仿生六足机器人研究报告学士学位论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目研究报告

——小型仿生六足探测机器人

一、课题背景:

仿生运动模式的多足步行机器人具有优越的越障能力,它集仿生学原理、机构学理论、自动控制原理与技术、计算机软件开发技术、传感器检测技术和电机驱动技术于一体。

不论在何种地面上行走,仿生六足机器人的运动都具有灵活性与变化性,但其精确控制的难度很大,需要有良好的控制策略与精密的轨迹规划,这些都是很好的研究题材。

二、项目创新点:

作为简单的关节型伺服机构,仿生六足机器人能够实现实时避障,合理规划行走路线。

简单的关节型机器人伺服系统不仅具有可批量制造的条件,作为今后机器人群系统的基本组成,也可以作为探索复杂伺服机构的研究对象。

三、研究内容:

1.仿生学原理分析:

仿生式六足机器人,顾名思义,六足机器人在我们理想架构中,我们借鉴了自然界昆虫的运动原理。

足是昆虫的运动器官。昆虫有3对足,在前胸、中胸和后胸各有一对,我们相应地称为前足、中足和后足。每个足由基节、转节、腿节、胫节、跗节和前跗节几部分组成。基节是足最基部的一节,多粗短。转节常与腿节紧密相连而不活动。腿节是最长最粗的一节。第四节叫胫节,一般比较细长,长着成排的刺。第五节叫跗节,一般由2-5个亚节组成﹔为的是便于行走。在最末节的端部还长着两个又硬又尖的爪,可以用它们来抓住物体。

行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并向后蹬时,另外三条腿即抬起向前准备替换。

前足用爪固定物体后拉动虫体向前,中足用来支持并举起所属一侧的身体,后足则推动虫体前进,同时使虫体转向。

这种行走方式使昆虫可以随时随地停息下来,因为重心总是落在三角支架之内。并不是所有成虫都用六条腿来行走,有些昆虫由于前足发生了特化,有了其他功用或退化,行走就主要靠中、后足来完成了。

大家最为熟悉的要算螳螂了,我们常可看到螳螂一对钳子般的前足高举在胸前,而由后面四条足支撑地面行走。

参考以上的昆虫足部结构,我们想出了较简单的方式来表达。一支脚共有两个关节(假设没有爪的情况下),一个关节采左右式移摆;另一个关节则是采偏摆式,使脚可提高,当做上下运动的一种,结构设计图如下。

2.运动学分析:

六足步行机器人的步态是多样的,其中三角步态是六足步行机器人实现步行的典型步态。

(1)三角步态介绍:

“六足纲”昆虫步行时,一般不是六足同时直线前进,而是将三对足分成两组,以三角形支架结构交替前行。目前,大部分六足机器人采用了仿昆虫的结构,6条腿分布在身体的两侧,身体左侧的前、后足及右侧的中足为一组,右侧的前、后足和左侧的中足为另一组,分别组成两个三角形支架,依靠大腿前后划动实现支撑和摆动过程,这就是典型的三角步态行走法,如下图所示。图中机器人的髋关节在水平和垂直方向上运动。此时,B、D、F 脚为摆动脚,A、C、E脚原地不动,只是支撑身体向前。由于身体重心低,不用协调Z向运动,容易稳定,所以这种行走方案能得到广泛运用。

(2)机器人行走步态分析:

项目设计共使用12个舵机用于步态实现。每条腿上有两个舵机,分别控制髋关节和膝关节的运动,舵机安装呈正交,构成垂直和水平方向的自由度。由于腿只有水平和垂直平面的运动自由度,所以只考虑利用三角步态实现直线行走。分别给12个舵机编号(1~12),如图所示。

直线行走步态分析

由1、2、5、6、9、10 号舵机控制的A、C、E腿所处的状态总保持一致(都是正在摆动,或者都在支撑);同样,3、4、7、8、11、12 所控制的B、D、F腿的状态也保持一致。当处在一个三角形内的3 条腿在支撑时,另3条腿正在摆动。支撑的3条腿使得身体前进,而摆动的腿对身体没有力和位移的作用,只是使得小腿向前运动,做好接下去支撑的准备。步态函数的占空系数为 0.5,支撑相和摆动相经过调整,达到满足平坦地形下的行走步态要求和稳定裕量需求。

转弯步态分析

项目设计的机器人采用以一中足为中心的原地转弯方式实现转弯,下图为右转的示意图,图中E腿为支撑中足。右转弯运动的过程如下:1)首先A、C、E 腿抬起,然后A、C 腿向前摆动,E腿保持不动,B、D、F腿支撑。2)A、C、E腿落地支撑,同时B、D、F腿抬起保持不动。3)A、C腿向后摆动。整个运动过程中B、D、E、F 不做前后运动,只是上下运动。

3.结构设计:

六足机器人的基本结构的设计主要包括机器人足部关节自由度转换结构的设计和躯干整体支架的设计。

(1)足部结构:

仿生六足机器人足部机构主要是电机间的链接与自由度转换结构。

采用Auto公司开发的3D机械制图软件辅助设计的方法,分析电机尺寸,设计固定作用的固定架,传动作用的U型架。

结构通过平面钣金加工制作,通过紧固件进行基本结构件的连接。

基本足部自由度转换结构设计实物图。

(2)躯干结构:

经过改进后的机器人躯干结构在结构设计软件中的设计图如下

躯干结构模拟图整体结构模拟图

4.驱动器与驱动原理:

仿生六足机器人采用电动驱动的方式进行驱动

驱动器采用微型直流角位移伺服电动机【舵机】。

(1)舵机原理

舵机是一种结构简单的、集成化的直流伺服系统,其内部结构由直流电机、减速齿轮、电位计和控制电路组成。舵机采用的驱动信号是脉冲比例调制信号(PWM),即在通常为20ms 的周期内,输入以0.5~2.5ms 变化的脉冲宽度,对应的转角范围从O°变化到180°,脉冲宽度与转角呈线性关系[5]。控制信号线提供一定脉宽的脉冲时,其输出轴保持在相对应的角度上。若舵机初始角度状态在0°位置,那么电机只能朝一个方向运动,所以初始化的时候,应将所有电机的位置定在90°的位置。六足机器人腿部偶数舵机转轴为垂直运动,控制机器人腿部抬起和放下;奇数舵机转轴为水平转动,控制机器人腿部前进和后退。

(2)舵机控制方法

标准的舵机有3条导线,分别是:电源线、地线、控制线。

电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用下图表示。

相关文档
最新文档