砂卵石地层盾构

盾构所经地层的砂卵石

北京地区砂卵石地层盾构掘进

如何解决砂卵石地层盾构掘进问题

是北京盾构选型的关键问题

粒径超过200mm

切削刀工作原理图

粉质粘土及重粉质粘土

圆砾层

中粗砂

粉细砂层

粘质粉土砂质粉土粘质粉土素填土

刀盘

粉细砂层地面,45.55

41.0539.35

36.35

34.45

33.95

31.15

26.95

22.05

粉质粘土及粘质粉土盾构机所在位置地质横断面 (k9+124.52)

盾构刀盘所在位置断面图

★刀盘大部分位 于圆砾层中 可预见其磨损 将相当严重

219min

88 min

外周边刀已完全磨损

刀具磨损状况

土卵石地层工程勘察报告

工程编号:JK-13-KC012-2 华夏?湖畔御苑5#楼裙房 岩土工程勘察报告 (详勘) 资质等级及证书编号:甲级122276-kj ?工程负责: ?编写: ?校对: ?审核: ?审定: ?总工程师: 毛辉 ?总经理:刘才根 江山市建设工程勘察有限公司 二○一四年三月

目录 一、前言 (一)工程概况 (4) (二)勘察目的与工作要求 (4) (三)勘察依据 (5) (四)勘察等级、勘察方法和工作量布置 (5) (五)完成工作量情况 (6) 二、场地工程地质条件 (一)区域自然地理与气象条件 (6) (二)场地工程地质条件 (7) 三、拟建场地岩土工程条件评价 (一)岩土参数的统计 (10) (二)岩土参数的确定 (10) (三)各岩土层工程特性评价 (11) (四)地基均匀性评价 (11) (五)不良地质作用评价 (12) (六)特殊性岩土评价 (12) 四、拟建场地的稳定性和适宜性评价 (12) 五、基础方案分析 (一)天然地基浅基础方案 (12) (二)桩基础方案 (13)

六、结论和建议 (13) 七、附件 ㈠附表 钻孔一览表 分层数据一览表 标贯数据一览表 动探数据一览表 岩石点荷载强度试验报告 土工试验报告 压缩试验成果图表 颗粒分析试验曲线 土工试验分层汇总表 综合成果表 ㈡附图 勘探点平面布置图 工程地质剖面图 钻孔柱状图

一、前言 (一)工程概况 宣城市华夏房地产开发有限公司拟在安徽省宣城市兴建湖畔御苑大型生活小区。该生活小区由高层住宅、商业用房和菜市场组成。本报告为其拟建的5#楼裙房的详细阶段岩土工程勘察成果。该拟建物层数3层,局部2层,框架结构,单柱最大荷载约2000KN。底面形状呈不规则矩形,设计室内±为米。拟建物拟采用桩基础。 (二)勘察目的与工作要求 根据本工程勘察依据及建筑规模和性质,其场址区岩土工程勘察目的和要求确定如下: 1.查明不良地质作用的类型、成因、分布范围、发展趋势和危害程度,提出整治方案的建议,并对场地的稳定性和建筑物的适宜性作出评价; 2.查明建筑场地各岩土层的成因、时代、地层结构和均匀性以及特殊性岩土的性质,尤其应查明基础下软弱和坚硬地层分布,以及各岩土层的物理力学性质。 3.查明场地地下水的类型、埋藏条件、补给及排泄条件、腐蚀性、水位埋深;提供地下水季节变化幅度;并对地下水对砼的腐蚀性作出评价; 4.查明场地埋藏的河道、沟浜、墓穴、防空洞、孤石等对工程不利的埋藏物; 5. 确定抗震设防烈度,建筑场地类别,对场地和地基的地震效应做出评价。

