离心泵汽蚀原因分析及解决对策

合集下载

离心泵汽蚀的原因及处理方法

离心泵汽蚀的原因及处理方法

离心泵汽蚀的原因及处理方法离心泵是一种常见的机械设备,广泛应用于工业、农业、建筑、市政等领域。

然而,在离心泵的使用过程中,汽蚀问题经常会出现,给设备的正常运行带来很大的困扰。

本文将从离心泵汽蚀的原因及处理方法两个方面进行探讨。

一、离心泵汽蚀的原因1.液体中的气体液体中的气体是离心泵汽蚀的主要原因之一。

当液体中存在一定量的气体时,它们会随着液体一起被吸入离心泵中,进入泵腔内部。

当液体通过泵轮时,气体会被压缩,形成气泡,这些气泡在后续的工作中会不断扩大,最终破裂,形成高速的水击波,从而对离心泵的叶轮、泵壳等零部件造成损坏。

2.液体的温度液体的温度也是离心泵汽蚀的重要原因之一。

当液体的温度升高时,液体中的气体容易溶解,从而导致气体的含量下降。

此时,当液体流经离心泵时,由于气体含量的减少,水泵中的压力也会下降,进而形成真空,使液体内部的气体被迫从液体中释放出来,形成气泡,从而引起汽蚀。

3.液体的粘度液体的粘度也是离心泵汽蚀的原因之一。

当液体的粘度较高时,液体在流动过程中的阻力较大,使得液体的流速变慢。

此时,液体中的气体容易在液体内部积聚,形成气泡,从而引起汽蚀。

4.泵的设计泵的设计也是离心泵汽蚀的原因之一。

泵的设计不合理,如叶轮的进口角度太陡,泵的进口管道过长等,都会导致液体在流动过程中产生较大的阻力,从而引起汽蚀。

二、离心泵汽蚀的处理方法1.改善液体的供给方式改善液体的供给方式是减少汽蚀的有效方法之一。

在液体的供给过程中,应尽量避免液体中的气体被吸入泵内。

为此,可以采取以下措施:(1)改善进口管道的设计,减少管道的弯曲和阻力,保持管道的通畅。

(2)增加进口管道的口径,使液体的流速降低,减少气体的混入。

(3)增加进口管道的长度,延长液体在管道内停留的时间,使气体有更多的时间溶解在液体中。

2.改善液体的物理性质改善液体的物理性质也是减少汽蚀的有效方法之一。

在液体的物理性质方面,主要是液体的温度和粘度。

为此,可以采取以下措施:(1)保持液体的温度稳定,避免液体温度的过高或过低。

离心泵发生气缚和气蚀现象的原因

离心泵发生气缚和气蚀现象的原因

离心泵发生气缚和气蚀现象的原因离心泵是一种常用的流体输送设备,用于输送液体或液体与气体混合物。

然而,在特定情况下,离心泵可能会出现气缚和气蚀现象,这会降低泵的效率,并且对泵的正常运行产生影响。

以下是引起离心泵气缚和气蚀现象的原因:一、气缚现象的原因:1.进口侧供液中含有大量气体:如果进口侧的供液中含有大量气体,当这些气体被抽入离心泵时,会形成气缚现象。

气体堵塞了液体的流通路径,使得泵内产生气蚀现象,进而减少了泵的流量和扬程。

2.进口管道设计不合理:进口管道设计不合理会导致液体在进口管道中产生湍流,并引入空气。

这些空气被泵抽入后,阻碍了液体的正常流动,形成了气缚现象。

3.进口管道降压:当进口管道发生过快的降压时,液体中的溶解气体会析出并形成气泡,造成气缚现象。

4.入口阀门故障:进口阀门的故障,如卡阀、失效等,会导致进口侧的压力下降,使液体中的气体析出并形成气泡,从而产生气缚现象。

二、气蚀现象的原因:1.旋涡产生:当泵的流量过大或进口侧的供液过高,液体流动会产生旋涡,这会将空气吸入泵内,造成气蚀现象。

2.进口管道设计不合理:进口管道设计不合理会导致液体在进口管道中产生湍流,并引入空气。

这些空气被泵抽入后,会与液体形成混合物,导致气蚀现象。

3.含固体杂质:液体中含有较多的颗粒物质、污垢或沉积物时,会形成微小气泡,并在液体中形成气蚀现象。

4.出口侧压力过高:当离心泵的出口侧压力过高时,将与液体中的气体形成混合物,使得气蚀现象发生。

5.液体过热:液体过热会导致液体中的溶解气体析出并形成气泡,从而引起气蚀现象。

为避免离心泵出现气缚和气蚀现象,可以采取以下措施:1.提高进口侧的压力,降低进口侧的供液中气体的含量。

2.合理设计进口管道,避免湍流和气体的引入。

3.定期检查和维护进口阀门,确保其正常工作。

4.适当调整进口管道的降压率,避免液体中的气体析出。

5.减少旋涡的产生,降低液位高度和流量。

6.过滤液体,减少固体杂质的含量。

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍
离心泵的汽蚀现象是指在泵运行过程中,由于流体在泵叶轮周围形成了负压区域,造成液体中的蒸汽产生泡沫和空化现象,从而影响离心泵的正常工作。

