(优选)叠加定理戴维南定理和诺顿定理

合集下载

老师的:实验三 叠加定理、戴文宁定理和诺顿定理

老师的:实验三 叠加定理、戴文宁定理和诺顿定理

实验三叠加定理、戴文宁定理和诺顿定理一、实验目的(1)进一步熟悉虚拟实验,可熟练使用Pspice;(2)验证叠加定理、戴文宁定理和诺顿定理;(3)理解电路等效的意义,了解一个电路的戴文宁形式和诺顿形式的相互转二、实验内容与实验方法1、叠加定理的验证叠加定理指出:当一个线性电路中有多个电源作用时,电路中任一个电压或电流参数都等于单个电源作用时该参数的代数和。

按下图用Pspice画出电路,在本电路中共有三个电源,分别是一个12伏的电压源V1,一个24伏的电压源V2,一个10mA的电流源I1。

图3-1实验步骤(1)设置V1=12V、V2=0、I1=0。

测量R2(4K电阻)上的电压和流过该电阻的电流,记录在表一的第二行。

(2)设置V2=24V、V1=0、I1=0。

测量R2(4K电阻)上的电压和流过该电阻的电流,记录在表一的第三行。

(3)设置I1=10mA、V2=0、V1=0。

测量R2(4K电阻)上的电压和流过该电阻的电流,记录在表一的第四行。

(4)设置V1=12V、V2=24V、I1=10mA。

测量R2(4K电阻)上的电压和流过该电阻的电流,记录在表一的第五行。

2、文宁定理和诺顿定理对于任意一个两端口电路,可以等效为一个电压源和一个电阻的串联,这就是戴文宁定理。

而诺顿定理又指出:对于任意一个两端口电路,可以等效为一个电流源和一个电阻的并联。

根据上述的定理,对于如图3-2的电路,可以等效为图3-3的戴文宁形式,或图3-4的诺顿形式。

图3-2图3-3 图3-4实验步骤(1)按图3-2用Pspice画出电路图,在a-b两端接一个电阻R3,调节R3为100,500,1K,2K,5K,10K,20K,50K。

分别记录下在每种阻值情况下R3上的电压和流过该电阻的电流(表二第二行)。

(2)用Pspice画出电路图3-3,在a-b两端接一个电阻R3,调节R3为100,500,1K,2K,5K,10K,20K,50K。

分别记录下在每种阻值情况下R3上的电压和流过该电阻的电流(表二第三行)。

电工电子技术 叠加定理、维宁定理和诺顿定理

电工电子技术 叠加定理、维宁定理和诺顿定理
I 1 I 3 I 4 10
(1) (2)
I2 I3 I4 5
列电压方程:
3I1 3I2 3I3 0
(3)
3 I 3 3 I 4 30 0
(4)
解方程(1)、(2)、(3)、(4)可得I1=6A、I2=-1A、 I3=7A、I4=3A。
的电压,都是各个电源单独作用时所得结果的代数和。 电源分别独立作用时: 暂时不予考虑的恒压源应予以短路,即令E=0;
暂时不予考虑的恒流源应予以开路,即令 Is=0。
I1 A
R1
+ _ E1
I2
I3 R2 + E2
I1' A R1 R3 + _ E1 B I3' R2
I2'
I1'' A
I2'' I3''
I3
则: P
R3
3
I 3 R3 ( I 3' I 3" ) R3
2 2
( I 3' ) R3 ( I 3" ) R3
2 2
例1.6.10
US
已知: US =1V、IS=1A 时, Uo=0V
IS 线性无
源网络
O
UO
US =10 V、IS=0A 时,Uo=1V 求: US =0 V、IS=10A 时, Uo=?
I1 US1 100 50 + 10V b 100 10 a
+ 10V - US2
US2的极性接反,则
10 10 图P2-18 100 50 Va 0 .7 V 1 1 1 1 100 50 100 10

戴维南定理和诺顿定理

戴维南定理和诺顿定理

电压源的电压等于该含源二端网络在端钮处的开路电
压uOC;其串联电阻等于该含源二端网络中所有独立源
置零时,由端钮看进去的等效电阻Req。此即为戴维南
定理。
N
a +
_uOC
N0
b
a
Req
b
a戴 维
RS=Req 南
+

_uS=uOC
效 电
b路
一、定理
对于任意一个线性含源二端网络N,就其两个端
钮a、b而言,都可以用一条最简单的有源支路对外部
UO*C 0.2V
b、求等效电阻Re*q。
1A 1Ω
0.8Ω c a


R*eq +

0.2V
_
b d
Re*q
32 32
0.8
2

1、先求左边部分电路 1Ω
的戴维南等效电路。 a、求开路电压Uo*c。 1Ω
UO*C 0.2V
b、求等效电阻Re*q。
32 Req* 3 2 0.8 2
进行等效:
用一条实际电流源支路对外部进行等效,其 中电流源的电流等于该含源二端网络在端钮处的短路
电流iSC;其串联电阻等于该含源二端网络中所有独立 源置零时,由端钮看进去的等效电阻Req。此即为诺顿
定理。
N
a
iSC N0
a
Req
b
iS=iSC
a
RS=Req
诺 顿 等 效
b
b电

二、步骤
1、断开待求支路,求开路电压uOC。
1V 6

第一步:求开路电压Uoc。
方法:叠加定理
1、电压源单独作用,

节点电压法叠加原理戴维南定理和诺顿定理

节点电压法叠加原理戴维南定理和诺顿定理

I S R1 E I Ia Ib R1 R R R1
2、原理内容:在有多各电源的线性电路中,任一支路的电流 等于各电源单独作用时在该支路产生电流的代数和。 3、注意问题: 叠加原理是线性电路的普遍原理; 电流和电压均满足叠加原理; 功率不满足叠加原理; 理解电源单独作用的意义。 七、戴维南定理和诺顿定理 1、戴维南定理 (1) 内容: (2) 证明(用叠加原理) U=U1-U2=E-IR0 显然,等效电压源的电动势等于有源二端网络的开路电压U1, 等效电压源的电阻等于有源二端网络的除源的等效电阻。 (3) 注意E的方向。
1 1 1 1 称为节点1的自导纳,取正; R1 R2 R4 R6 1 1 1 1 称为节点2的自导纳,取正; R 3 R 5 R4 R 6 1 1 称为节点1和2的互导纳,取负。 R4 R 6