富水砂卵石地层中盾构施工的控制难点及措施

富水砂卵石地层中盾构施工的控制难点及措施 段浩 引言:随着中国经济的快速增长、城市人口数量迅速膨胀,机动车辆的数量呈级数比例增长,原有的市政道路难以满足交通的需要,为缓解城市交通压力、创造良好的生活和投资环境,国内各主要城市均选择修建地铁工程来提升城市形象和投资环境。隧道是地铁工程最主要的组成部分,隧道盾构法施工具有施工速度快、工期短、洞体工程质量易控制、质量比较稳定且良好的防渗水性能、施工安全系数高、对周边建筑物影响极小、基本不影响地面交通、适合地层范围广、地质情况复杂的施工作业环境等优点。随着我国各大城市地铁建设热情的高涨,隧道盾构施工方法必将在地铁建设中被广泛推广应用。盾构施工虽然有对地层的广泛适应性、施工安全系数高等优点,但因地质情况千变万化、施工环境的复杂性,在盾构施工中必然存在盾构机的适应性和施工方法、措施的调整。成都地铁穿越的地层主要为砂卵石地层并夹杂有粉细砂层透镜体,地下水丰富、水位高、补给迅速,国内、国际在该种地质条件下全面实施盾构施工隧道尚不多见,无较多经验可以借鉴,在地铁建设史上的应是一次重要技术性突破。截至目前成都地铁采用泥水盾构和土压平衡盾构施作的隧道,已经完成成型隧道1000余米,在施工中出现一些有别于其它地质情况下施工的难点,对这些难点的技术处理为在富水砂卵石地层中盾构施工积累了一些应对的经验。 成都地铁地质情况描述:

盾构隧道从<2-8>、< 3-4>、<3-7〉等砂卵石地层中通过。卵石成分主要为灰岩、砂岩、石英岩,卵石的含量达67%,中间夹杂大漂石。砂卵石具有分选性差,强度高的特点。 <2-8>卵石土(Q4al):黄灰色,黄褐色,中密~密实为主,部分密实,潮湿~饱和。卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量65~75%,粒径以30~70mm为主,钻探揭示最大粒径145mm,夹零星漂石,充填物为细砂及圆砾。 <3-4>粉、细砂(Q3fgl+al):灰绿色,饱和,中密,夹少量卵石。呈透镜体状分布。 <3-7>卵石土(Q3fgl+al):褐黄、黄色,以中密~密实为主,饱和。卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量60~75%,粒径以30~70mm为主,据钻探揭示,最大粒径150mm,夹零星漂石,充填物为砂及砾石,具弱泥质胶结或微钙质胶结。 隧道通过的地层含水丰富,根据钻孔揭示,隧道区间分布的卵石土及所夹透镜状砂层为地下水主要含水层,含水量丰富,含水层厚20~22.6m,区间范围内卵石土分选性差,渗透性强。

砂卵石层中钻孔桩成孔工艺研究

砂卵石层中钻孔桩成孔工艺研究 第1章工程概况 北京地铁9号线第1合同段工程位于北京市丰台区,线路呈南北走向。本合同段工程项目包括丰台科技园站、郭公庄站~丰台科技园站区间。丰台科技园车站包括2个风道、5个出入口(含1个安全出口)。1号风道位于车站东南端3号出入口以南,2号风道位于车站东北端4号出入口以北;1、2号出入口位于车站西侧,3、4号出入口位于车站东侧,5号出入口(安全出入口)位于车站东侧4号出入口及2号风道之间。车站主体结构设计为地下双层双柱岛式车站,明挖法施工。车站主体总长170.15m,标准段宽度20.9m,车站顶板覆土厚度4.6m,底板埋深18.2m,盾构井位置为19.7m。车站主体围护桩采用φ1000钻孔灌注桩223根,4160 m,桩端深度:25.6m 。车站附属围护桩采用φ1000钻孔灌注桩336根,5376 m。 1号风道为单层箱形框架结构,风道口及风道与主体接口位置宽12.87m,斜长17.42m,南北向长34.2m,基坑深13.8m,钻孔桩65根,东侧距离新改移马草河3.6~4.1m,围护结构采用围护桩+钢支撑体系。 2号风道为双层局部单层箱形框架结构,与主体接口位置宽15.35m,风道口宽15.1m,东西向长38.3m,南北向长32.65m,钻孔桩68根,双层段基坑深18.8m,单层段基坑深14.3m,周围场地开阔,风道施工范围内没有控制性管线,采用围护桩+钢支撑体系。 1号出入口与主体接口位置宽7.1m,出口位置宽6.7m,东西向长34.52m,南北向长38.16m。钻孔桩48根。 2号出入口与主体接口位置宽7.1m,出口位置宽6.7m,东西向长31.72m,南北向长41.64m。钻孔桩54根。 3号出入口与主体接口位置宽7.1m,出口位置宽6.7m,东西向长29.55m,南北向长39.6m,钻孔桩59根。基坑最深处为地面向下16.16m,宽11.4m;东侧距离新改移马草河约2.5~3m,4号出入口南侧为旧马草河,施工期间将废弃。为了减少对新改移马草河影响出入口围护结构主要采用围护桩+钢支撑支护体系,出入口地面位置采用土钉墙支护体系。 4号出入口与主体接口位置宽7.1m,出口位置宽6.7m,东西向长37.32m,南北向长37.76m,钻孔桩42根。基坑最深处为地面向下14.06m,宽11.4m;横向通道位置采用围护桩+钢支撑支护体系,出入口地面位置采用土钉墙支护体系。 车站附属结构采用明挖法施工。车站南侧为明挖区间,北侧为盾构区间,车站北端设盾构始发(左线)/接收(右线)井,左线盾构机始发时,后配套设施可放置于车站内。