离心泵的汽蚀现象主要原因有以下几个方面:
1. 进口压力过低:当进口压力过低时,会导致负压区域扩大,形成空化现象,进而引起汽蚀。

这可能是由于系统进口管道设计不当、管道内有空气或气体混入,或者是由于液位下降等引起进口压力降低。

2. 流体速度过高:当液体进入离心泵时速度过高,会导致液体在叶轮周围产生过高的负压,形成空化现象,进而引起汽蚀。

这可能是由于泵的转速过高或泵的进口截面积过小。

3. 液体中含有气体或蒸汽:液体中含有气体或蒸汽会增大液体的蒸汽压力,使液体易产生汽蚀现象。

4. 泵的设计或制造缺陷:离心泵的叶轮或叶片设计不当,叶轮与泵壳之间的间隙过大,也会导致泵产生汽蚀现象。

离心泵汽蚀的危害包括:降低泵的工作效率、降低泵的扬程、增加能量消耗、增加振动和噪音,甚至会导致泵的损坏。

为了避免离心泵的汽蚀现象,可以采取以下措施:
1. 确保泵的进口压力不低于设计要求,避免进口压力过低。

2. 合理设计进口管道,确保管道内无气体或空气混入。

3. 控制泵的流量,避免流速过高。

4. 减少液体中的气体含量,通过适当的脱气措施。

5. 选择合适的泵型和合理的泵设计,避免泵的鼓风效应。

对于离心泵来说,汽蚀是一种常见的故障现象,需要注意泵设计、操作和维护,以避免或减少汽蚀的发生。

离心泵汽蚀原因及预防措施

离心泵汽蚀原因及预防措施

离心泵汽蚀原因及预防措施汽蚀主要危害(1)造成材料破坏。

汽蚀发生时,由于机械剥蚀于化学腐蚀的共同作用,使材料受到破坏。

由于汽蚀现象的复杂性,所以其形成机理直到现在仍在研究探讨中。

一般认为水力冲击引起的机械剥蚀,首先使材料破坏,而且是造成材料破坏的主要因素。

(2)产生噪声和振动。

汽蚀发生时汽泡的破裂和高速冲击会引起严重的噪声。

另外,汽蚀过程本身是一种反复凝结、冲击的过程,伴随特别大的脉动力。

如果这些脉动力的频率与设备的自然频率接近,就会引起强烈的振动。

如果汽蚀造成泵转动部件材料破坏,必然影响转子的静平衡及动平衡,导致严重的机械振动。

(3)使离心泵的性能下降。

泵汽蚀时,会使其性能下降。

泵内气泡较少时,泵的性能曲线并无明显的变化,这是汽蚀的初生阶段。

气泡大量产生时,流道被“堵塞”,这时汽蚀已到了发达阶段。

表现在泵的性能曲线上,出现明显的变化,性能曲线发生显著下降,出现了“断裂”工况。

但是不同的比转速泵,其汽蚀性能曲线下降的情况是不同的。

防止离心泵汽蚀的9 大措施1.结构措施:采用双吸叶轮,以减小经过叶轮的流速,从而减小泵的汽蚀余量;在大型高扬程泵前装设增压前置泵,以提高进液压力;叶轮特殊设计,以改善叶片入口处的液流情况;在离心叶轮前面增设诱导轮,以提高进入叶轮的液流压力。

2.泵的安装高度,泵的安装高度越高,泵的入口压力越低,降低泵的安装高度可以提高泵的入口压力。

因此,合理的确定泵的安装高度可以避免泵产生汽蚀。

3.吸液管路的阻力,在吸液管路中设置的弯头、阀门等管件越多,管路阻力越大,泵的入口压力越低。

因此,尽量减少一些非必要的管件或尽可能的增大吸液管直径,减少管路阻力,可以防止泵产生汽蚀。

4.泵的几何尺寸,由于液体在泵入口处具备的动能和静压能可以相互转换,其值保持不变。

入口液体流速高时,压力低,流速低时,压力高,因此,增大泵入口的通流面积,降低叶轮的入口速度.可以防止泵产生汽蚀。

5.液体的密度。

输送密度越大的液体时泵的吸上高度就越小,当用已安装好的输送密度较小液体的泵改送密度较大的液体时,泵就可能产生汽蚀,但用输送密度较大液体的泵改送密度较小的液体时,泵的入口压力较高,不会产生汽蚀。

离心泵汽蚀原因及处理方法

离心泵汽蚀原因及处理方法

离心泵汽蚀原因及处理方法以离心泵汽蚀原因及处理方法为标题,写一篇文章:离心泵是一种常用的工业设备,广泛应用于供水、排水、农田灌溉等领域。

然而,在使用过程中,我们可能会遇到一个问题,那就是离心泵出现汽蚀现象。

汽蚀会导致泵的性能下降,甚至可能损坏泵的部件。

因此,了解汽蚀的原因以及相应的处理方法,对于正确运行和维护离心泵至关重要。

我们来了解一下汽蚀的原因。

汽蚀是指在离心泵工作过程中,由于介质中的蒸汽或气泡被吸入,使得泵的性能下降的现象。

汽蚀的主要原因有以下几点:1. 进口压力过低:如果离心泵的进口压力过低,就会导致介质中的空气被吸入,形成气泡。

这些气泡会随着液体一起被泵送出去,进而导致汽蚀现象的发生。

2. 进口管道设计不合理:如果进口管道设计不合理,例如管道弯曲过多、管道直径变化、管道太长等,都会增加进口阻力,导致进口压力降低,从而引起汽蚀。

3. 泵体密封不良:如果离心泵的密封不良,就会导致泵体内的压力降低,从而引起汽蚀。

泵体密封不良可以是由于密封件老化、损坏或安装不当等原因造成的。

那么,我们应该如何处理离心泵汽蚀问题呢?下面给出一些处理方法供参考:1. 提高进口压力:可以通过提高进口压力的方法来解决汽蚀问题。

可以增加进口管道的高度,使得进口压力增加;或者增加进口管道的直径,减小进口阻力,提高进口压力。

2. 改善进口管道设计:如果进口管道设计存在问题,可以进行改进。

例如,减少管道的弯曲,增大管道的直径,缩短管道的长度等,都可以减小进口阻力,提高进口压力,有效解决汽蚀问题。

3. 检查和更换密封件:定期检查泵体的密封件,及时更换老化或损坏的密封件,确保泵体的密封性能良好,避免泄漏,提高泵体内的压力,从而解决汽蚀问题。

4. 定期维护和清洗:定期对离心泵进行维护和清洗,清除管道内的杂质和积垢,保持泵体内部的清洁,减少阻力,提高泵的性能,避免汽蚀的发生。

5. 安装气液分离器:在离心泵的进口处安装气液分离器,可以有效地分离气体和液体,减少气泡的进入,防止汽蚀的发生。

离心泵气蚀原因及措施

离心泵气蚀原因及措施

离心泵气蚀原因及措施一、汽蚀发生的机理离心泵运转时,流体的压力随着从泵入口到叶轮入口而下降,在叶片附近,液体压力最低。

此后,由于叶轮对液体做功,压力很快上升。

当叶轮叶片入口附近压力小于等于液体输送温度下的饱和蒸汽压力时,液体就汽化。

同时,还可能有溶解在液体内的气体溢出,它们形成许多汽泡。

当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡会凝结溃灭形成空穴。

瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然剧增(有的可达数百个大气压)。

这不仅阻碍流体的正常流动,更为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数小弹头一样,连续地打击金属表面,其撞击频率很高(有的可达2000~3000Hz),金属表面会因冲击疲劳而剥裂。

若汽泡内夹杂某些活性气体(如氧气等),他们借助汽泡凝结时放出的能量(局部温度可达200~300℃),还会形成热电偶并产生电解,对金属起电化学腐蚀作用,更加速了金属剥蚀的破坏速度。

上述这种液体汽化、凝结、冲击,形成高压、高温、高频率的冲击载荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为汽蚀。

二、汽蚀的严重后果汽蚀是水力机械的特有现象,它带来许多严重的后果。

⑴汽蚀使过流部件被剥蚀破坏通常离心泵受汽蚀破坏的部位,先在叶片入口附近,继而延至叶轮出口。

起初是金属表面出现麻点,继而表面呈现槽沟状、蜂窝状、鱼鳞状的裂痕,严重时造成叶片或叶轮前后盖板穿孔,甚至叶轮破裂,造成严重事故。

因而汽蚀严重影响到泵的安全运行和使用寿命。

⑵汽蚀使泵的性能下降汽蚀使叶轮和流体之间的能量转换遭到严重的干扰,使泵的性能下降,严重时会使液流中断无法工作。

⑶汽蚀使泵产生噪音和振动气泡溃灭时,液体互相撞击并撞击壁面,会产生各种频率的噪音。

严重时可以听到泵内有“噼啪”的爆炸声,同时引起机组的振动。

而机组的振动又进一步足使更多的汽泡产生和溃灭,如此互相激励,导致强烈的汽蚀共振,致使机组不得不停机,否则会遭到破坏。

离心泵的汽蚀现象及消除案例分析

离心泵的汽蚀现象及消除案例分析

离心泵的汽蚀现象及消除【案例描述】离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的液体压力达到最低,此后由于叶轮对液体作功,液体压力很快上升。

