,两直线平行).
(第 10 题图)
-6-
7.5 平行线的性质
第二课时 平行线性质与判定的综合应用
▍考点集训/夯实基础
■考点 1 平行线性质与判定的综合应用
1. 如图,∠1=∠2,∠3=40°,则∠4 等于 (
A. 120°
B. 130°
C. 140°
) D. 40°
(第 1 题图)
-7-
7.5 平行线的性质
2. 点 P 为互相垂直的直线 a、b 外一点,过点 P 分别画直线 c、d,使
选择平行线的哪条性质来应用会使得计算简便.
-5-

北师大版八年级数学上册平行线的性质-同步课件

北师大版八年级数学上册平行线的性质-同步课件

例题欣赏 ☞
例题&解析
例2.如图,已知AE∥BC,∠B=∠C, AE是∠DAC的平分线吗?若 是,请写出证明过程;若不是,请说明理由. 解:AE是∠DAC 的平分线. 证明如下:∵AE∥BC(已知), ∴∠DAE=∠B(两直线平行,同位角相等), 又∵∠B=∠C(已知),∴∠DAE=∠CAE (等量代换), ∴AE是∠DAC 的平分线(角平分线的定义).
∴∠1=∠3(两直线平行,同位角相等). 又∵∠2=∠3 (对顶角相等),
∴∠l=∠2 (等量代换).
探索&交流
(2)性质2:两条平行直线被第三条直线所截, 内错角相等. 简称:两直线平行,内错角相等. 表达方式:如图,因为a∥b (已知) ,
所以∠1=∠2 (两直线平行,内错角相等) .
探索&交流
第七章 平行线的证明
4.平行线的性质
北师大版八年级数学上册
学习&目标
1.理解并掌握平行线的性质公理和定理.(重点) 2.能熟练运用平行线的性质进行简单的推理证明.(难点)
情境&导入
如图所示是马栏河,河上有两座桥:新华桥和光明桥.河的两岸
是两条平行的公路:黄河路与高尔基路,某测量员在A点测得
∠BAD=60°.如果你不通过测量,能否猜出∠ABC、∠ADC、∠DCB 的度数是多少?
理由: ∵AB∥CD(已知),
∴∠EAB=∠ACD(两直线平行,同位角相等). 又∵∠1=∠2(已知),
∴∠MAE=∠NCA(等式性质). ∴AM∥CN(同位角相等,两直线平行).
利用上述定理,你能证明哪些熟悉的结论? 两直线平行,内错角相等. 两直线平行,同旁内角互补.
尝试来证明一下
探索&交流
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 4 180 (2与4互补)
已知 a//b
结果
1 2
结论 两直线平行 同位角相等
b
a
a//b
3 2
b
a
两直线平行 内错角相等 两直线平行 同旁内角互补
b
巩固与反馈 课本第23页练习4、5、6 课外作业 课本第24—25页:第12、13题.
平行线的性质:
性质1:两直线平行,同位角相等. 性质2:两直线平行,内错角相等. 性质3:两直线平行,同旁内角互补.
、 如图是一块梯形铁片的残余部分,要订造一 块新的铁块,已经量得 A 115, D 100 ,你 想一想,梯形另外两个角 各是多少度? A 解:因为梯形上.下底互相平行,所以
两直线平行
方法4:如果两条直线都与第三条直线平行, 那么这两条直线也互相平行.
问题2:
根据同位角相等可以判定两直线平 行,反过来如果两直线平行同位角之间 有什么关系呢? 内错角,同旁内角之间又有什么关 系呢?
(1)用直尺和三角尺画出两条平行线
a∥b,再画一条截线c,使之与直线
a,b相交,并标出所形成的八角. (2)测量上面八个角的大小,记录下
C
比一比

平行线的“判定”与“性质”有什么不同
复习回顾
新课学习
巩固练习
课堂小结
小结:
已知 判定
同位角相等 内错角相等 同旁内角互补
得到
两直线平行
性质 得到 已知
谈一谈:本节课你有何收获?
小结 平行线的性质
同 位 角 内 错 角 同 旁 内 角 a 图形 1 2 c 3 2 c 4 2 c a//b
B D 2 4 3
C E
∴∠1=∠3 (两直线平行,同位角相等)
牛刀 小试:
A
<一>、
如图:已知 ∠ADE=60°∠B=60°∠AED=40° 求证:(1)DE∥BC (2) ∠C的度数 (1)∵∠ADE=60 ° ∠B=60 ° (已知) ∴∠ADE=∠B (等量代换)
E
D
∴DE∥BC
C
(同位角相等,两直线平行)
平行线的性质
灵宝市实验中学:郭银聚
教学目标
1、知识目标:使学生理解平行线的性质,能初步运用平行 线的性质进行有关计算.
2、能力目标:通过本节课的教学,培养学生的概括能力和 “观察-猜想-证明”的科学探索方法,培养学生的辩证思 维能力和逻辑思维能力.
3、情感目标:培养学生的主体意识,向学生渗透讨论的数 学思想,培养学生思维的灵活性和广阔性.
来.从中你能发现什么?
问题
如果两条直线平行,那么这两条平行线被 第三条直线所截而成的同位角有什么数量关系?
演示……
结论 两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
平行线的性质1(公理)
性质2
E
C
P
2
D
A
1 F
B
E’ E
C 6 4 8 5 3 A7 F’
结论
D
2
1B F
教学重点:平行线性质的研究和发现过程 是本节课的重点.
教学难点:正确区分平行线的性质和判定 是本节课的难点.
教学方法:开放式
课堂练习:已知直线AB 及其外 一点P,画出过点P的AB 的平行线。
P
A
B
问题
平行线的判定方法有哪三种?它 们是先知道什么……后知道什么?
同位角相等 内错角相等 同旁内角互补
思考 回答
如图,已知:a// b 那么3与2有什么关系?
3 2 1 a b
例如:如右图因为 a∥b, 所以 ∠1= ∠2(____________), 又 ∠3 = ___(对顶角相等), 所以∠ 2 = ∠3.
平行线的性质2 两条平行线被第三条直线所截,内错角相等 简单说成:两直线平行,内错角相等。
如图:已知a//b,那么2与 3有什么关系呢?
解:
1= 2(两直线平行,同位角相等) 1+ 3=180°(邻补角定义) 2+ 3=180°(等量代换)
a//b (已知)
c
a
2 3 1
b
平行线的性质3 两条平行线被第三条直线所截,同旁内角互补 简单说成:两直线平行,同旁内角互补。
B
(2)∵ DE∥BC
(已证)
∴∠AED=∠C (两直线平行,同位角相等)
又∵∠AED=40° (已知)
∴∠C=40 ° (等量代换)
< 二> 、
如图:已知 1= 2 A 1 2 求证: BCD+ D=180 D
B
1= 2(已知) AD// BC ( 内错角相等,两直线平行 ) BCD+ D=180 ( 两直线平行,同旁内角互补 ) 如图:
例1
D
A与B互补, D与C互补.
于是 B 180 -115 65,
C 180 100 80.
B
C
梯形的另外两个 角分别是 65,80.
例2:P23第3题
(1)∵AB∥CD (已知) A ∴∠1=∠2 (两直线平行,内错角相等) 1 又∵∠1=110° (已知) ∴∠1=∠2=110° (等量代换) (2)∵AB∥CD(已知) 又∵∠1=110°(已知) (等量代换) ∴∠1=∠3=110° (3)∵AB∥CD(已知) ∴∠1+∠4=180° (两直线平行,同旁内角互补) 又∵∠1=110° (已知) ∴∠4=70°(等式性质)
相关文档
最新文档