砂卵石地层地下连续墙施工关键技术-文档

砂卵石地层地下连续墙施工关键技术 、工程概况 一)工程简介 汽车北站是长沙市地铁一号线一期工程起点站, 本站为地下 两层岛式车站,起讫里程 K9+907.4?K10+366.9,车站总长459.5 米,有效站台宽度 11 米,标准段基坑宽度 19.7 米,车站主体基 坑深度约 16? 23 米、结构覆土厚度 2? 3 米。车站主体围护结构 采用地下连续墙 +内支撑支护体系,主体结构采用明挖顺作法施 工。 二)工程地质及水文地质 拟建场地从地貌上属湘江I 级阶地,具二元结构沉积地层。 人工填土下为湘江I 级阶地的粉质粘土、 砂砾石层,下伏基岩为 连续;但强透水层细砂、粗砂、圆砾、卵石相变较大,分布不稳 基岩层面较平缓,分布较稳定。地层自上而下依次为:杂填 ?5.3m ;圆砾、卵石,层厚1.4?7.5m ;强风化板岩,层厚 基岩裂隙水,局部分布赋存于人工填土、粘性土中的上层滞水。 中厚一厚层状中元古界冷家溪群板岩( Pt )。粉质粘土层分布较 定; 土, 层厚0.7?5.3m ;粉细砂,层厚1.0?4.5m ; 中粗砂,层厚 0.7 0.2 ? 8.4m ; 中风化板岩,层厚 7.5?32.11m 。结构顶板处于杂 填土层,结构底板处于强风化板岩、 中风化板岩层。 地下水类型分为第四系松散层中的孔隙承压水、强 - 中风化

水位埋深1.5?4.3m。主要富存在中粗砂、砾砂及圆砾层中,主要含水层厚度12?16m大气降雨是本地区地下水的主要补给来源。 三)工程周边边界条件 车站位于长沙市芙蓉北路与江湾路丁字路口处,为始发站, 沿芙蓉北路南北呈一字型布置;汽车北站站址周边用地为商业和居住用地。周边建筑有东侧为京广铁路和采砂场,西北角为金霞 大型居住小区,西侧为长沙市汽车北站和湘江世纪城大型居住小 区。车站所在芙蓉北路为长沙市南北方向主干道,现状道路红线 宽60m。 二、工程难点分析 1 .车站结构位于芙蓉北路西半幅,原路面结构以下为杂填土,质地松散,分布连续,层厚大,卵石、砾石含量较高,在导墙施工开挖过程中容易垮塌,不易成型,即使成型也不稳定,不利于成槽设备安全施工。 2.连续墙体穿越的主要地层同样也为杂填土、粉细砂、粗砂、圆砾石,层厚大,分布连续,在成槽设备施工过程中如何控制槽壁稳定,防止坍塌难度较大。 3.连续墙成槽过程中,首先成槽机进行冲抓,进入强、中风化岩层时,采用冲击钻施工,泥浆调配、冲程控制、泥浆置换是控制难点。 三、地下连续墙的设计 根据该工程的难点分析,车站围护结构设计在满足车站施工各阶段的受力要求的前提下,首先考虑对周边环境和建筑物的保 护,同时还应考虑施工难度及可操作性。连续墙设计宽0.8m,墙体采用C30钢筋混凝土。基坑开挖深度16?21m连续墙设计深度19?26m 嵌岩深度3?5m. 整个车站共分168幅,基本类型有“一”字型、“ L”型、 “Z”型共三种,标准槽幅长度6m异性槽幅根据机械开槽能力适当减小,槽幅之间采用“工”字钢连接。