当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就汽化。

同时,使原来溶解在液体内的气体也逸出,它们形成气泡。

当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加。

这样,不仅阻碍液体正常流动,尤为严重的是,如果这些气泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。

其撞击频率很高,于是金属表面因冲击疲劳而剥裂。

如若气泡内夹杂某种活性气体(如氧气等),它们借助气泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。

象这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为离心泵的汽蚀现象。

汽蚀发生时,由于机械剥蚀与化学腐蚀的共同作用,致使材料受到破坏,还会出现噪声和振动。

汽蚀发展严重时,大量气泡的存在会堵塞流道的截面,减少流体从叶轮获得的能量,导致泵中液体中断,不能正常工作。

【案例分析】一、离心泵汽蚀的原因液体的汽化程度与压力的大小、温度高低有关。

当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,便产生汽蚀故障。

凡影响液体压力和饱和蒸汽压力的因素都会影响汽蚀的发生,通常的因素有:1.泵进口的结构参数:包括叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。

2.泵的操作条件:它包括泵的流量、扬程及转速等。

3.泵的安装位置:它包括泵的吸入管路水力损失及安装高度。

4.环境因素:它包括泵安装地点的大气压力以及输送液体的温度等。

二、离心泵汽蚀的诊断方法判断离心泵是否发生汽蚀,可以采用观察法、泵体外噪声法、振动法、超声波法等。

离心泵汽蚀现象及解决方案

离心泵汽蚀现象及解决方案

离心泵汽蚀现象及解决方案1、汽蚀现象由于叶轮叶片入口附近液体压力小于或等于液体输送温度下的饱和蒸汽压力时,液体就汽化,同时还可能有溶解在液体内的气体逸出,形成大量气泡,气泡随液体流到叶道内压力较高处时又瞬时凝结溃灭。

在气泡凝结溃灭的瞬间,气泡周围的液体迅速冲入气泡凝失形成的空穴,形成强大的局部高频高压水击,金属表面因疲劳而产生剥蚀。

同时,由于活泼气体(如氧气)的存在以及气泡凝结时产生的局部高温,导致金属表面发生电化学腐蚀。

上述这一过程称为汽蚀现象。

2、影响汽蚀的因素影响液体压力和饱和蒸汽压力的因素都会影响汽蚀的发生。

影响的因素:(1)泵进口的结构参数:包括叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。

(2)泵的操作条件:它包括泵的流量、扬程及转速等。

(3)泵的安装位置:它包括泵的吸入管路水力损失及安装高度。

(4)环境因素:它包括泵安装地点的大气压力。

(5)影响的因素,它包括介质本身的性质及介质操作温度。

3、解决离心泵汽蚀问题的几个方案(1)改进泵入口的结构参数这一方案适于在离心泵的设计制造阶段,该方法在生产现场很少采用。

(2)在泵的吸入口加装诱导轮加装诱导轮,对提高离心泵的抗汽蚀性能,解决汽蚀问题,效果很显著。

而且其结构简单易于制造安装,运行维修方便,造价低,在不影响生产的前提下即可进行安装调试,特别适于在生产现场推广应用。

(3)合理设计吸入管路及调整安装高度该方法虽能彻底消除汽蚀问题,但在生产现场却很少采用。

这是因为调整泵的吸入管路及安装高度,工程量大、施工费用高,并且受施工环境的制约,只有在装置停车或大检修时才能进行;同时,由于工艺条件的限制,调整泵的吸入管路及安装高度又将影响后续工艺,具有连锁反应。

(4)优化工艺操作条件在工艺条件允许的情况下,改变泵的流量、扬程、转速及介质的操作温度等操作参数,可以避免汽蚀的发生。

但由于工艺条件的限制,优化工艺操作条件具有很大的局限性,大部分情况下效果并不显著。

离心泵汽蚀原因分析及解决对策

离心泵汽蚀原因分析及解决对策

离心泵汽蚀原因分析及解决对策撰稿人:刘步宇化学品事业部机械动力部2004年11月目录摘要---------------------------------------------------(1)1、前言------------------------------------------------(1)2、工艺流程与设备概况----------------------------------(1)2.1 工艺流程简介----------------------------------------(1)2.2 离心泵参数------------------------------------------(3)3、泵运行状况------------------------------------------(3)4、汽蚀原因分析----------------------------------------(3)4.1 汽蚀现象-------------------------------------------(3)4.2 汽蚀成因分析---------------------------------------(4)4.3 PP-65泵汽蚀原因确定--------------------------------(7)5、汽蚀解决对策----------------------------------------(8)5.1 解决汽蚀方案的比选---------------------------------(8)5.2 解决汽蚀方案的确定--------------------------------(10)5.3 诱导轮的设计---------------------------------------(11)5.3.1 诱导轮的设计计算---------------------------------(11)5.3.2 安装诱导轮后的抗汽蚀性能计算---------------------(16)5.3.2.1诱导轮汽蚀余量----------------------------------(16)5.3.2.2 加装诱导轮后主叶轮汽蚀性能分析-----------------(16)6、实施效果---------------------------------------------(17)7、结论-------------------------------------------------(18)8、参考文献---------------------------------------------(18)离心泵汽蚀原因分析及解决对策摘要:本文通过对离心泵汽蚀原因进行分析,提出改善离心泵汽蚀性能的几个方案。