G11 G 22
G12 G 21
I 11 I 22
E1 E 2 E 4 为流入节点1的电激流,入正出负; R1 R2 R4
R1 R2 R0 R1 R2
所以
I S R0 I R0 R
U
1
E E E R R R
1 2 1 2
3 3
R R R R
1 2 3

1

1

1
4
注意各项的正负号: 凡电动势促使节点电位升高的取正号; 凡电动势促使节点电位降低的取负号。 此式亦称为弥尔曼定理。
4、复杂电路的节点电位法 以右图的节点电位作为未知量, 对各支路写出含源电路的欧姆定 律,由此求出各支路电流,代入 独立节点电流方程,经整理后得:

2

3
电阻为R0=R1//R2//R3 所以

实验三叠加原理,戴维南定理和诺顿定理

实验三叠加原理,戴维南定理和诺顿定理

1)用开路电压、短路电流法测定戴维南等效 电路的Uoc、R0和诺顿等效电路的ISC、R0。按 图3-2(a)接入稳压电源Us=12V和恒流源Is=10mA, 不接入RL。测出UOc和Isc,并计算出R0。(测UOC 时,不接入mA表。) (2)负载实验
按图3-2(a)接入RL。改变RL阻值,测量有源二端网络的外特性曲线。
UAB (V)
UCD (V)
UAD (V)
UDE (V)
UFA (V)
U1单独作用
U2单独作用
U1、U2共同作 用
2U2单独作用
2.戴维南定理和诺顿定理验证 实验线路如图3-2所示,被测有源二端网络如图3-2(a)。
(a)
图3-2
(b) 表 3-3
Uoc (v) Isc (mA) R0=Uoc/I sc (Ω)
六、实验报告
1. 根据实验数据表格,进行分析、比较,归纳、总结实验结论,即验证线性电 路的叠加性。 2. 各电阻器所消耗的功率能否用叠加原理计算得出? 试用上述实验数据, 进行计算并作结论。 3. 根据步骤2、3、4,分别绘出曲线,验证戴维南定理和诺顿定理的正确性, 并分析产生误差的原因。 5. 根据步骤1、5、的几种方法测得的Uoc与R0与预习时电路计算的结果作比较, 你能得出什么结论。 6. 回答以下问题: (1)在叠加原理实验中,要令U1、U2分别单独作用,应如何操作?可否直接将不 作用的电源(U1或U2)短接置零? *(2) 实验电路中,若有一个电阻器改为二极管, 试问叠加原理的迭加性与还 成立吗?为什么? (3)在求戴维南或诺顿等效电路时,作短路试验,测ISC的条件是什么?在本实 验中可否直接作负载短路实验?请实验前对线路2-2(a)预先作好计算,以便调整 实验线路及测量时可准确地选取电表的量程。 (4) 说明测有源二端网络开路电压及等效内阻的几种方法, 并比较其优缺点。