最新富水砂卵石地层中盾构施工的控制难点及措施

富水砂卵石地层中盾构施工的控制难点及 措施

富水砂卵石地层中盾构施工的控制难点及措施 段浩 引言:随着中国经济的快速增长、城市人口数量迅速膨胀,机动车辆的数量呈级数比例增长,原有的市政道路难以满足交通的需要,为缓解城市交通压力、创造良好的生活和投资环境,国内各主要城市均选择修建地铁工程来提升城市形象和投资环境。隧道是地铁工程最主要的组成部分,隧道盾构法施工具有施工速度快、工期短、洞体工程质量易控制、质量比较稳定且良好的防渗水性能、施工安全系数高、对周边建筑物影响极小、基本不影响地面交通、适合地层范围广、地质情况复杂的施工作业环境等优点。随着我国各大城市地铁建设热情的高涨,隧道盾构施工方法必将在地铁建设中被广泛推广应用。盾构施工虽然有对地层的广泛适应性、施工安全系数高等优点,但因地质情况千变万化、施工环境的复杂性,在盾构施工中必然存在盾构机的适应性和施工方法、措施的调整。成都地铁穿越的地层主要为砂卵石地层并夹杂有粉细砂层透镜体,地下水丰富、水位高、补给迅速,国内、国际在该种地质条件下全面实施盾构施工隧道尚不多见,无较多经验可以借鉴,在地铁建设史上的应是一次重要技术性突破。截至目前成都地铁采用泥水盾构和土压平衡盾构施作的隧道,已经完成成型隧道1000余米,在施工中出现一些有别于其它地质情况下施工的难点,对这些难点的技术处理为在富水砂卵石地层中盾构施工积累了一些应对的经验。 成都地铁地质情况描述:

盾构隧道从<2-8>、< 3-4>、<3-7〉等砂卵石地层中通过。卵石成分主要为灰岩、砂岩、石英岩,卵石的含量达67%,中间夹杂大漂石。砂卵石具有分选性差,强度高的特点。 <2-8>卵石土(Q4al):黄灰色,黄褐色,中密~密实为主,部分密实,潮湿~饱和。卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量65~75%,粒径以30~70mm为主,钻探揭示最大粒径145mm,夹零星漂石,充填物为细砂及圆砾。 <3-4>粉、细砂(Q3fgl+al):灰绿色,饱和,中密,夹少量卵石。呈透镜体状分布。 <3-7>卵石土(Q3fgl+al):褐黄、黄色,以中密~密实为主,饱和。卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量60~75%,粒径以30~70mm为主,据钻探揭示,最大粒径 150mm,夹零星漂石,充填物为砂及砾石,具弱泥质胶结或微钙质胶结。 隧道通过的地层含水丰富,根据钻孔揭示,隧道区间分布的卵石土及所夹透镜状砂层为地下水主要含水层,含水量丰富,含水层厚20~22.6m,区间范围内卵石土分选性差,渗透性强。

制砂机关键词

制砂机关键词 关键词 厂家: 双雁双雁重工双雁机械衡阳双雁机械湖南衡阳双雁机械双雁运输机械制砂机厂家制砂机哪家好湖南制砂机湖南最好的制砂机 产品: 制砂机制沙机制砂机设备人工制砂机制砂设备打砂机破碎机制砂首选设备人工制砂首选找制砂机专业生产制砂机 价格: 制砂机价格破碎机价格制砂机价格优惠性价比高质优价廉最新报价型号: 新一代制砂机第三代制砂机第四代制砂机新型制砂机大型制砂机中型制砂机新型破碎机中性破碎机 物料:

山石制砂机石头制砂机鹅卵石制砂机河卵石制砂机石灰石制砂机石灰岩制砂机白云石制砂机白云岩制砂机玄武岩制砂机花岗岩制砂机煤矸石制砂机 性能: 超强多级细碎机高效细碎机高效碎石设备维护简单制砂机少粉型好高效耐磨先进技术的制砂破碎操作简单产量可调产量30-150吨/时高效节能产量大 品质: 耐用制砂机100%保证质量一次成品率90%寿命长的制砂机粒形好的粒度好的 结构: 冲击式制砂机冲击式破碎机VSI制砂机深腔制砂机立式制砂机 生产线: 砂石生产线制砂机生产线破碎机生产线时产多高效的生产线制砂生产线碎石生产线鹅卵石生产线河卵石生厂线花岗石生产线石灰石生产线建筑垃圾处理生产线 品牌:

好的制砂机有名的制砂机著名的制砂机出名的制砂机买的最多的制砂机名字 其他机械设备: 螺旋式洗砂机轮斗式洗砂机振动输送设备筛分清洗设备振动筛给料机喂料机细砂回收机淤泥处理设备污泥处理设备 其他: 高效节能制砂机高效节能型制砂机新型节能制砂机节能制砂机环保型页岩制砂机环保型尾矿石制砂机环保型石灰石制砂机环保型冲击式制砂机环保型反击式制砂机

THANKS !!! 致力为企业和个人提供合同协议,策划案计划书,学习课件等等 打造全网一站式需求 欢迎您的下载,资料仅供参考

开办砂石厂投资一条建筑砂石料生产线多少钱

这是许多想投资砂石料行业的老板想了解的一个问题。开办砂石厂的投资主要分为三块,设备投资,基础建设投资,手续相关费用。对于产量大的砂石料厂,一般采用固定混凝土基础的砂石生产线,这其中基础建设费用占设备费用的三分之一或二分之一,具体根据场地条件,是否有落差等来定,有的场地需要做防水处理,费用会更高。随着环保要求的严格,办理环评及先关手续需要费用也很大,所以拿日产1万方的大型砂石料厂来说,预算投资在5000万以上,设备投资在1500左右。拿日产1000方的小型石料厂来说,预算投资在1000万左右,设备投资在200万元。当然,根据原料不同,配置的石料生产工艺和选购的设备差别也比较大,如石灰石碎石厂采用单段锤式碎石机可以大大降低投资成本。而花岗岩和河卵石,玄武岩碎石一般要采用多段破碎,选购更耐磨的圆锥碎石机,购置设备和基础施工费用都会大大增加。 以可逆反击破为主机的时产100方鹅卵石砂生产线四川现场

为了节省投资和躲避政策风险,很多小型砂石料厂采用流动式破碎筛分设备进行生产,流动式碎石制砂设备适合产量200方以下的石料生产线,河卵石制砂采用流动式作业产量更难提高。 成套制砂机设备一般包括粗碎,中碎的细碎制砂三段破碎加筛分,洗砂,污泥处理等工序,成套价格拿时产100吨,进料30公分左右鹅卵石制砂的配置来说需要150万--250万,这是采用鄂破加圆锥破碎加立轴冲击破碎的破碎工艺和压滤机来处理污泥配置。

以方大矿机新型可逆制砂机为主机的短流程制砂生产线 如果采用方大矿机新型可逆制砂机,破碎流程大大缩短,整套碎石设备投资可以降低30%左右,鹅卵石制砂成本也可降低20%。 咨询新型制砂机设备价格和工艺请点击方大破碎机官网或在线咨询。