离心泵汽蚀的原因及处理方法

离心泵汽蚀的原因及处理方法

离心泵汽蚀的原因及处理方法离心泵是一种常见的工业泵,广泛应用于水处理、石油化工、冶金、建筑、环保等领域。

然而,在使用过程中,离心泵常常会出现汽蚀问题,严重影响泵的使用寿命和性能。

本文将介绍离心泵汽蚀的原因及处理方法。

一、离心泵汽蚀的原因汽蚀是指液体中存在气体泡的情况下,气体在高速流动时被液体冲刷而形成的孔穴或坑洞,是一种破坏性的过程。

离心泵汽蚀主要是由以下原因引起的:1.水位过低或进口管道阻塞当水位过低或进口管道阻塞时,离心泵将无法吸入足够的液体,从而在泵内形成空气泡。

当空气泡进入泵叶轮时,由于气体的压力和温度较低,容易形成气泡爆炸,导致泵叶轮表面的金属材料被破坏,形成汽蚀孔。

2.流体温度过高当流体温度过高时,液体中的气体会因为温度升高而减少,从而形成气泡。

当气泡进入泵叶轮时,由于气体的压力和温度较低,容易形成气泡爆炸,导致泵叶轮表面的金属材料被破坏,形成汽蚀孔。

3.泵的设计不合理泵的设计不合理是引起汽蚀的主要原因之一。

例如,泵的进出口管道设计不合理、泵叶轮的叶片角度不正确、泵叶轮的几何形状不合理等。

这些因素都会导致流体在泵内产生剧烈的涡流和湍流,从而产生汽蚀。

4.泵的工况不稳定泵的工况不稳定也是引起汽蚀的原因之一。

例如,泵的流量变化较大、泵的进口压力变化较大等。

这些因素都会导致泵内的流体产生剧烈的涡流和湍流,从而产生汽蚀。

二、离心泵汽蚀的处理方法离心泵汽蚀是一种严重的问题,需要采取相应的措施进行处理。

以下是几种常见的处理方法:1.调整泵的进口管道如果离心泵的进口管道存在阻塞或水位过低,应及时调整进口管道,确保泵能够正常吸入液体。

同时,还应检查进口管道的设计是否合理,如管道截面积是否足够、管道弯头是否过多等,确保泵的进口管道畅通无阻。

2.调整泵的工况如果离心泵的工况不稳定,应及时调整泵的进口压力、流量等参数,确保泵能够在稳定的工况下运行。

同时,还应检查泵的叶轮是否合理,如叶轮的角度、叶轮的几何形状等,确保泵能够在稳定的工况下运行。

离心泵气蚀情况分析及应对措施

离心泵气蚀情况分析及应对措施

案例三:某自来水公司的气蚀预防措施
3. 应对措施
水质调整:根据季节和天气变化,调整自来水的 成分,使其不易发生气蚀。
设计优化:对吸入管路进行优化设计,缩短管路 长度,适当增加管径,以提高泵进口处的压力。
05
总结与展望
离心泵气蚀问题的重要性和挑战性
重要性和挑战性
离心泵在许多工业领域中都有广泛应用,如化工、石油、食品等。然而,离心泵在运行过程中常常会 遇到气蚀问题,导致性能下降、噪音和振动增加,严重时甚至会损坏泵体。气蚀问题已成为离心泵运 行和维护中的重要挑战之一。
2. 原因分析
高温铁水:高温铁水中含有大量的气体,这些气体在泵的进口处因压力降低而析出形成气泡 。
压力变化:由于泵的工作原理,在泵的进口和出口处存在压力变化,导致气泡的形成和破裂 。
案例二:某钢铁厂的气蚀问题及解决方案
• 材料选择:泵体和管道的材料选择不当,无法承受高温和 气蚀的共同作用。
案例二:某钢铁厂的气蚀问题及解决方案
杂质和气泡。
降低输送温度:通过冷却系统 将液体温度控制在一定范围内
,减少液体的氧化。
案例二:某钢铁厂的气蚀问题及解决方案
• 气蚀现象:在某钢铁厂中,离心泵在抽取高温铁水时,由于 高温和压力变化,铁水中的气体不断析出,形成大量气泡, 这些气泡在泵的出口处破裂,导致泵体和管道受到强烈的冲 击和磨损。
案例二:某钢铁厂的气蚀问题及解决方案
气蚀现象的重要性
• 气蚀现象不仅会影响水泵的性能和效率,还会对水泵的部件造成损伤,缩短其使用寿命。因此,对离心泵的气蚀现象进行 分析和采取有效的应对措施是十分必要的。
02
离心泵气蚀的原理及影响
气蚀的原理
气蚀是指液体在压力作用下产生汽化,形成气泡,当气泡破裂时会对液体产生冲 击,从而对设备产生损伤。

管道离心泵显现汽蚀现象怎么办

管道离心泵显现汽蚀现象怎么办

管道离心泵显现汽蚀现象怎么办在使用管道离心泵时,常常会显现汽蚀现象。

汽蚀是由于液体中存在气体或液体中的压力降低导致产生气泡,泵的进口压力低于汽化压力,气泡随着液体进入泵内,压力上升后,气泡会猛烈地崩溃,产生高速水击击中泵叶片,引起泵内腔体的瞬间压力上升,加速泵的磨损或轴承的损坏,甚至导致设备的停机甚至损坏。

