银行不良贷款问题的数学模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于回归分析模型的对银行不良贷款的预测

摘要

本文基于商业银行不良贷款余额进一步增加,不良贷款率攀升的背景而提出的;要解决的问题是为商业银行预测不良贷款额变化趋势,并找出控制不良贷款的方法。基于建设银行现状,对问题展开分析并通过网络等渠道查找相关的数据,对影响银行不良贷款余额的显著因素进行归纳。同时采用多元线性规划和多项式回归相结合的方法建立数学模型,就不良贷款余额与各种因素的关系展开分析。

对于第一问,对“总资产”、“资本充足率”、“货代比”、“存款总额”、“贷款总额”、“利息收入”等六个影响因素及不良贷款率,用回归分析的方法建立模型。先用通过SPSS软件分析其相关程度并排除无关变量,再用MATLAB软件,计算出的相关系数,并进行多元线性回归求得不良贷款额的回归方程,结合“贷款总额”从而对银行未来对不良贷款进行预测。不良贷款率影响因素如图4.1所示:

图1 不良贷款率与各因素的关系

对于第二问,对“业绩增速”、“净息差”与“不良贷款”,采用多元线性回归和多元多项式回归的方法建立数学模型。先用通过SPSS软件分析其相关程度,并通过MATLAB软件绘制散点图。计算出的相关系数,并进行多元多项式回归,并把多元多项式回归转化为多元线性回归,求得不良贷款额率的增长的回归方程,得到了“业绩增速”、“净息差”与“不良贷款”之间的关系。

对于第三问,基于上面两个模型,用控制变量的方法、以及微分的思想方法,以“直”代“曲”,化繁为简,对不良贷款的变化进行预测,并对其进行定量分析。

关键字:商业银行预测不良贷款回归分析相关系数残差分析定量分析

一问题重述

1.1 背景知识

商业银行主要业务之一就是对项目建设、固定资产投资等进行贷款。目前较为突出的的问题是虽然我国银行贷款额平稳增长,但是商业银行普遍存在的比例较高的呆、坏帐和逾期贷款等不良贷款问题,使不良贷款率过高,给银行贷款业务的发展带来较大压力。

1.2 现状分析

截至2014年4月29日晚间,工农中建四大行的一季报出齐。虽然四家银行的业绩增速、净息差变化不尽相同,但是却暴露出了同一个问题——不良贷款余额进一步增加,不良贷款率几乎都在攀升。这也是几乎所有上市银行面临的窘境。在资产质量方面,从一季报可以看出,随着经济结构转型推进,去产能化和去杠杆化等各种因素对包括四大行在内的商业银行的资产质量构成影响。虽然信贷质量总体保持稳定,但四家银行的不良贷款余额都在进一步增加。而不良贷款率仅农行与去年年末持平,其余三家均进一步上升。

1.3 需解决的问题

1.利用网络等渠道收集有关数据资料,建立银行不良贷款的预测模型,并分析模型的误差和可信度。

2.银行的业绩增速、净息差变化与不良贷款的增长之间是否存在联系,试进行实证分析。

3.不良贷款是多方面因素造成的,试通过相关的数据作定量分析,帮银行找出控制不良贷款的途径和办法。

二模型假设

1.假设不良贷款的变化趋势趋于稳定,研究数据以外的其他因素影响不发生偶

然的变化;

2.网络等渠道收集的各类信息真实可靠贴近实际,能反映不良贷款的数据;

3.调查数据年间货币汇率和银行的利率没有重大的变化;

4.假设银行对不良贷款预测的弹性需求趋于线性;

5.本论文不考虑各银行之间的竞争关系。

三符号说明

符号表示意义

N不良贷款额

y不良贷款额率

b回归系数

k

x总资产

1

x资本充足率

2

x存贷比

3

x存款总额

4

x贷款总额

5

x利息收入

6

x净利息差

7

x业绩增速

8

Q残差平方和

Z不良贷款额率的增长

四问题分析

不良贷款,不良贷款亦指非正常贷款或有问题贷款,是指借款人未能按原定的贷款协议按时偿还商业银行的贷款本息,或者已有迹象表明借款人不可能按原定的贷款协议按时偿还商业银行的贷款本息而形成的贷款。然而不良贷款的形成客观上与银行业务的种种方面息息相关。其中银行的“总资产”、“资本充足率”、“存贷比”、“存款总额”、“贷款总额”、“利息收入”等六个方面影响甚重。

就问题一分析,大量的数据与材料表明,造成不良贷款的原因离不开6个关键性的因素:“总资产”、“资本充足率”、“存贷比”、“存款总额”、“贷款总额”、“利息收入”。通过对上述6个变量的数据整合,采取多元线性回归分析预测的方法建立合适的模型。

对于问题二,通过业绩增速、净息差变化与不良贷款率的增长之间的数据关

系,通过绘制直观的散点图并作数据拟合粗略的得到分别对应的关系。然后尝试通过建立多元的线性回归模型及多项式回归模型,然后把两种模型做对比,以直至找到更合理的,并且相关系数大的模型以找到不良贷款与业绩增速和净息差之间的关系,并检验其残差平方和。

对于第三问,通过前两问的分析求解,我们已经得到了对不良贷款额的估计。从所得到的多元函数关系,就可以利用控制这些变量,以达到控制不良贷款的目的,此外,不良贷款是多方面造成的,我们还可以从贷款者的角度分析不良贷款的成因,利用这些信息,帮助银行有效控制不良贷款。

五 模型的建立与求解

5.0 数据处理

由于原数据中“总资产”“ 存款总额”“贷款总额”“利息收入”数值较大及“资本充足率”“存贷比”数值较小,造成有效数字位数不能统一,为了消除各变量数值大小差异的影响,故将数据标准化。对上述几个指标中,以“亿”作为单位的数据将其缩小一百倍,用“百分比”为单位的将其放大一百倍,数据处理后方便计算,该处理并不对模型造成影响。

在控制变量的过程中,为了对各个变量的影响作定量分析,把近年各指标的平均数作为模型变量的稳定值。 5.1.1 基于问题一模型建立

根据散点图分析结果以及各指标的计算公式,可以认为“总资产”、“资本充足率”、“存贷比”、“存款总额”、“贷款总额”、“利息收入”6个因素与“不良贷款额率”有一定的线性关系。建立了上述六个指标与“不良贷款额率”之间的关系,即可用各个指标求出“不良贷款额率”的估计值,然后通过该“不良贷款额率”估计值与“贷款总额”即可预测不良贷款的情况。于是就问题一的模型,先对其进行多元线性回归分析。

多元线性回归的参数估计在要求误差平方和(∑2ε)为最小的前提下,用最小二乘法求解参数。 建立多元线性回归分析模型为:

()

⎩⎨⎧=+++++++=2

6655443322110,0σ

εε

N x b x b x b x b x b x b b y 将收集到的独立的观测数据记:

()654321,,,,,,t t t t t t t x x x x x x y ,7,6,5,4,3,2,1=t

相关文档
最新文档