第四章叠加定理、戴维宁定理和诺顿定理

第四章叠加定理、戴维宁定理和诺顿定理

第四章电路定理一.教授教养根本请求1.懂得叠加定理的概念,实用前提,闇练运用叠加定理剖析电路.2.控制戴维宁定理和诺顿定理的概念和运用前提,并能运用定理剖析求解具体电路.二.教授教养重点与难点1. 教授教养重点:叠加定理.戴维宁定理和诺顿定理.2.教授教养难点:各电路定理运用的前提.电路定理运用中受控源的处理.三.本章与其它章节的接洽:电路定理是电路理论的主要构成部分,本章介绍的叠加定理.戴维宁定理和诺顿定理实用于所有线性电路问题的剖析,对于进一步进修后续课程起着主要感化,为求解电路供给了另一类剖析办法.四.学时安插总学时:6五.教授教养内容§4.1 叠加定理叠加定理表述为:在线性电路中,任一歧路的电流(或电压)都可以算作是电路中每一个自力电源单独感化于电路时,在该歧路产生的电流(或电压)的代数和.图 4.1所示电路运用结点法:解得结点电位:歧路电流为:以上各式标明:结点电压和各歧路电流均为各自力电源的一次函数,均可算作各自力电源单独感化时,产生的响应之叠加,即暗示为:式中a1,a2,a3 ,b1,b2,b3和c1,c2,c3是与电路构造和电路参数有关的系数.1) 叠加定理只实用于线性电路.这是因为线性电路中的电压和电流都与鼓励(自力源)呈一次函数关系.2) 当一个自力电源单独感化时,其余自力电源都等于零(幻想电压源短路,幻想电流源开路).如图4.2所示.=三个电源配合感化i s1单独感化+ +u s2单独感化 u s3单独感化3) 功率不克不及用叠加定理盘算(因为功率为电压和电流的乘积,不是自力电源的一次函数).4) 运用叠加定理求电压和电流是代数目的叠加,要特殊留意各代数目的符号.即留意在各电源单独感化时盘算的电压.电流参考偏向是否一致,一致时相加,反之相减.5) 含受控源(线性)的电路,在运用叠加定理时,受控源不要单独感化,而应把受控源作为一般元件始终保消失电路中,这是因为受控电压源的电压和受控电流源的电流受电路的构造和各元件的参数所束缚.6) 叠加的方法是随意率性的,可以一次使一个自力源单独感化,也可以一次使几个自力源同时感化,方法的选择取决于剖析问题的便利.例4-1 求图示电路的电压U.例4-1图解:运用叠加定理求解.起首画出分电路图如下图所示当12V电压源感化时,运用分压道理有:当3A电流源感化时,运用分流公式得:则所求电压:例4-2盘算图示电路的电压u .例4-2图解:运用叠加定理求解.起首画出分电路图如下图所示当3A 电流源感化时:其余电源感化时:则所求电压:本例解释:叠加方法是随意率性的,可以一次一个自力源单独感化,也可以一次几个自力源同时感化,取决于使剖析盘算轻便.例4-3盘算图示电路的电压u 电流i .例4-3 图解:运用叠加定理求解.起首画出分电路图如下图所示当10V 电源感化时:解得:当5A电源感化时,由左边回路的KVL:解得:所以:留意:受控源始终保消失分电路中.例4-4封装好的电路如图,已知下列试验数据:当时,响应,当时,响应,求:时, i = ?例4-4图解:依据叠加定理,有:代入试验数据,得:解得:是以:本例给出了研讨鼓励和响应关系的试验办法5. 齐性道理由以上叠加定理可以得到齐性道理.齐性道理表述为:线性电路中,所有鼓励(自力源)都增大(或减小)同样的倍数,则电路中响应(电压或电流)也增大(或减小)同样的倍数.当鼓励只有一个时,则响应与鼓励成正比.例4-5 求图示电路的电流i,已知:R L=2Ω R1=1Ω R2=1Ω u S =51V例4-5图解:采取倒推法:设i' =1A .则各歧路电流如下图所示,此时电源电压为:, 依据齐性道理:当电源电压为:时,知足关系:§4.2 替代定理替代定理表述为:对于给定的随意率性一个电路,若某一歧路电压为u k.电流为i k,那么这条歧路就可以用一个电压等于u k的自力电压源,或者用一个电流等于i k的自力电流源,或用R=u k/i k的电阻来替代,替代后电路中全体电压和电流均保持原有值(解答独一).以上表述可以用图4.3来暗示.图 4.3 替代定理u k,电流为i k,在歧路k串入极性相反,电压值为u k的两个电压源如图4.5所示,则依据等效的思惟,图4.5对外可以等效为图4.6所示的电路,即电压为u k的歧路可以用电压为u k的幻想电压源替代.替代定理的准确性可作如下解释:替代前后KCL,KVL关系雷同,其余歧路的u.i关系不变.k歧路用幻想电压源u k替代后,其余歧路电压保持不变(KVL),是以其余歧路电流也不变,故第k条歧路i k也不变(KCL).同理k歧路用幻想电流源i k替代后,其余歧路电流不变(KCL),是以其余歧路电压不变,故第k条歧路u k也不变(KVL).1) 从理论上讲,替代定理实用于线性电路,也实用于非线性电路.2) 替代后电路必须有独一解,即替代后不克不及形成电压源回路和电流源节点.3) 替代后其余歧路及参数不克不及转变.例4-6若要使图示电路中的电流,试求电阻R x .例4-6 图解:因为,为防止求解庞杂的方程,运用替代定理,把10V电压源和3Ω电阻串联歧路用电流为I的电流源替代,电路如图(b)所示.然后运用叠加定理,分电路图如图(c).(d)所示.例4-6 图(b)例4-6 图(c)例4-6 图(d)由图得:是以例4-7 求图示电路中的电流I1例4-7 图(a)解:运用替代定理,图(a)简化为图(b)所示的电路,然后运用叠加定理得:例4-7 图(b)§4.3 戴维宁定理和诺顿定理戴维宁定理表述为:任何一个线性含源一端口收集,对外电路来说,总可以用一个电压源和电阻的串联组合来等效替代;此电压源的电压等于外电路断开时一端口收集端口处的开路电压u oc ,而电阻等于一端口的输入电阻(或等效电阻R eq).以上表述可以用图4.7来暗示.图 4.7 戴维宁定理这里给出戴维宁定理的一般证实.图 4.8(a)为线性有源一端口收集A与负载收集N相连,设负载上电流为i,电压为u.依据替代定理将负载用幻想电流源i 替代,如图4.8(b)所示.替代后不影响A中遍地的电压和电流.由叠加定理u可以分为两部分,如图4.9所示,即:个中是A内所有自力源配合感化时在端口产生的开路电压,是仅由电流源i感化在端口产生的电压,即:,是以上式暗示的电路模子如图4.10所示.这就证清楚明了戴维宁定理是准确的.3.运用戴维宁定理要留意的问题1)含源一端口收集所接的外电路可所以随意率性的线性或非线性电路,外电路产生转变时,含源一端口收集的等效电路不变.2)当含源一端口收集内部含有受控源时,控制电路与受控源必须包含在被化简的统一部分电路中.3)开路电压u oc的盘算戴维宁等效电路中电压源电压等于将外电路断开时的开路电压u oc,电压源偏向与所求开路电压偏向有关.盘算u oc的办法视电路情势选择前面学过的随意率性办法,使易于盘算.4)等效电阻的盘算等效电阻为将一端口收集内部自力电源全体置零(电压源短路,电流源开路)后,所得无源一端口收集的输入电阻.经常运用下列三种办法盘算:5)当收集内部不含有受控源时可采取电阻串并联和△- Y 交换的办法盘算等效电阻;6)外加电源法(加电压求电流或加电流求电压). 如图 4.11 所示.图 4.11 用外加电源法求戴维宁等效电阻则7)开路电压,短路电流法.即求得收集A端口间的开路电压后,将端口短路求得短路电流,如图4.12所示.则:以上办法中后两种办法更具有一般性.例4-10 盘算图示电路中R x分离为1.2Ω.5.2Ω时的电流I ;例4-10 图(a)解:断开Rx歧路,如图(b)所示,将其余一端口收集化为戴维宁等效电路:例4-10 图(b)例4-10 图(c)1)求开路电压U oc2)求等效电阻R eq.把电压源短路,电路为纯电阻电路,运用电阻串.并联公式,得:3)画出等效电路,接上待求歧路如图(d)所示,例4-10 图(d)当Rx=1.2Ω时, 当Rx =5.2Ω时,例4-11 盘算图示电路中的电压U0 ;例4-11 图(a)解:运用戴维宁定理.