因此,必需适时处理汽蚀现象。

检查泵的进口流量首先,我们需要检查泵的进口流量,确保泵的进口流量与设计值相同。

假如进口流量不足,泵会产生较高的负压,导致汽蚀现象的显现。

此时,我们可以通过掌控进口管道的阀门开度、调整水泵的转速等方式调整进口流量,以确保泵的正常运转。

加大进水口直径假如发觉进口流量不足无法更改,则需要加大进水口直径以加添进口流量。

大的进口口径可以加添泵的进口阻力,降低泵腔内的负压,从而降低汽蚀现象的发生概率。

提高泵的进口压力另外,假如管道离心泵显现汽蚀现象,可以通过提高泵的进口压力来解决问题。

加添进口压力可以降低负压,从而削减气蚀现象的显现。

如何提高进口压力?首先调整进水阀门的开度,使之保持适当的流量,其次,我们可以通过加添进口管道的直径、更改进口管道的布置方式等方法来提高进口压力。

安装泵前过滤器在使用管道离心泵的过程中,可能会存在液体中存在杂质、气泡等问题,假如直接进入泵内,简单导致泵的汽蚀现象。

这时,我们可以通过安装泵前过滤器来过滤掉杂质,削减液体中的气泡含量,从而降低汽蚀现象的发生概率。

更换抗气蚀性能较好的泵叶片最后,假如以上方法无法解决汽蚀问题,我们可以考虑更换抗气蚀性能较好的泵叶片。

汽蚀现象紧要是由于泵的叶片受到高速水击,假如更换抗气蚀性能较好的泵叶片,可以有效降低泵叶片的磨损,延长泵的寿命。

总之,管道离心泵显现汽蚀现象,我们需要适时实行有效的措施来解决问题。

通过以上方法,我们可以大大降低汽蚀现象的显现概率,使泵的使用更加稳定。

离心泵汽蚀原因及处理方法

离心泵汽蚀原因及处理方法

离心泵汽蚀原因及处理方法
离心泵是一种常用的流体输送设备,但在使用过程中,可能会出现汽
蚀现象。

汽蚀会导致离心泵的性能下降、噪音增大、甚至设备损坏。

因此,了解离心泵汽蚀的原因及处理方法非常重要。

1. 汽蚀的原因
(1)液体中气体含量过高。

当液体中气体含量超过一定范围时,气泡就会在叶轮前缘产生,并随着液体进入叶轮中心区域。

在这个区域内,压力低于饱和压力,气泡就会瞬间膨胀和破裂,产生高速水锤冲击叶
轮表面。

(2)进口压力过低。

当进口压力低于某一临界值时,液体将沸腾并形成气泡,在叶轮前缘产生汽蚀现象。

(3)进口流速过大。

当进口流速超过一定范围时,流动状态将变得不稳定,在叶轮前缘产生湍流现象,并引起汽蚀。

2. 汽蚀的处理方法
(1)降低液体中气体含量。

通过加装气体分离器、提高进口液位等方
法,可以有效降低液体中气体含量。

(2)增加进口压力。

通过增加进口管道直径、减小管道弯曲程度等方法,可以提高进口压力,避免汽蚀。

(3)减小进口流速。

通过增加进口管道长度、减小管道截面积等方法,可以有效减小进口流速,避免产生湍流现象。

(4)改变叶轮结构。

采用特殊的叶轮结构或材料,可以提高叶轮的抗汽蚀性能。

(5)安装抗汽蚀衬里。

在泵的内部安装抗汽蚀衬里,可以有效保护泵的叶轮和壳体不受汽蚀损伤。

总之,离心泵汽蚀是一种常见的问题,在实际使用中需要注意液体中
气体含量、进口压力和流速等因素,并采取相应的处理措施来避免产
生汽蚀现象。

火力发电厂离心泵的汽蚀现象及其防范措施

火力发电厂离心泵的汽蚀现象及其防范措施
B电厂采用了以下措施:对泵的结构进行优化,提高泵的抗汽蚀性能;采用新型材料和涂层技术,提高泵的耐磨 性和耐腐蚀性;加强运行管理,合理调整运行参数,降低汽蚀发生的可能性。
C电厂优化运行条件的实践
背景介绍
C电厂在运行过程中,发现离心泵存在汽蚀现象,影响了泵的性能和寿命。为了解决这一问题,C电 厂决定优化运行条件。
解决方案
为了解决汽蚀问题,A电厂采用了以下措施:更换新型泵,提高泵的抗汽蚀性能 ;加强泵的维护和检修,定期更换易损件;优化运行条件,降低汽蚀发生的可能 性。
B电厂离心泵抗汽蚀改造案例
改造背景
B电厂的离心泵由于汽蚀现象,导致泵的性能下降,维修成本增加。因此,B电厂决定对离心泵进行抗汽蚀改造。引进和吸收 先进的设计理念和技术成果,提高我国火力发电 厂离心泵的技术水平和可靠性。
加大对科研和人才的投入力度,培养一批具备创 新能力和实践经验的科研人员和技术骨干,为我 国火力发电厂的持续发展和提升提供强有力的人 才保障。
THANK YOU
感谢观看
优化措施
C电厂采用了以下措施:根据实际需求,合理调整离心泵的运行参数;加强水质管理和监督,减少水 中杂质对泵的影响;优化泵的安装和布局,降低汽蚀发生的可能性。
06
结论与展望
结论
汽蚀现象是火力发电厂离心泵运 行中常见的问题之一,对泵的性
能和安全性产生严重影响。
汽蚀现象的发生与泵的设计、制 造、安装、运行和维护等多个环 节有关,因此需要采取综合措施
监测泵入口压力
通过安装压力传感器,实时监测 泵入口的压力变化,判断汽蚀的
发生。
监测泵振动
汽蚀会导致泵体振动加剧,通过安 装振动传感器,可以及时发现汽蚀 迹象。
监测泵噪音

离心泵汽蚀的原因和处理

离心泵汽蚀的原因和处理

2. 产生振动和噪声 汽蚀发生时还会出现振动和噪声,气泡破裂和 高速冲击会引起严重的噪声,汽蚀过程本身是一种 反复凝结冲击的过程,伴随有很大的脉动力,如果脉 动力的频率与设备的自然频率接近,就会引起强烈 的振动,如果汽蚀造成泵转动部件材料破坏,必然影 响转子的静平衡和动平衡,导致严重的机械振动.机 组的振动不仅会影响可拆零件的连接,影响泵的 密封,而且还会造成材料疲劳破环等等,从而降 低了离心泵正常运行的安全可靠性。 3.性能下降 汽化发生严重时,大量汽泡的存在会堵塞流道 的截面,减少流体从叶轮获得的能量,导致扬程下降, 效率降低,泵的性能曲线有明显的变化.
三、必需汽蚀余量和有效汽蚀余量
有效汽蚀余量就是吸入容器中液面上的压力 水头在克服吸水管路装置中的流动损失,并把水 提高到相应高度后,所剩余的超过汽化压力的能 量水头。 有效汽蚀余量由吸入系统的装置特性决定, 与泵本身的性能无关。 (1)当流量增加时,吸入管路中的流动损失增加, 有效汽蚀余量减小,发生汽蚀的可能性增加。 (2)泵输送的液体温度越高,对应的汽化压力越大, 有效汽蚀余量越小,发生汽蚀的可能性越大。 (3)有效汽蚀余量越大,泵出现汽蚀的可能性越小。
二、汽蚀对泵工作的影响
1.造成过流部件剥蚀破坏 通常离心泵受汽蚀破坏的部位,先是 在叶片入口附近,继而延至叶轮出口。引 起泵的过流部件,特别是叶轮的背后产生 斑点和沟槽,时间一长,就会使过流部件 受到破坏,严重时造成叶片或叶轮前后盖 板穿孔,甚至叶轮破裂,造成严重事故。 因而汽蚀严重影响到泵的安全运行和使用 寿命。离心泵汽蚀Βιβλιοθήκη 原因和处理2015.11.23
一、汽蚀现象
水和汽可以相互转化,而温度和压力是 造成它们转化的条件.如果水温保持不变,逐 渐降低液面上的绝对压力,当该压力降低到 某一数值时,水同样会发生汽化,这个压力值 称为水在该温度条件下的汽化压力。如果 在流动过程中,某一局部区域的压力等于 或低于水温对应的汽化压力,水就会在该 区域发生汽化。