砂卵石地层土钉墙支护实例

砂卵石地层土钉墙支护实例 作者:杨占山张文秀来源:中航勘察设计研究院网站阅读次数: 2257 发表日期: 2007-9-28 13:02:22 【摘要】通过工程实例,分析总结在砂卵石地层进行基坑支护时采用土钉墙方案的设计、施工经验。 【关键词】砂卵石地层;基坑支护;土钉墙 0 引言 现代土钉墙支护施工技术自20世纪70年代产生以来,因其造价较其他基坑围护体系低,施工周期短,安全性基本满足基坑稳定性及变形要求,在边坡工程、基坑工程中得到了广泛的认可和应用。由于土钉墙对地层的依赖性很大,通常仅适用于地下水位低、自立性好的地层。某些地区地层由砂卵石组成,由于其内聚力较小、内摩擦角大,基坑开挖后边坡自稳性能良好,但是如果长期裸露经雨水冲涮容易剥落而导致失稳,所以在开挖后保证边坡的稳定需要对其进行支护。采用土钉墙支护方式比较快捷,而且工程造价低廉,但是在该种地层基坑支护方案采土钉墙支护施工难度较大。下面介绍一工程实例,探讨在砂卵石地层完全采用土钉墙支护的设计、施工经验。 1 工程概况 工程位于北京市丰台区丰台北路北侧。拟建建筑物包括4栋住宅楼(28层)及一栋配套商业楼(3层),基础形式采用筏基,结构类型为剪力墙结构。拟建物地下部分为一整体地下车库,基底埋深-12.6m(局部14.7m),地面标高-0.3m,基坑深度12.3m。场地西侧为正在使用的京保路,南侧为丰体南路,东侧南部有居民楼。为保证结构施工时基坑边坡稳定及场地周边设施、建筑物安全,决定在基坑开挖时采用土钉墙进行支护。 2 工程地质、水文地质条件 2.1 工程地质条件 拟建场地地形较平坦,地貌属于永定河冲积扇中上部。地面标高50.06~50. 84m。根据勘察所揭露深度20.0m范围内地层,表层为人工填土,其下为第四纪冲洪积成因的砂类土和卵石层构成。各层土的岩性特征如下: 杂填土①层:杂色,稍湿,中密,以砖块、灰渣为主,粘性土充填,夹薄层细砂素填土① 层。人工填土厚度为1.5~3.2m。 1

地下连续墙设计计算书

目录 一工程概况................................................................................................................................ - 1 - 二工程地质条件........................................................................................................................ - 1 - 三支护方案选型........................................................................................................................ - 1 - 四地下连续墙结构设计............................................................................................................ - 2 - 1 确定荷载,计算土压力:............................................................................................ - 2 - γ,平均粘聚力c,平均内摩檫角?..... - 2 - 1.1计算○1○2○3○4○5○6层土的平均重度 1.2 计算地下连续墙嵌固深度................................................................................... - 2 - 1.3 主动土压力与水土总压力计算........................................................................... - 3 - 2 地下连续墙稳定性验算................................................................................................ - 5 - 2.1 抗隆起稳定性验算............................................................................................... - 5 - 2.2基坑的抗渗流稳定性验算.................................................................................... - 6 - 3 地下连续墙静力计算.................................................................................................... - 7 - 3.1 山肩邦男法........................................................................................................... - 7 - 3.2开挖计算................................................................................................................ - 9 - 4 地下连续墙配筋.......................................................................................................... - 11 - 4.1 配筋计算............................................................................................................. - 11 - 4.2 截面承载力计算................................................................................................ - 12 - 参考文献.................................................................................................................................... - 12 -