断开3Ω电阻歧路,如图(b)所示,将其余一端口收集化为戴维宁等效电路:1)求开路电压U oc2)求等效电阻R eq办法1:外加电压源如图(c)所示,求端口电压U 和电流I0的比值.留意此时电路中的自力电源要置零.因为:所以办法2:求开路电压和短路电流的比值.把电路断口短路如图(d)所示.留意此时电路中的自力电源要保存.对图(d)电路右边的网孔运用KVL,有:所以I =0 ,则3) 画出等效电路,如图(e)所示,解得:例4-11 图(b)例4-11 图(c)例4-11 图(d)例4-11 图(e)留意:盘算含受控源电路的等效电阻是用外加电源法照样开路.短路法,要具体问题具体剖析,以盘算轻便为好.例4-12 求图示电路中负载R L消费的功率.例4-12 图(a)解:运用戴维宁定理.断开电阻R L地点歧路,如图(b)所示,将其余一端口收集化为戴维宁等效电路.起首运用电源等效变换将图(b)变成图(c).例4-12 图(b)例4-12 图(c)1) 求开路电压U oc由 KVL 得:解得:,2) 求等效电阻R eq,用开路电压.短路电流法.端口短路,电路如图(d)所示,短路电流为:是以:例4-12 图(d)3) 画出戴维宁等效电路,接上待求歧路如图(e)所示,则:例4-12 图(e)例4-13 电路如图所示,已知开关S扳向1,电流表读数为2A;开关S扳向2,电压表读数为4V;求开关S扳向3后,电压U 等于若干?例4-13 图(a)解:依据戴维宁定理,由已知前提得所以等效电路如图(b)所示,例4-13 图(b)则:诺顿定理表述为:任何一个含源线性一端口电路,对外电路来说,可以用一个电流源和电导 (电阻)的并联组合来等效置换;电流源的电流等于该一端口的短路电流,而电导(电阻)等于把该一端口的全体自力电源置零后的输入电导(电阻).以上表述可以用图4.13来暗示.图 4.13 诺顿定理诺顿等效电路可由戴维宁等效电路经电源等效变换得到.诺顿等效电路可采取与戴维宁定理相似的办法证实.须要留意的是:(1)当含源一端口收集A的等效电阻时,该收集只有戴维宁等效电路,而无诺顿等效电路.(2)当含源一端口收集A的等效电阻时,该收集只有诺顿等效电路而无戴维宁等效电路.6. 诺顿定理的运用例4-14 运用诺顿定理求图示电路中的电流I .例4-14 图(a)解:(1) 求短路电流I SC,把ab端短路,电路如图(b)所示,解得:所以:例4-14 图(b)(2) 求等效电阻R eq ,把自力电源置零,电路如图(c)所示.解得:(3) 画出诺顿等效电路,接上待求歧路如图(d)所示,运用分流公式得:留意:诺顿等效电路中电流源的偏向.例4-14 图(c)例4-14 图(d)例4-15 求图示电路中的电压U .例4-15 图(a)解:本题用诺顿定理求比较便利.因a.b处的短路电流比开路电压轻易求.例4-15 图(b)例4-15 图(c)(1) 求短路电流I SC,把ab端短路,电路如图(b)所示,解得:(2) 求等效电阻R eq,把自力电源置零,电路如图(c)所示,为简略并联电路.(3)画出诺顿等效电路,接上待求歧路如图(d)所示,得:例4-15 图(d)§4.4 最大功率传输定理1.最大功率传输定理一个含源线性一端口电路,当所接负载不合时,一端口电路传输给负载的功率就不合,评论辩论负载为何值时能从电路获取最大功率,及最大功率的值是若干的问题就是最大功率传输定理所要表述的.将含源一端口电路等效成戴维宁电源模子,如图4.14所示.图 4.14 等效电压源接负载电路由图可知电源传给负载R L的功率为:功率P随负载 R L变更的曲线如图4.15所示,消失一极大值点.为了找这一极大值点,对P 求导,且令导数为零,即:解上式得:结论:有源线性一端口电路传输给负载的最大功率前提是:负载电阻R L等于一端口电路的等效内阻.称这一前提为最大功率匹配前提.将这一前提代入功率表达式中,得负载获取的最大功率为:须要留意的是:1)最大功率传输定理用于一端口电路给定,负载电阻可调的情形:2)一端口等效电阻消费的功率一般其实不等于端口内部消费的功率,是以当负载获取最大功率时,电路的传输效力其实不一定是50%;3) 盘算最大功率问题联合运用戴维宁定理或诺顿定理最便利.2.最大功率传输定理的运用例4-16 图示电路中负载电阻R L为何值时其上获得最大功率,并求最大功率.例4-16 图(a)解:运用戴维宁定理.断开电阻R L地点歧路,如图(b)所示,将一端口收集化为戴维宁等效电路.例4-16 图(b)例4-16 图(c)1) 求开路电压U oc因为:解得:2) 求等效电阻R eq,用外加电源法.电路如图(c)所示.因为:所以:3) 由最大功率传输定理得:时,其上获取最大功率,且§4.5 特勒根定理特勒根定理1表述为:任何时刻,对于一个具有n个结点和b条歧路的集总电路,在歧路电流和电压取接洽关系参考偏向下,知足:对图4.16所示电路的图运用KCL,得结点①,②,③的电流方程为:而把上式中的歧路电压用结点电压暗示有:或写为:式中括号内的电流之和分离为结点①,②,③的电流方程,是以得:3.特勒根定理2特勒根定理2表述为:任何时刻,对于两个具有n个结点和b条歧路的集总电路,当它们具有雷同的图,但由内容不合的歧路构成,在歧路电流和电压取接洽关系参考偏向下,知足:图 4.17(a)图 4.17(b)设两个电路的图如图4.17所示,对图(b)运用KCL得三个结点方程为:而把上式中的歧路电压用图(a)的结点电压暗示有:或写为:式中括号内的电流之和分离为图(b)中结点①,②,③的电流方程,是以得:同理可证:5.运用特勒根定理要留意的问题1)定理的准确性与元件的特点全然无关,是以特勒根定理对任何线性.非线性.时不变.时变元件的集总电路都实用.定理本质上是功率守恒的数学表达.2)电路中的歧路电压必须知足 KVL ,歧路电流必须知足 KCL ,歧路电压和歧路电流必须知足接洽关系参考偏向(不然公式中加负号). 6.特勒根定理的运用例4-17 图示电路中已知:(1)R1=R2=2Ω,U s=8V 时,I1=2A ,U2=2V ,(2)R1=1.4Ω, R2=0.8Ω , U s=9V 时 , I1=3A,求此时的U2 .例4-17解:把(1).(2)两种情形算作是构造雷同,参数不合的两个电路,运用特勒根定理有:由 (1) 得:U1=4V, I1=2A, U2=2V, I2=U2/R2=1A由(2)得:代入公式中得:解得:留意:端口电压和电流取接洽关系参考偏向.式中因为U1和I1为非接洽关系偏向所以取负号.§4.6 互易定理互易定理表述为:对一个仅含电阻的二端口电路N R,个中一个端口加鼓励源,一个端口作响应端口,在只有一个鼓励源的情形下,当鼓励与响应交换地位时,统一鼓励所产生的响应雷同. 互易定理有三种情形:1) 情形1 对图 4.18 所示电路取鼓励为电压源,响应为短路电流,则知足:当时,有:2) 情形2 对图4.19所示电路取鼓励为电流源,响应为开路电压,则知足:当时,有:3) 情形3 对图4.20所示电路取图(a)鼓励为电流源,响应为短路电流,取图(b)鼓励为电压源,响应为开路电压,则知足:当在数值上知足时,有:2. 互易定理的证实以情形 1 为例证实互易定理.运用特勒根定理 2 :和斟酌到图示电路方框内仅为线性电阻,故k=3,4,……b.是以有:和故有:对图 4.18(a),对图(b), ,代入上式得:同理可以证实情形 2 和情形 3 . 3.运用互易定理要留意的问题1) 互易前后应保持收集的拓扑构造不变,仅幻想电源搬移;2) 互易前后端口处的鼓励和响应的极性保持一致(要么都接洽关系,要么都非接洽关系);3) 互易定理只实用于线性电阻收集在单一电源鼓励下,两个歧路电压电流关系.4) 含有受控源的收集,互易定理一般不成立. 4.互易定理的运用例4-19 求图示电路中的电流I .例4-19 图(a)解:运用互易定理,把鼓励和响应交换得电路图如图(b)所示.例4-19 图(b)是以:运用分流公式得:所以:。