离心泵汽蚀的原因及处理方法

离心泵汽蚀的原因及处理方法

离心泵汽蚀的原因及处理方法离心泵是一种常用的流体输送设备,其优点是流量大,输送压力高,结构简单,使用方便。

但是,在使用离心泵的过程中,经常会遇到汽蚀现象,这会导致泵的效率降低,甚至会损坏泵的部件。

本文将介绍离心泵汽蚀的原因及处理方法。

一、离心泵汽蚀的原因1. 液位过低离心泵的吸入口需要保持一定的液位,否则就会出现汽蚀现象。

当液位过低时,泵的吸入口就会被空气占据,泵就会吸入空气,从而形成气泡。

气泡在进入泵的高压区域时就会瞬间膨胀和破裂,产生冲击波,破坏泵的叶轮和泵壳。

2. 运行条件不当离心泵的运行条件对汽蚀现象也有影响。

当泵的流量过大或者泵的扬程过高时,就容易出现汽蚀现象。

这是因为流量过大时,泵的吸入口的压力就会下降,从而形成气泡;扬程过高时,泵的排出口压力过大,也会导致气泡的形成。

3. 液体性质不适宜离心泵的使用液体也会影响汽蚀现象的发生。

当液体的粘度过大、温度过高、气体含量过高时,都容易导致汽蚀现象的发生。

这是因为这些因素都会影响液体的流动状态,从而影响泵的吸入口的压力,引起汽蚀现象。

4. 泵的设计不合理离心泵的设计也会影响汽蚀现象的发生。

例如,泵的吸入管道过长、过细,泵的叶轮设计不合理等,都会导致汽蚀现象的发生。

二、离心泵汽蚀的处理方法1. 提高液位离心泵汽蚀的最简单的方法就是提高液位。

当液位过低时,可以增加液位,使泵的吸入口始终处于液体中,避免空气进入泵内。

2. 调整运行条件调整离心泵的运行条件也可以避免汽蚀现象的发生。

例如,可以减小泵的流量或者扬程,使泵的吸入口的压力保持在一定范围内,避免形成气泡。

3. 更换适宜的液体选择适宜的液体也可以避免汽蚀现象的发生。

例如,选择粘度适宜、温度适宜、气体含量适宜的液体,可以保证液体的流动状态,避免气泡的形成。

4. 更换合适的泵如果汽蚀现象频繁发生,可以考虑更换合适的泵。

例如,选择吸入管道较短、直径较大、叶轮设计合理的泵,可以避免汽蚀现象的发生。

5. 安装降压阀在泵的出口安装降压阀也可以避免汽蚀现象的发生。

离心泵的汽蚀现象

离心泵的汽蚀现象

离心泵的汽蚀现象离心泵是一种常见的流体机械设备,广泛应用于工业生产、市政工程和农业灌溉等领域。

然而,在实际应用中,离心泵还会出现一种称为“汽蚀”的现象。

本文将以离心泵的汽蚀现象为标题,探讨其产生原因、影响以及相应的解决方法。

一、汽蚀现象的产生原因离心泵的汽蚀现象主要是由于工作液体中存在气体或蒸汽,当液体中的静压力小于液体的饱和蒸汽压力时,液体中的气体就会以气泡的形式析出。

当液体通过离心泵的叶轮时,气泡会随着液体一起进入泵腔,并在压力恢复的地方迅速崩解,形成微小的气泡爆破,产生冲击波,从而对泵体和叶轮造成损坏。

二、汽蚀现象的影响汽蚀现象会导致离心泵的性能下降,降低其工作效率。

同时,汽蚀还会引起泵体和叶轮的磨损加剧,缩短设备的使用寿命。

更严重的是,汽蚀会产生噪音和振动,给工作环境带来不良影响,甚至对周围设备和管道造成破坏。

三、汽蚀的解决方法1. 提高进口压力:通过增加进水管道的直径、降低进水管道的高度差或增加进水泵站的水位,可有效提高进口压力,减少汽蚀现象的发生。

2. 降低液体温度:降低液体的温度可以减少液体中的气体溶解度,从而减少汽蚀的可能性。

可以采取增加冷却设备、增加液体流动速度等方式来降低液体温度。

3. 安装汽蚀阀:在离心泵的吸入管道上安装汽蚀阀,可以有效防止进口压力降低到饱和蒸汽压力以下,从而避免汽蚀现象的发生。

4. 选择适当的材质:对于易受腐蚀的介质,应选择耐蚀性好的材质制成泵体和叶轮,以减少腐蚀引起的气泡析出。

5. 正确维护保养:定期检查离心泵的进水管道、密封件、叶轮等部件,保持设备的正常运行状态,及时清理堵塞物,防止气蚀现象的发生。

四、总结离心泵的汽蚀现象是由液体中气体析出引起的,会影响泵的性能和寿命,并产生噪音和振动。

通过提高进口压力、降低液体温度、安装汽蚀阀、选择适当的材质以及正确的维护保养,可以有效减少汽蚀现象的发生,提高离心泵的工作效率和可靠性。

在实际应用中,对于离心泵的汽蚀问题应引起重视。

离心泵汽蚀原因及处理方法

离心泵汽蚀原因及处理方法

离心泵汽蚀原因及处理方法一、什么是离心泵汽蚀离心泵是一种常用的水泵类型,它通过离心力将液体从低压区域抽到高压区域。

然而,当泵入口的压力低于液体的蒸汽压力时,液体中的气体会被释放出来,形成气泡。

这种现象被称为离心泵汽蚀。

离心泵汽蚀会导致泵的性能下降,甚至造成设备损坏。

因此,了解离心泵汽蚀的原因及处理方法,对于保证泵的正常运行至关重要。

二、离心泵汽蚀的原因离心泵汽蚀的原因可以归结为以下几点:1. 进口压力过低当离心泵的进口压力低于液体的蒸汽压力时,液体会发生汽化,形成气泡。

进口压力过低的原因可能是管道设计不合理、进口阻塞、进口管道泄漏等。

2. 泵转速过高离心泵的转速过高会增加液体的离心力,从而降低液体的压力。

当转速过高时,进口压力可能低于液体的蒸汽压力,导致汽蚀现象发生。

3. 液体温度过高液体温度过高会增加液体的蒸汽压力,从而降低了液体的压力。

如果液体温度超过了离心泵的设计范围,就容易引发汽蚀现象。

4. 泵入口管道存在漏气现象泵入口管道存在漏气现象时,空气会进入液体中,形成气泡。

这些气泡在泵的高压区域会迅速坍塌,产生冲击波,加剧了汽蚀的程度。

三、离心泵汽蚀的处理方法针对离心泵汽蚀问题,可以采取以下处理方法:1. 检查进口管道检查进口管道是否设计合理,尽量减小管道的阻力。

同时,确保进口管道没有泄漏现象,以防止空气进入液体中。

2. 降低泵转速适当降低泵的转速可以减小液体的离心力,提高进口压力,从而避免汽蚀现象的发生。

但是需要注意,降低转速过低可能会影响泵的工作效率。

3. 控制液体温度控制液体温度在离心泵的设计范围内,避免液体温度过高导致液体蒸汽压力降低。

可以采取降温措施,如增加冷却水的流量或使用冷却器等。

4. 安装气液分离器安装气液分离器可以有效地将液体中的气泡分离出来,减少汽蚀现象的发生。

气液分离器的原理是通过改变液体流动方向,使气泡上浮并排出系统。

5. 使用抗汽蚀材料在设计和选型时,选择抗汽蚀性能良好的材料,如不锈钢、耐蚀合金等。

离心泵汽蚀的原因及处理方法

离心泵汽蚀的原因及处理方法

离心泵汽蚀的原因及处理方法离心泵是工业生产中经常使用的一种泵,其基本原理就是通过离心力将液体推动到机器的出口端,从而达到输送液体的目的。

但是,在实际运行过程中,离心泵也会出现汽蚀现象,这就需要我们对其产生汽蚀的原因进行分析,并对其进行处理。

首先,汽蚀是由于离心泵的叶轮与泵壳之间的间隙过大,接口改变处的流线不连续等原因造成的。

在汽蚀产生时,泵内部的压力将下降,导致液体蒸发产生气体。

当气体通过泵叶轮时,它们会受到极高的压力,使气体膨胀并产生破裂声。

产生汽蚀的原因有很多,例如:1. 叶轮与泵壳之间的间隙过大。

这意味着在离心泵正常运行时,液体将被吸入离心泵中,并在叶轮旋转时被推出离心泵。

但是,如果间隙过大,液体就不会被彻底清除,这样气体就会在叶轮旋转时形成。

2. 泵进口压力太低。