卵石地层中施工的要点

旋挖钻机在卵石地层中的施工技术要点 卵石主要由颗粒大小不一、形状不规则、风化程度各异的岩石碎屑或石英、长石等原生矿物组成,成单粒结构及块状和假斑状构造,具有孔隙性大、压缩性低、透水性强、抗剪强度大的特点。正是由于卵石土颗粒结构松散,粒径不均匀, 胶结性差,钻进时冲击力强、摩阻力较大,在这地层中钻 进时钻具极容易出现磨损和断裂,还可能出现卡钻、埋钻、 孔壁坍塌、漏浆,个别地还有钻进困难的问题。因此在这 种地层中钻进时应该根据地层特点选择专用钻头采用分级 钻进的方法,可以对钻头进行改造或使用短螺旋钻头,减少对钻具的磨损和防止钻杆断裂。并且在钻进的过程中应该注意要严格控制每个工作循环进尺,避免发生埋钻事故;同时要适当控制钻斗的提升速度,升降速度宜控制在0.75—0.85m/s。提升速度过快,泥浆在回转斗与孔壁之间高速流过,冲刷孔壁,破坏孔壁泥皮,对孔壁的稳定性不利,引起掉块卡住钻头。 在卵石地层中钻进时引起漏浆和塌孔现象的原因有:①在钻进的过程中,由于卵石地层结构松散,胶结性差,卵石的比重远超过泥浆的比重,泥浆漏失严重,发生掉块塌孔。或者是由于钻斗旋转速度太快,带动孔内泥浆高速冲刷孔壁,破坏孔壁泥皮,导致孔壁坍塌。②在提放钻具的过程中,钻头刮碰孔壁,破坏泥皮导致孔壁塌方。③在下放钢筋笼的过程中没有保持好垂直度或钢筋笼发生变形,使钢筋笼与孔壁发生刮碰导致塌孔。 对于埋深较浅的卵石地层可采用护筒护臂的方式来预防漏浆和孔壁坍塌的发生。要根据卵石地层的厚度和钻孔的孔径来确定钢护筒的长度和厚度。在埋藏较深的卵石地层中,对于地下水位以上的塌孔必须在地下水位以上形成稳固的孔壁阻止泥浆渗漏,可以采用抛填粘土或干水泥的方式或者提高泥浆的粘稠度再加入一些膨胀土或黄泥或者适量防渗剂防止泥浆向卵石缝隙中渗漏来防止塌。而对于地下水位以下的塌孔可以适当的提高泥浆比重和粘稠度来保护卵石层,但当泥浆的比重远小于卵石层的比重时这种方法就不起作用了。这时如果发现大量漏浆可向孔内注浆以平衡孔壁侧向压力防止塌孔,同时及时向孔内投放片石、粘土和

成都地铁砂卵石地层盾构施工风险分析及对策

成都地铁砂卵石地层盾构施工风险分析及对策【摘要】针对成都地铁盾构施工的特点,提出风险分析在盾构施工中的重要性。对盾构施工中蕴含的风险源进行辨识与风险分析,并提出具体的风险控制对策。 【关键词】盾构施工;富水砂卵石;风险分析;对策随着城市化进程的加快和城市交通量急剧增长,发展城市地铁已成为必然的选择。因其自身的优势,盾构法施工在城市地铁隧道建设中正扮演越来越重要的角色。 我国上海、广州、北京等城市已经采用盾构法成功实施了不少工程。成都的地质情况与上述城市截然不同,成都地铁施工具有独特的“三高”特点,即地层具有高富水及砂卵石含量高、卵石和漂石强度高的特点。这种不良地质条件增大了盾构施工难度。因此,加强盾构施工技术风险分析并找出相应的对策是极其必要的。 本文以成都地铁某盾构区间隧道为例,对施工中存在的风险进行辨识,并提出相应的控制措施,以确保盾构在富水砂卵石地质条件下的顺利掘进。 1 工程概况 成都地铁某盾构区间隧道最大埋深13.5 m,最小坡度2‰,最大坡度26.99‰,左右线间距13~13.5m,最小曲线半径400 m。 隧道穿越的地层主要为卵石土层,含夹薄层粉细砂透镜体, 20~200 mm卵石含量约占55.0% ~75.4%,粒径一般以30~70mm为主,部分粒径80~120mm;填充物以细砂、中砂为主,夹少量黏性土及砾石,

含量约为10.0% ~25.0%;漂石含量一般为5% ~10%,随机分布,地勘揭露漂石最大粒径为340 mm。卵石单轴极限抗压强度为90.9~91.7 MPa,漂石单轴极限抗压强度为88.6~95.3MPa。 地下水系为第四系孔隙潜水和基岩裂隙水两种类型。孔隙潜水主要埋藏于砂卵石土层中,渗透系数k=20.0 m/d,为强透水层。地下水位埋藏较浅,丰水期地下水位正常埋深约为3 m,成都充沛的降雨量是地下水的重要补给源之一。基岩裂隙水主要赋存于泥岩强风化裂隙带中,透水性较差。隧道下穿南河与滨江路下穿隧道,并近距离水平穿越锦江大桥与开行大厦(26层)。 地层“三高”特点及沿线建(构)筑物,对隧道掘进主要有以下几个方面的影响。 (1)隧道围岩均为卵石土夹透镜体砂层,自稳能力差,透水性强,地下水位较高,水量十分丰富。区间隧道盾构施工,开挖面容易产生涌水、涌砂,造成细颗粒物质大量流失,引起开挖面失稳、地面沉降甚至塌陷。 (2)隧道顶部覆土为人工填筑土、粉质黏性土、卵石土夹透镜体砂层,均为松散土体,自稳能力差,盾构掘进可能引起地面沉降或塌陷。 (3)隧道围岩分布有高强度、大粒径的卵石、漂石,容易造成超挖和排碴困难,还造成对盾构设备磨损严重。这些都对盾构顺利施工有较大影响。 (4)盾构掘进需要先后穿越南河、滨江路下穿隧道,近距离通过开行大厦和锦江大桥。盾构掘进,对周围土体产生扰动,可能造成周围建(构)筑物变形和破坏。