戴维南和诺顿定理

戴维南和诺顿定理

戴维南和诺顿定理
戴维南和诺顿定理是电路理论中常用的两个等效定理,在分析电路中的电流和电压时非常有用。

戴维南定理,也称为戴氏定理(Thevenin's theorem),它是指任何线性电路(由电阻、电抗、电容等元件组成)都可以用一个等效的电压源和电阻串联来替代,这个等效电压源称为戴维南电压源,等效电阻称为戴维南电阻。

简单来说,戴维南定理可以帮助我们把复杂的线性电路简化为一个电压源和电阻串联的简单电路。

诺顿定理,也称为诺氏定理(Norton's theorem),它与戴维南定理类似,也是将复杂的线性电路简化为一个等效的电流源和电阻并联。

诺顿定理指出,任何线性电路都可以用一个等效的电流源和电阻并联来替代,这个等效电流源称为诺顿电流源,等效电阻称为诺顿电阻。

戴维南和诺顿定理的应用非常广泛,特别是在分析复杂电路时,它们可以帮助我们计算电路中的电流、电压等参数。

这两个定理可以让我们更方便地进行电路的分析和计算,提高电路设计的效率。

戴维南定理和诺顿定理

戴维南定理和诺顿定理

01
பைடு நூலகம்
戴维南定理
任何有源线性二端网络,总可以用一个电压源和一个电阻串联来表示。
电压源的电压等于网络的开路电压,电阻等于网络内部所有独立源为零
时的等效电阻。
02
诺顿定理
任何有源线性二端网络,总可以用一个电流源和一个电阻并联来表示。
电流源的电流等于网络的短路电流,电阻等于网络内部所有独立源为零
时的等效电阻。
交叉学科研究
随着电子工程与其他学科的交叉融合,戴维南定理和诺顿定理可以与其他学科的理论和方法相结合,开 展交叉学科的研究和应用。
THANKS
戴维南定理与诺顿定理在电路分析中的应用选择
选择应用戴维南定理或诺顿定理取决于具体电路的特性和需求。如果需要计算一端口网络的开路电压 或短路电流,则应用戴维南定理;如果需要计算一端口网络的等效电阻或等效电流,则应用诺顿定理 。
在实际应用中,可以根据一端口网络的性质和电路分析的目的选择合适的定理。例如,对于一个无源 一端口网络,如果需要计算其等效电阻,则可以选择应用诺顿定理;对于一个有源一端口网络,如果 需要计算其开路电压或短路电流,则可以选择应用戴维南定理。
诺顿定理
任何一个有源线性二端网络,对其外部电路来说,都可以用一个等效的理想电流 源和电阻并联的电源模型来代替。其中,理想电流源的电流等于有源线性二端网 络的短路电流,电阻等于该网络的开路电压与电流源电流的比值。
戴维南定理和诺顿定理的重要性
简化电路分析
通过应用戴维南定理和诺顿定理,可以将复杂的有源电路简化为简单的电源模型,从而简化电路 分析过程。
电子设备设计
在电子设备设计中,可以利用戴维南定理来计算电路的性能 参数,如电压放大倍数、输入电阻等。

(整理)戴维南定理和诺顿定理

(整理)戴维南定理和诺顿定理

戴维南定理和诺顿定理一、戴维南定理图2-7-1二端网络也称为一端口网络,其中含有电源的二端网络称为有源一端口网络,不含电源的二端网络称为无源一端口网络,它们的符号分别如图2-7-1(a)(b)所示。

图2-7-2任一线性有源一端口网络(如图2-7-2(a)所示)对其余部分而言,可以等效为一个电压源和电阻相串联的电路(如图2-7-2(b)所示),其中的大小等于该有源一端口网络的开路电压,电压源的正极与开路端高电位点对应;等于令该有源一端口网络内所有独立源为零(即电压源短接、电流源开路)后所构成的无源一端口网络的等效电阻。

这就是戴维南定理,也称为等效电源定理;与串联的电路称为戴维南等效电路。

要计算一个线性有源一端口网络的戴维南等效电路,其步骤和方法为:1、计算:利有电路分析方法,计算相应端口的开路电压;2、计算:当线性有源一端口网络A中不含受控源时,令A内所有独立电源为零后得到的无源一端口网络P则为纯电阻网络,利用无源一端口网络的等效变换就可求出端口等效电阻;当线性一端口网络A中含有受控源时,令A内所有独立电源为零后得到的一端口网络P 中仍含有受控源,这时,可采用加压法和开路短路法求。

图2-7-3例2-7-1 利用戴维南定理求图2-7-4(a)所示电路中的电流I 为多少?图2-7-4 例2-7-1附图解:将A、B左边部分电路看作有源一端口网络,用戴维南等效电路替代后如图2-10-4(b)所示。