在离心泵的进口处,液体需要达到一定的压力才能进入泵内部。

如果进口压力太低,那么离心泵取水就会变得更为困难,从而导致汽蚀。

3. 设计问题。

如果离心泵的设计不合理,也会导致汽蚀。

例如,在不适当的条件下使用不适当的叶轮尺寸,或使用不合适的叶轮材料。

接下来,我们需要了解如何处理离心泵产生的汽蚀问题。

以下是几种处理方法:1. 增加净吸入头。

通过增加净吸入头的高度,可以让进入泵的液体密度更大。

这样,液体在进入泵内部时,将带来更高的压力,从而降低泵的汽蚀现象。

2. 改善液体的进口条件。

如果液体流经管道的条件很糟糕,会明显影响离心泵的使用。

能否改善液体的进口条件,可以有效地降低离心泵的汽蚀率。

3. 使用更好的材料。

如果离心泵汽蚀的原因是因为叶轮材料的问题,那么说明需要更换叶轮材料。

通过使用更好的材料,叶轮可以更坚固,更耐用,并且不会随着时间而产生汽蚀。

4. 检查离心泵。

如果汽蚀问题依然存在,您应该检查离心泵,看看是否有任何问题。

例如,有没有杂质进入泵内,泵壳有没有破损等。

解决这些问题可以消除离心泵汽蚀的问题。

以上是关于离心泵汽蚀的原因及处理方法,除此之外,我们还需要注意保养经常检查离心泵,做好维护保养工作,从而避免汽蚀产生。

离心泵汽蚀现象

离心泵汽蚀现象

离心泵汽蚀现象
离心泵汽蚀现象是指在离心泵运行过程中,因为液体中含有气体或蒸汽,液体在进入泵的高压区域时发生汽化,造成泵的流量减小、振动加剧、噪音增大、温度升高等现象,甚至会导致泵的损坏。

离心泵汽蚀现象的原因主要有以下两点:
1.液体中气体或蒸汽的含量过高,导致在泵入口形成气液两相混合状态,而高速旋转的叶轮会将气液两相混合物推到高压区域,压力下降,液
体中的气泡膨胀,进一步加剧汽蚀现象;
2.泵引入液体的进口通道设计不合理,搅拌力过小,液体中气体或蒸
汽无法被顺利排出,增加进口处的压力损失,促进了汽蚀的发生。

为避免离心泵汽蚀现象的发生,可以采取以下措施:
1.提高液体压力或温度,使气体或蒸汽重新溶解到液体中;
2.在泵的进口处设置气体分离器或过滤器,将液体中的气体或杂质分
离出来;
3.优化泵的进口通道设计,增加搅拌力,排出液体中的气体或蒸汽,
降低进口处的压力损失;
4.选择适当的泵型号和材料,确保其耐蚀性和抗腐蚀性,减少泵的磨
损和腐蚀。

以上措施可以有效避免离心泵汽蚀现象的发生,确保泵的正常运行和
使用寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵汽蚀原因分析及解决对策撰稿人:刘步宇化学品事业部机械动力部2004年11月目录摘要---------------------------------------------------(1)1、前言------------------------------------------------(1)2、工艺流程与设备概况----------------------------------(1)2.1 工艺流程简介----------------------------------------(1)2.2 离心泵参数------------------------------------------(3)3、泵运行状况------------------------------------------(3)4、汽蚀原因分析----------------------------------------(3)4.1 汽蚀现象-------------------------------------------(3)4.2 汽蚀成因分析---------------------------------------(4)4.3 PP-65泵汽蚀原因确定--------------------------------(7)5、汽蚀解决对策----------------------------------------(8)5.1 解决汽蚀方案的比选---------------------------------(8)5.2 解决汽蚀方案的确定--------------------------------(10)5.3 诱导轮的设计---------------------------------------(11)5.3.1 诱导轮的设计计算---------------------------------(11)5.3.2 安装诱导轮后的抗汽蚀性能计算---------------------(16)5.3.2.1诱导轮汽蚀余量----------------------------------(16)5.3.2.2 加装诱导轮后主叶轮汽蚀性能分析-----------------(16)6、实施效果---------------------------------------------(17)7、结论-------------------------------------------------(18)8、参考文献---------------------------------------------(18)1离心泵汽蚀原因分析及解决对策摘要:本文通过对离心泵汽蚀原因进行分析,提出改善离心泵汽蚀性能的几个方案。

经过比较并结合现场实际,在不影响正常生产的前提下,利用一些临时措施解决离心泵的汽蚀问题。

主要进行诱导轮设计计算,通过加装诱导轮解决汽蚀问题。

经改造后,取得很好效果,为今后解决汽蚀问题提供了宝贵经验。

关键词:离心泵汽蚀汽蚀余量诱导轮1、前言燕化公司化学品事业部苯酚丙酮装置采用异丙苯法生产苯酚丙酮,设计能力为8万吨/年,为了降低消耗,提升技术水平,提高市场竞争力,于2003年对装置进行了技术改造,设计能力扩大到16万吨/年。

随着生产能力的扩大,工艺参数发生很大变化,大部分机泵进行了更新。

由于设计、选型、操作条件变化等原因,在改造后开车过程当中,多台机泵发生了严重的汽蚀现象,这其中又以循环烃塔底液泵(PP-65A/B)、粗苯酚塔塔底泵(PP-35A/B)等最为严重。

这些机泵在运转时,不仅振动剧烈、噪音大,而且泵效率明显下降,无法达到要求的流量和压力,严重影响装置的正常开车生产,从而带来巨大的经济损失。

因此,解决这一影响生产的实际问题就成为必然。

为了解决泵汽蚀问题,我们以循环烃塔塔底液泵(PP-65A/B)为例,分析研究汽蚀产生原因,制订解决对策。

2、工艺流程与设备概况2.1 工艺流程简介2PP-65A/B泵是回收系统循环烃塔(PT-20)塔底液泵。

由储罐(PTK-14)出来的油在聚结器(PZ-20)中分离,脱去油中所含的微量钠盐,供给PT-20。

在PT-20中,采用真空操作。

轻焦油中的丙酮组分从塔顶分离。

脱除丙酮后的物料由塔釜液位控制,经塔底泵PP-65送到脱重塔(PT-21)。

PT-21脱重塔主要是将异丙苯和α-甲基苯乙烯与重烃分离开来。

该塔采用高真空操作,根据进料量调节加热量。

塔顶馏分主要是比异丙苯轻的组分,采到储罐PTK-33,侧采主要是异丙苯和α-甲基苯乙烯作为加氢进料,塔釜采出重废烃由PP-119泵送去储罐,其中主要包含α-甲基苯乙烯和重芳烃。

