深圳西乡中学人教版七年级上册数学期末测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳西乡中学人教版七年级上册数学期末测试题
一、选择题
1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()
A.0.65×108B.6.5×107C.6.5×108D.65×106
2.如果一个角的补角是130°,那么这个角的余角的度数是()
A.30°B.40°C.50°D.90°
3.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106
4.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()
A.a>b B.﹣ab<0 C.|a|<|b| D.a<﹣b
5.下列方程是一元一次方程的是()
A.
21
3
x
=5x B.x2+1=3x C.
3
2y
=y+2 D.2x﹣3y=1
6.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是()
A.171 B.190 C.210 D.380
7.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()
4a b c﹣23…
A.4 B.3 C.0 D.﹣2
8.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()
A.6cm B.3cm C.3cm或6cm D.4cm
9.以下调查方式比较合理的是()
A.为了解一沓钞票中有没有假钞,采用抽样调查的方式
B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式
C.为了解某省中学生爱好足球的情况,采用普查的方式
D.为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式
10.下列式子中,是一元一次方程的是()
A .3x+1=4x
B .x+2>1
C .x 2-9=0
D .2x -3y=0 11.已知∠A =60°,则∠A 的补角是( ) A .30°
B .60°
C .120°
D .180°
12.当x=3,y=2时,代数式23
x y
-的值是( ) A .
43
B .2
C .0
D .3
二、填空题
13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.
14.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.
15.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则
(1)2-⊕=__________.
16.单项式﹣
22
πa b
的系数是_____,次数是_____.
17.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 18.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.
19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 20.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.
21.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.
22.当x= 时,多项式3(2-x )和2(3+x )的值相等.
23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 24.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .
三、压轴题
25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和
b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.
请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .
(1)请你在图②的数轴上表示出P ,Q 两点的位置;
(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);
(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ? 26.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;
(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.
(3)在(2)的条件下,当∠COF =14°时,t = 秒.
27.借助一副三角板,可以得到一些平面图形
(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?
(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;
(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.
28.综合试一试
(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.
(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把
11a
-称为a 的差倒数.如:2的差倒数是1
112=--,1-的差倒数是
()11
112
=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3
a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.
(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______
(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等. 29.问题:将边长为
的正三角形的三条边分别等分,连接各边对应的等分点,则
该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;
边长为2的正三角形一共有1个.
探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.
探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.
30.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.
请根据上述规定回答下列问题:
(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;
(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;
(3)若点E在数轴上(不与A、B重合),满足BE=1
2
AE,且此时点E为点A、B的“n节
点”,求n的值.
31.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.
观察下列按照一定规律堆砌的钢管的横截面图:
用含n的式子表示第n个图的钢管总数.
(分析思路)
图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.
如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)
(解决问题)
(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.
S=1+2 S=2+3+4 _____________ ______________
(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:
_______ ____________ _______________ _______________
(3)用含n的式子列式,并计算第n个图的钢管总数.
32.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点
(1)若AP=2时,PM=____;
(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;
(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直
..向右运动,当点Q的运动时间为多少时,满足QM=2PM.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
详解:65 000 000=6.5×107.
故选B.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中
1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2.B
解析:B
【解析】
【分析】
直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.
【详解】
解:∵一个角的补角是130︒,
∴这个角为:50︒,
∴这个角的余角的度数是:40︒.
故选:B.
【点睛】
此题主要考查了余角和补角,正确把握相关定义是解题关键.
3.C
解析:C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
试题分析:384 000=3.84×105.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.D
解析:D
【解析】
【分析】
根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.
【详解】
解:∵由图可知a<0<b,
∴ab<0,即-ab>0
又∵|a|>|b|,
∴a<﹣b.
故选:D.
【点睛】
本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.
5.A
解析:A
【解析】
【分析】
只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.
【详解】
解:A、
21
3
x
=5x符合一元一次方程的定义;
B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;
C、
3
2y
=y+2中等号左边不是整式,不是一元一次方程;
D、2x﹣3y=1含有2个未知数,不是一元一次方程;
故选:A.
【点睛】
解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.
6.B
解析:B
【解析】
分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解.
详解:∵第一个图2条直线相交,最多有1个交点,
第二个图3条直线相交最多有3个交点,
第三个图4条直线相交,最多有6个,
而3=1+2,6=1+2+3,
∴第四个图5条直线相交,最多有1+2+3+4=10个,
∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.
故选B.
点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.
7.D
解析:D
【解析】
【分析】
根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.