(1)求:将A、B端口开路,得到图2-10-4(c)所示电路。

由米尔曼公式得:(2)求等效电阻:令A、B以左的三个独立源为零,得到图2-10-4(d)所示电路,则A、B端口的等效电阻为:(3)从图2-10-4(b)中求I:图2-10-5 例2-7-2附图例2-7-2 在图2-7-5(a)所示电路中,已知,,求A、B端口的戴维南等效电路。

解:(1)求:图2-10-5(a)中A、B端口处于开路状态,列写KVL方程:(2)求等效电阻:下面分别用两种方法求解。

叠加定理、戴维南定理和诺顿定理资料

叠加定理、戴维南定理和诺顿定理资料
电压源 (戴维南定理)
有源二端网络可 化简为一个电源
电流源 (诺顿定理)
17
1. 戴维南定理
任何一个线性含源一端口网络,对外电路来说,总可
以用一个电压源和电阻的串联组合来等效置换;此电压源
的电压等于外电路断开时端口处的开路电压E,而电阻等
于一端口的输入电阻(或等效电阻R0)。
i
i a
a R0
A
u
b
+
u
E
-
b
等效电源的电动势E 是有源二端网络的开路 电压U0,即将负载断开后 a 、b两端之间的
电压。
等效电源的内阻R0等于有源二端网络 中所 有电源均除去(理想电压源短路,理想电流 源开路)后所得到的无源二端网络 a 、b两端 之间的等效电阻。
19

a
10
I
+ 10
+
+
U0C
20V –
10V ––
(1) u0.45V0.210V4V (2) u0.410V0.25V5V (3) u[0.420coω s(t)0.215sin2ω( t)]V
[8coω s(t)3sin2ω( t)]V
练习1: 求电压U.
– 8 3A 6

12V
12V电源作用: U(1) 1234V + 2 9
+
3
U- -
3A电源作用: U(2)(6//3)36V U462 V
叠加定理、戴维南定理和诺顿定 理
学习目标
掌握叠加原理、戴维南定理和诺顿定律
五、叠加原理
叠加原理:对于线性电路,任何一条支路的电 流或某个元件两端的电压,都可以看成是由电 路中各个电源(电压源或电流源)分别作用时, 在此支路中所产生的电流或电压的代数和。

叠加定理,戴维南定理和诺顿定理

叠加定理,戴维南定理和诺顿定理
I 2 I 3 1.5 4A 6A I 4 1.5 3A 4.5A I 5 1.5 1A 1.5A
(3)电路如图所示。若已知:
(1) uS1 5V, uS2 10V (2) uS1 10V, uS2 5V
(3) uS1 20 cos tV, uS2 15sin 2 t V 试用叠加定理计算电压u 。
R
Rab
R1 R2 R1 R2
1 1.5 1 1.5
0.6
23
据图1-7(b),可以很容易求得电阻R3的电流为:
I3
E R R3
4.8 0.6 10
0.45 A
24
2、诺顿定理
2、诺顿定理: 任何一个含源线性二端网络都可以等效成
为一个理想电流源和内阻并联的电源。
25
图中等效电源的电流ΙS等于该含源二端网络 的短路电流。内阻R0则等于该二端网络中所有 电源都为零时的两个输出端点之间的等效电阻,
b+ –

12V
(1) 求短路电流Isc
I1 =12/2=6A
– 24V
+
应用分 流公式
I2=(24+12)/10=3.6A Is=-I1-I2=- 3.6-6=-9.6A
(2) 求等效电阻Req
a
10
R0
2
b
R0=10//2=1.67
(3) 诺顿等效电路:
a I 4
b
-9.6A 1.67
I =2.83A
I1'
R1
E1 R2 //
R3
R1 R2
R2 R3 R2 R3
R3 R1
E1
E2单独作用时((c)图)
I1
R3 R1 R3

叠加定理、戴维南定理和诺顿定理

叠加定理、戴维南定理和诺顿定理

03
诺顿定理
定义与理解
总结词
诺顿定理是电路分析中的一个重要定理,它通过将一个复杂 的线性含源网络等效为一个电流源和电阻的串联组合,简化 了电路的分析和计算。
详细描述
诺顿定理基于电流和电压的基本性质,通过将一个线性含源 网络等效为一个电流源和电阻的串联组合,使得电路的分析 和计算变得更为简单。这个定理在电路分析和设计中具有广 泛的应用。
实例分析
实例1
一个简单的直流电源电路,有两 个电源同时作用于一个电阻上, 通过叠加定理可以计算出电阻上 的电流和电压。
实例2
一个交流电源电路,有三个电源 同时作用于一个电感上,通过叠 加定理可以计算出电感上的电流 和电压。
02
戴维南定理
定义与理解
戴维南定理
任何一个线性有源二端网络,对于外电路而言,都可以用一个等效电源电动势和 内阻串联来表示。
理解
戴维南定理是电路分析中的一个重要定理,它可以将一个复杂的线性有源二端网 络简化为一个等效的电源电动势和内阻串联模型,从而简化电路的分析和计算。
定理的应用
计算等效电源电动势和内阻
01
通过测量网络的开路电压和短路电流,可以计算出等效电源电
动势和内阻。
分析电路性能
02
利用等效电源电动势和内阻,可以分析电路的电压、电流和功
戴维南定理
适用于有源二端网络,将一个有源二端网络等效为一个电压源和 一个电阻的串联。
诺顿定理
适用于有源二端网络,将一个有源二端网络等效为一个电流源和 一个电阻的并联。
定理的互补性及应用场景
叠加定理和戴维南定理、诺顿定理可以相互推导,具有互补性。
在分析和设计线性时不变电路时,可以根据需要选择合适的定理。 如果需要计算电流或电压,可以选择叠加定理;如果需要计算等 效电阻,可以选择戴维南定理或诺顿定理。

[电路分析]戴维南定理和诺顿定理

[电路分析]戴维南定理和诺顿定理

戴维南定理和诺顿定理一、戴维南定理出发点:对于一个复杂的含有独立源的电路,如果只要计算某条支路上的电压和电流,那么就可以把电路分解成两个部分,把该条支路作为一个部分,把电路的其余部分作为另一个部分,并用一个含源二端网络 Ns 来表示。