PP-65泵进口管线从塔(PT-20)底出来经过几个弯头、三通后,与泵相连,两台泵并联布置,PT-20塔为负压操作,泵进口管线无保温,泵入口管线无过滤器。

图1 工艺流程图相关系统控制点单位设计值执行指标进料量m3/h 5.0 4.5~5.5 PT-20回流量m3/h 2.0 1.8~2.53塔釜液位% 50 30~80 塔釜温度℃135 130~140 尾压mmHg 640 620~650PT-21 进料量m3/h 4.7 4.4~5.4 回流量m3/h 6.5 6.0~7.0 塔釜液位% 50 30~80 塔釜温度℃180 175~185 尾压mmHg 640 620~650 表1 岗位正常工艺控制条件2.2 离心泵参数PP-65A/B泵为单级单吸悬臂式流程泵,泵型号HYB25-315C,轴向吸入,叶轮经切割,叶轮直径D为302(mm)。

泵参数见表2,性能实验记录见表3。

主要材质扬程(m)流量(m3/h)轴功率(KW)泵效率(%)比转数电机功率(KW)入口/出口直径(mm)转速(r/min)SUS304115 11.5 14.5 25 20.8 15 50/25 2950表2 泵参数实验介质(17℃)入口压力(Mpa)出口压力(Mpa)总扬程(m)流量(m3/h)轴功率(KW)效率(%)4水-0.013 1.10 116 8.05 13.6 19水-0.013 1.10 116 11.5 14.5 25水(-0.014 1.00 105 13.8 15.2 26表3 泵性能实验记录单3、泵运行状况装置改造后,水运过程中,PP-65泵运转平稳,无噪声,流量、扬程达到设计要求。

开车过程中,初期未发生异常现象;当塔釜温度达到60℃时,开始有噪声出现,泵有轻微振动,流量、扬程出现波动,电流表指针摆动;当塔釜温度达到120℃时,噪声增大,泵振动加剧,流量、扬程出现较大波动,电流表指针大幅摆动;当塔釜温度达到150℃时,此现象不断加剧,流量、扬程无法控制,扬程下滑至零,泵剧烈振动,噪声很大,被迫停泵寻求解决对策。

4、汽蚀原因分析4.1 汽蚀现象由于叶轮叶片入口附近液体压力小于或等于液体输送温度下的饱和蒸汽压力时,液体便开始汽化,同时还可能有溶解在液体内的气体逸出,形成大量气泡,气泡随液体流到叶道内压力较高处时又瞬时凝结溃灭,气泡周围的液体迅速冲入气泡凝失形成的空穴,形成强大的局部高频高压水击,产生振动和噪音,表明离心泵已开始汽蚀。

长期在这种状态下运行,金属表面因疲劳而产生剥蚀,同时,由于活泼气体的存在以及气泡凝结时产生的局部高温,导致金属表面发生电化学腐蚀。

上述这一过程称为汽蚀现象。

56 泵发生汽蚀的初生阶段,泵能继续工作,只是流量略有下降,严重的汽蚀会引起汽封,使泵中的液体大部分汽化,泵停止输送液体。

泵不容易从汽封中恢复,因为泵为了继续输送液体,产生更多的热量,导致更多的气体形成,为了使泵重新工作,必须关闭泵,重新灌泵以驱逐气体。

对比分析发现:PP-65泵运行状况与离心泵发生汽蚀现象时的状况完全一致,由此,可断定PP-65泵发生了严重的汽蚀。

4.2 汽蚀成因分析为了便于理解汽蚀产生的原因,我们引入装置汽蚀余量(NPSHa )和必需汽蚀余量(NPSHr)的概念。

装置汽蚀余量(NPSHa )又称有效汽蚀余量,是由吸入装置决定的,与泵本身无关。

它同进口管路、进液罐、进液罐液位和压力、液体的温度和汽化压力有关,也同流量、液体的比重、进口管路尺寸、进口管路粗糙度和直接关系到进口压力降的进口管路清洁度有关。

NPSHa 的计算公式为:gV g P g P m NPSHa i v 2)(20+-=ρρ 式中:ρg P 0-------泵进口压力(m ) ρg P v -------液体汽化压力(m ) gV i 22-------泵进口法兰处的速度头(m ) 必需汽蚀余量(NPSHr )是由泵本身决定的,它数值大小的主要影响因素是泵吸入口、叶轮入口的几何形状以及泵运转时的转速及流量,而同吸入装置无关。

通常,由制造厂在一定条件下通过汽蚀实验取得。

NPSHr是为了保证泵不发生汽蚀,要求泵进口处单位重量液体所具有的超过汽化压力的富裕能量,即要求装置提供的最小汽蚀余量。

NPSHr越小,要求装置提供的NPSHa越小,表示泵的抗汽蚀性能越好。

离心泵开始发生汽蚀的界限见图2。

图2 泵性能曲线由图2可得出泵汽蚀基本方程式为:NPSHa=NPSHr 泵汽蚀NPSHa<NPSHr 泵严重汽蚀NPSHa>NPSHr 泵无汽蚀由此可以看出装置汽蚀余量(NPSHa)小于必需汽蚀余量(NPSHr),是泵发生汽蚀的直接原因。

由PP-65泵设计资料查得,NPSHa =0.75(m),NPSHr=0.6(m),NPSHa>NPSHr,泵应不产生汽蚀。

但在生产实际中,一些影响因素发生了变化,导致装置汽蚀余量降低,当NPSHa<NPSHr7时,泵将严重汽蚀。

而引起装置汽蚀余量降低的主要原因有如下四个方面:(1)大流量引起叶轮进口速度增加,从而引起泵进口至叶轮以及进口管路中的压力降增加。

当PP-65泵出口阀门开度过大时,导致流量大于正常流量,发生大流量汽蚀。

(2)非常低的流量造成液体不正常升温,液体从叶轮获得能量,以及泵内部间隙增大引起内部泄露增加,使液体获得附加能量,引起液体汽化。

小流量汽蚀通常不会发生,因为泵不允许在非常小的流量下运行,由图2可以看出泵在小流量(不包括非常小的流量)运行时,NPSHr较低。

当出口阀门关闭时,泵的汽蚀很明显,这是由于离心泵的出口阀们关闭引起泵壳中的液体迅速升温并汽化,很快引起汽封。

(3)系统的变化(液位下降或进口管路阻塞等)引起进口压力损失。

它包括泵的吸入管路水力损失及安装高度等。

泵的安装高度高或吸入管路阻力损失大,都会使泵低压区处的压力降低,从而使泵的汽蚀容易发生。

当PT-20塔内液位有变化,低于设计值(50%)时,会导致PP-65泵入口压差过低;PT-20塔内操作压力降低为540mmHg,低于设计值(640mmHg),也会使PP-65泵入口压力接近液体的汽化压力;8PP-65泵入口应无滤网,水运时为了除去焊渣等杂物,安装了临时进口滤网,正常开车后没有拆除,也导致入口管路阻力增大,降低入口压力。

相关文档
最新文档