【详解】
解:∵任意三个相邻格子中所填整数之和都相等,
∴4+a+b=a+b+c,
解得c=4,
a+b+c=b+c+(-2),
解得a=-2,
所以,数据从左到右依次为4、-2、b、4、-2、b,
第9个数与第三个数相同,即b=3,
所以,每3个数“4、-2、3”为一个循环组依次循环,
∵2018÷3=672…2,
∴第2018个格子中的整数与第2个格子中的数相同,为-2.
故选D.
【点睛】
此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.
8.D
解析:D
【解析】
【分析】
根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.
【详解】
当点C在AB的延长线上时,如图1,则MB=MC-BC,
∵M是AC的中点,N是BC的中点,AB=8cm,
∴MC=11
()
22
AC AB BC
=+,BN=
1
2
BC,
∴MN=MB+BN,=MC-BC+BN,
=1
()
2
AB BC
+-BC+
1
2
BC,
=1
2 AB,
=4,
同理,当点C在线段AB上时,如图2,
则MN=MC+NC=1
2
AC+
1
2
BC=
1
2
AB=4,
,
故选:D.
【点睛】
本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.9.B
解析:B
【解析】
抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
【详解】
解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;
B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;
C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;
D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意; 故选:B .
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10.A
解析:A
【解析】A. 3x+1=4x 是一元一次方程,故本选项正确;
B. x+2>1是一元一次不等式,故本选项错误;
C. x 2−9=0是一元二次方程,故本选项错误;
D. 2x −3y=0是二元一次方程,故本选项错误。
故选A.
11.C
解析:C
【解析】
【分析】
两角互余和为90°,互补和为180°,求∠A 的补角只要用180°﹣∠A 即可.
【详解】
设∠A 的补角为∠β,则∠β=180°﹣∠A =120°.
故选:C .
【点睛】
本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.
12.A
解析:A
【解析】
【分析】
当x=3,y=2时,直接代入代数式即可得到结果.
【详解】
23x y -=2323⨯-=43
, 故选A
本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.
二、填空题
13.8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点
解析:8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点睛】
此题考查多边形的对角线,解题关键在于掌握计算公式.
14.【解析】
【分析】
先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长度,由BD=AD﹣AB即可得出结论.
【详解】
解:∵AB=4,BC=2AB,
∴B
解析:【解析】
【分析】
先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD
的长度,由BD =AD ﹣AB 即可得出结论.
【详解】
解:∵AB =4,BC =2AB ,
∴BC =8.
∴AC =AB +BC =12.
∵D 是AC 的中点,
∴AD =12
AC =6. ∴BD =AD ﹣AB =6﹣4=2.
故答案为:2.
【点睛】
本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键. 15.8
【解析】
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为;
所以
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解
解析:8
【解析】
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为22a b b ab ⊕=-;
所以2
(1)222(1)28.-⊕=-⨯-⨯=
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.﹣; 3.
【解析】
【分析】
根据单项式的次数、系数的定义解答.
【详解】
解:单项式﹣的系数是﹣,次数是2+1=3,
故答案是:﹣;3.
【点睛】
本题考查了单项式系数、次数的定义
解析:﹣
2
π; 3. 【解析】
【分析】 根据单项式的次数、系数的定义解答.
【详解】 解:单项式﹣
22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣
2
π;3. 【点睛】
本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 17.【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解析:62.0510-⨯
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.00000205=62.0510-⨯
故答案为62.0510-⨯
【点睛】
此题考查科学记数法,难度不大
18.5
【解析】
【分析】
要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴
解析:5
【解析】
【分析】
要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.
【详解】
解:设驴子原来驮x袋,根据题意,得:
2(x﹣1)﹣1﹣1=x+1
解得:x=5.
故驴子原来所托货物的袋数是5.
故答案为5.
【点睛】
解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
19.两点确定一条直线.
【解析】
【分析】
根据两点确定一条直线解析即可.
【详解】
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直
解析:两点确定一条直线.
【解析】
【分析】
根据两点确定一条直线解析即可.
【详解】
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.
故答案为:两点确定一条直线.
【点睛】
考核知识点:两点确定一条直线.理解课本基本公理即可.
20.-20.
【解析】
【分析】
把所求代数式化成的形式,再整体代入的值进行计算便可.
【详解】
解:,
,
故答案为:.
【点睛】
本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式
解析:-20.
【解析】
【分析】
把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.
【详解】
解:5m n -=,
335m n ∴-+-
3()5m n =---
355=-⨯-
155=--
20=-,
故答案为:20-.
【点睛】
本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.
21.40°
【解析】
解:由角的和差,得:∠AOC=∠AOD -∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.