试图找到一个简化的等效电路去替换 Ns ,则该支路上的电压和电流的计算就会简单得多。

1 、戴维南定理图 4.3-1 ( a )中, Ns 是含源二端网络,欲计算电阻 R 的端电压 u 和端电流 i 。

根据替代定理,可以用一个电流为 i 的理想电流源去替代外电路,如图 4.3-1 ( b )所示,替代之后,电路中其他支路上的电压和电流则保持不变。

用叠加定理计算 a 、 b 端钮的电压 u 。

当含源二端网络 Ns 中的独立源单独作用时,外部的电流源 i 应视为开路,这时的电路如图 4.3-1 ( c )所示。

显然,这时的端钮电压就是含源二端网络 Ns 的开路电压。

当外部的电流源 i 单独作用时,把含源二端网络 Ns 中的所有独立源都视为 0 ,这时Ns 中只剩下线性电阻和线性受控源等元件,没有独立源,成为一个无源二端网络,用 N 表示,其电路如图 4.3-1 ( d )所示。

显然,无源二端网络 N 可以等效为一个电阻,这个电阻称为含源二端网络 Ns 的等效内阻用 Ro 表示。

这时电阻的端电压为。

根据叠加定理,得图 4.3-1 ( a )电路中电阻的端电压为戴维南定理(Thevenin's theorem ):对于一个线性的含源二端网络,对外电路而言,它可以用一个理想电压源和一个内阻相串联的支路来等效,这条支路称为戴维南等效支路,又称戴维南模型。

其中,等效电压源的电压为该含源二端网络的开路电压,等效内阻为该含源二端网络中所有独立源都取 0 时的等效电阻。

2 、戴维南模型参数的计算1 、电压的计算先画出含源二端网络 Ns 开路时的电路,然后再计算开路电压。

2 、等效内阻的计算( 1 )如果无源二端网络 N 中没有受控源,可以用电阻网络的等效方法,如电阻的串、并联方法等。

电路中的戴维南定理和诺顿定理

电路中的戴维南定理和诺顿定理

电路中的戴维南定理和诺顿定理在电路中,戴维南定理(Kirchhoff's current law)和诺顿定理(Norton's theorem)这两个定理扮演着重要的角色。

它们是电路分析中的基础理论,能够帮助我们理解和解决各种复杂的电路问题。

首先,我们来看一下戴维南定理。

戴维南定理是由德国物理学家叶夫根·戴维南于19世纪提出的。

该定理表明,在一个节点(连接两个或多个电路元件的交叉点)中,流入该节点的电流之和必须等于流出该节点的电流之和。

从宏观的角度来看,该定理可以解释为电荷守恒定律的特例。

换句话说,电流永远不会在电路中“丢失”,它们必须在节点处平衡。

举例来说,如果我们考虑一个简单的电路,其中有两个电流源和几个电阻。

按照戴维南定理,我们可以在节点处设置一个方程,将流入节点的电流与流出节点的电流相等。

这样,我们就可以通过解这些方程,来计算出电路中各个部分的电流和电压值。

另一方面,诺顿定理是由美国电气工程师佩尔·诺顿在19世纪初提出的。

诺顿定理在某种程度上与戴维南定理有些相似,但它主要用于简化电路的分析。

根据诺顿定理,任何电路都可以用一个电流源和一个等效电阻来代替,这个等效电阻被称为诺顿电阻。

这样,原本复杂的电路可以被简化成一个等效电路。

诺顿定理的一个重要应用是求解电路中的最大功率传输问题。

根据该定理,当电阻负载和源电压固定时,最大功率传输发生在负载电阻等于诺顿电阻的情况下。

这个最大功率可以通过诺顿电流的平方乘以负载电阻得到。

因此,诺顿定理帮助我们确定如何选择负载电阻,以使电路达到最大的功率传输效果。

戴维南定理和诺顿定理在实际电路设计和分析中有着广泛的应用。

无论是在电子设备中,还是在电力系统中,这两个定理都能为我们提供重要的指导。

它们不仅能够帮助我们理解电路中的电流分布和电势差,还能够解决各种电路故障和优化电路性能的问题。

总结起来,戴维南定理和诺顿定理是电路分析中的基础定理,能够帮助我们理解和解决电路中的各种问题。

戴维南定理与诺顿定理

戴维南定理与诺顿定理

戴维南定理与诺顿定理导言:在电路理论中,戴维南定理(Kirchhoff's Current Law)和诺顿定理(Norton's Theorem)是两个非常重要的基本定理。

它们为我们分析和解决电路问题提供了有力的工具。

本文将从理论原理、应用范围以及实际案例等方面介绍戴维南定理与诺顿定理,帮助读者更好地理解和应用这两个定理。

一、戴维南定理1.1 原理戴维南定理,又称作电流守恒定律,是由德国物理学家叶史瓦·戴维南于1845年提出的。

该定理表明,在任何一个电路中,进入某节点的电流之和等于离开该节点的电流之和。

简而言之,电流在节点处守恒。

1.2 应用戴维南定理为我们分析电路提供了一个重要的基本原则。

在实际应用中,我们可以通过应用戴维南定理来简化电路,从而更方便地求解电路中的各种参数。

通过将复杂的电路分解为多个简单的节点,我们可以利用戴维南定理将电路简化为一系列串、并联的电阻,从而求解电流和电压的分布情况。

1.3 例子为了更好地理解戴维南定理的应用,我们来看一个简单的例子。

假设有一个由三个电阻串联而成的电路,电阻分别为R1、R2和R3,电流为I。

根据戴维南定理,我们可以得到以下等式:I = I1 = I2 = I3其中,I1、I2和I3分别表示通过R1、R2和R3的电流。

通过这个等式,我们可以得到I与三个电阻的关系,从而求解电路中的各个参数。

二、诺顿定理2.1 原理诺顿定理是由美国工程师爱德华·诺顿于1926年提出的。

该定理表明,在任何一个电路中,可以通过一个等效的电流源和一个等效的电阻来代替电路中的复杂部分。

这个等效的电流源称为诺顿电流源,等效的电阻称为诺顿电阻。

2.2 应用诺顿定理为我们分析电路提供了一种简化的方法。

通过将电路中的复杂部分转化为一个等效的电流源和电阻,我们可以更方便地计算电路的各种参数。

诺顿定理在电路分析和设计中有着广泛的应用,特别是在大规模集成电路设计和复杂电路的分析中,诺顿定理可以帮助工程师简化电路结构,提高设计的效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二端网络的概念:
二端网络:具有两个出线端的部分电路。
无源二端网络:二端网络中没有电源。
R1 R2
a
+
R4
E

R3
b
无源二端网络
15
有源二端网络:二端网络中含有电源。
+
E
– R1
R2
a IS R3
b
有源二端网络
16
无源 二端 网络
有源 二端 网络
a
a R
b
b
+
a
_E
R0
a
b
a
b
IS R0
b
无源二端网络可 化简为一个电阻
同理:
I2 I2 I2
I3 I3 I3
5
注意事项:
① 叠加原理只适用于线性电路。
② 线性电路的电流或电压均可用叠加原理计算, 但功率P不能用叠加原理计算。例:
P1
I2 1
R1
(
I
1
I
1
)2
R1
I12 R1
I1
R2 1
③ 不用电源的处理:
E = 0,即将E 短路; Is= 0,即将 Is 开路 。
课前回顾
一、基尔霍夫定律 二、电压源和电流源
学习目标
掌握叠加原理、戴维南定理和诺顿定律
五、叠加原理
叠加原理:对于线性电路,任何一条支路的电 流或某个元件两端的电压,都可以看成是由电 路中各个电源(电压源或电流源)分别作用时, 在此支路中所产生的电流或电压的代数和。
3
E1 单独作用时((b)图)


2 + 2A u
10V电源作用:
u(1)
3 ( 5
2 ) 10
5
10V
2V -
3

3
2A电源作用: u(2) 2 3 2 2 4.8V 5
2 为两个简
u 6.8V P 6.8 2 13.6W 单电路
+ 画出分 电路图 10V

2 + U(1)
3 -
2
2 + 2A

U(2)
3 3 -
3
2
六、戴维南定理和诺顿定理
工程实际中,常常碰到只需研究某一支路的电 压、电流或功率的问题。对所研究的支路来说,电 路的其余部分就成为一个有源二端网络,可等效变 换为较简单的含源支路(电压源与电阻串联或电流 源与电阻并联支路), 使分析和计算简化。戴维南定 理和诺顿定理正是给出了等效含源支路及其计算方 法。
练习1: 求电压U.

12V电源作用: U (1) 12 3 4V 9
3A电源作用: U (2) (6 // 3) 3 6V
– 8
12V + 2
3A 6
+
3
U- -
U 4 6 2V
画出分 电路图
+ – 8 6
8
12V
+
+ 2 3 U(1)
2

3A 3
6
+ U(2) -
练习2: 求电流源的电压和发出 的功率
I 2 I 3 1.5 4A 6A I 4 1.5 3A 4.5A I 5 1.5 1A 1.5A
(3)电路如图所示。若已知:
(1) uS1 5V, uS2 10V (2) uS1 10V, uS2 5V
(3) uS1 20 cos tV, uS2 15sin 2 t V 试用叠加定理计算电压u 。
④ 解题时要标明各支路电流、电压的参考方向。 若分电流、分电压与原电路中电流、电压的参考 方向相反时,叠加时相应项前要带负号。
6
(l)已知I5=1A,求各支路电流和电压源电压US。
8A
1A
4A
4A
3A
80V
解:由后向前推算:
I4
(12 ) I 5 4
3A
I3 I4 I5 4A
I2
(7)I3 (12)I5 10
图2-3
解:画出uS1和uS2单独作用的电路,如图(b)和(c)所示,
分别求出:
2
u'
H1uS1
3 1 2
uS1
0.4uS1
3
u"
H 2uS2
2
0.5 0.5
uS2
0.2uS2
(1) uS1 5V, uS2 10V (2) uS1 10V, uS2 5V
(3) uS1 20 cos( t)V, uS2 15sin(2 t) V
电压源 (戴维南定理)
有源二端网络可 化简为一个电源
电流源 (诺顿定理)
17
1. 戴维南定理
任何一个线性含源一端口网络,对外电路来说,总可
以用一个电压源和电阻的串联组合来等效置换;此电压源
的电压等于外电路断开时端口处的开路电压E,而电阻等
于一端口的输入电阻(或等效电阻R0)。
i
i a
a R0
A
u
b
根据叠加定理
u u ' u" 0.4uS1 0.2uS2
代入uS1和uS2数据,分别得到:
(1) u 0.45V 0.210V 4V (2) u 0.410V 0.2 5V 5V (3) u [0.4 20cos(ω t) 0.215sin(2ω t)]V
[8cos(ω t) 3sin(2ω t)]V
I1'
R1
E1 R2 //
R3
R1 R2
R2 R3 R2 R3
R3 R1
E1
E2单独作用时((c)图)
I1
R3 R1 R3
R2
E2 R1
//
R3
R1 R2
R3 R2 R3
R3 R1
E2
4
I1
(
R1 R2
R2 R3 R2 R3
R3 R1
)E1
(
R1 R2
R3 R2 R3
R3 R1
)E2
b
(1) 求开路电压Uoc
I 20 10 0.5A 20
a
Uoc 0.510 10 15V
+ Req 5
+
Uoc 15V –
-
b
(2) 求等效电阻Req
Req 10 // 10 5
例1-2 用戴维南定理求解例题1-1即图1-4的电 路中流过R3的电流。 解:将图l- 4的电路重画于图1-9(a),
+
u
E
-
b
等效电源的电动势E 是有源二端网络的开路 电压U0,即将负载断开后 a 、b两端之间的
电压。
等效电源的内阻R0等于有源二端网络 中所 有电源均除去(理想电压源短路,理想电流 源开路)后所得到的无源二端网络 a 、b两端 之间的等效电阻。
19

a
10
I
+ 10
+
+
U0C
20V –
10V ––
21
22
设该电路中的电流为I′,则
I E1 E2 4 6 0.8A R1 R2 1 1.5
(式中负号说明方向与假设方向相反)
E U ab E2 I R2 6 (0.81.5) 4.8V
4A
I1 I2 I3 8A
US (5)I1 (10)I2 80V
(2)若已知US=120V,再求各支路电流。
182AA
46A
46A
8102V0V
43.5AA
11.5AA
解 : 当 US=120V 时 , 它 是 原 来 电 压 80V 的 1.5 倍 , 根 据 线 性
电路齐次性可以断言,该电路中各电压和电流均增加 到1.5倍,即 I1 1.5 8A 12A
相关文档
最新文档