解析:40°
【解析】
解:由角的和差,得:∠AOC =∠AOD -∠COD =140°-90°=50°.由余角的性质,得:∠COB =90°-∠AOC =90°-50°=40°.故答案为:40°.
22.【解析】
试题解析:根据题意列出方程3(2-x )=2(3+x )
去括号得:6-3x=6+2x
移项合并同类项得:5x=0,
化系数为1得:x=0.
考点:解一元一次方程.
解析:【解析】
试题解析:根据题意列出方程3(2-x)=2(3+x)
去括号得:6-3x=6+2x
移项合并同类项得:5x=0,
化系数为1得:x=0.
考点:解一元一次方程.
23.正方体.
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】
解:正方体的主视图、左视图、俯视图都是大小相同的正方形,
故答案为正方体.
【点睛】
考
解析:正方体.
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
解:正方体的主视图、左视图、俯视图都是大小相同的正方形,
故答案为正方体.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.24.5
【解析】
【分析】
【详解】
根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.
考点:几何体的三视图.
解析:5
【解析】
【分析】
【详解】
根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的 .
考点:几何体的三视图.
三、压轴题
25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.
【解析】
【分析】
(1)根据数轴的特点,所以可以求出点P ,Q 的位置;
(2)根据向左移动用减法,向右移动用加法,即可得到答案;
(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.
【详解】
解:(1)如图所示:
.
(2)由(1)可知,点P 为2-,点Q 为5;
∴移动后的点P 为:2x --;移动后的点Q 为:53x +;
∴线段PQ 的长为:53(2)47x x x +---=+;
(3)根据题意可知,
当PQ=2cm 时可分为两种情况:
①当点P 在点Q 的左边时,有
(21)72t -=-,
解得:5t =;
②点P 在点Q 的右边时,有
(21)72t -=+,
解得:9t =;
综上所述,当运动时间为5秒或9秒时,PQ=2cm.
【点睛】
本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.
26.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.
【解析】
【分析】
(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;
(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;
(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+
,解方程即可求出t 的值. 【详解】
解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022
︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;
(2)∠AOE ﹣∠BOF 的值是定值
由题意∠BOC =3t°,
则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,
∵OE 平分∠AOC ,OF 平分∠BOD ,
()11AOE AOC 1103t =22︒︒∴∠=
∠=⨯+3552t ︒︒+ ∴()
113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝
⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;
(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+
, 解得4t =.
故答案为4.
【点睛】
本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.
27.(1)75°,150°;(2)15°;(3)15°.
【解析】
【分析】
(1)根据三角板的特殊性角的度数,求出∠AOC 即可,把∠AOC 、∠BOC 、∠AOB 相加即可
求出射线OA,OB,OC组成的所有小于平角的和;
(2)依题意设∠2=x,列等式,解方程求出即可;
(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.
【详解】
解:(1)∵∠BOC=30°,∠AOB=45°,
∴∠AOC=75°,
∴∠AOC+∠BOC+∠AOB=150°;
答:由射线OA,OB,OC组成的所有小于平角的和是150°;
故答案为:75;
(2)设∠2=x,则∠1=3x+30°,
∵∠1+∠2=90°,
∴x+3x+30°=90°,
∴x=15°,
∴∠2=15°,
答:∠2的度数是15°;
(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,
∵OE为∠BOM的平分线,OF为∠COM的平分线,
∴∠MOF=1
2
∠COM=82.5°,∠MOE=
1
2
∠MOB=67.5°,
∴∠EOF=∠MOF﹣∠MOE=15°.
【点睛】
本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.
28.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)2503
2
;(4)9.38;(5)0;(6)
24或40
【解析】
【分析】
(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续
4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.
【详解】
(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,
故答案为23+(-3)3+43,73+(-5)3+(-6)3
(2)∵2a b a ab ⊗=-,
∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]
=(-5)⊗15
=(-5)2-(-5)×15
=100.
(3)∵a 1=2,
∴a 2=
1112=--, a 3=11(1)--=12
, 412112
a ==-
a 5=-1
…… ∴从a 1开始,每3个数一循环,
∵2500÷3=833……1,
∴a 2500=a 1=2,
∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032
. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,
∴平均分为中间8个分数的平均分,
∵平均分精确到十分位的为9.4,
∴平均分在9.35至9.44之间,
9.35×8=74.8,9.44×8=75.52,
∴8个裁判所给的总分在74.8至75.52之间,
∵打分都是整数,
∴总分也是整数,
∴总分为75,
∴平均分为75÷8=9.375,
∴精确到百分位是9.38.。