时产50-150吨的河卵石移动制砂机选择什么型号

★★★50-150河卵石移动制砂机配置 1、总的来说较大产量的移动制砂机设备需要两台移动车才能实现,分别是: (1)960x3800给料机+300x1300细颚破(2台) (2)9532冲击式制砂机+1860振动筛 备注:移动破碎站用于河卵石制砂,一般较大的产量只能达到80-100吨。 河卵石移动制砂机怎么选择?从自身情况进行考虑,清楚自己破碎的河卵石进料粒度和出料粒度,考虑设备型号,考虑实际每日产量需求,考虑设备质量情况。从长远的利益去分析,结合自身情况做到合理投资,可选择直销型厂商,不可本末倒置,只考虑价格。 一、能破碎河卵石的都有哪些破碎机 以市场现有碎石机器来说,能把河卵石碎成河沙的设备有很多种,常用的主要有:反击高效细碎机、冲击式破碎机、立轴复合破还有开箱液压式破碎机等等,具体选用哪种破碎设备,还需要客户根据自己的

破碎需求来选定。这里友情提示一点,虽然几种破碎机都可用于河卵石粉碎,但它们的粉碎效果以及处理能力是不同的,尤其是在出料细度方面,冲击式破碎机的更细、更均匀,无需二度处理,可直接用于建筑行业中,但美中不足的是,这是机器的报价略显高一些,所以建议客户三思而后选。 二、常用的河卵石移动制砂机分类和配置 小型移动河卵石制砂生产机多少钱?我们采访了专业厂家:河南宏基机械设备有限公司的负责人,他对设备的价格制定有如下几点解释:(一)根据行走方式河卵石移动制砂机可分为轮胎式和履带式 轮胎河卵石制砂生产机需要车头牵引移动,到现场后需要简单的固定安装;履带型设备则一体化机组,履带液压行走,开到现场直接工作,无需安装固定,更方便。 ★轮胎:转弯半径小;轮胎行走,无损路面;PLC自动操作系统,安全稳定生产。 ★履带:可实现原地转向;遥控操作,智能安全;履带行走,爬坡下坡不成问题。 两种不同的行走方式,存在一定的操作区别,当然生产成本也不一样,价格自然更是不同,如果同样的主机配置,履带移动制砂机价格一般会略高于轮胎移动制砂机。 (二)根据物料粒度进行配置分类 ★1、粗中细制砂选用什么破碎机 (1)粗碎制砂:移动颚式制砂机

砂卵石地层钻孔灌注桩成孔施工工艺概述

砂卵石地层钻孔灌注桩成孔施工工艺概述 发表时间:2018-01-25T14:44:50.937Z 来源:《防护工程》2017年第27期作者:董攀 [导读] 本文就较厚砂卵石地层钻孔灌注桩成孔时碰到的塌孔、缩孔、钻机移位、地下水透析等施工难点问题进行解析。 中国水利水电第三工程局有限公司陕西西安 710000 摘要:本文就较厚砂卵石地层钻孔灌注桩成孔时碰到的塌孔、缩孔、钻机移位、地下水透析等施工难点问题进行解析,主要通过顶部换填红粘土固化土体、加长钢护筒、改良并加大泥浆比重、合理选用钻进器具并分层钻进的措施来改善施工工艺,有力的促进了在建工程进度,保障了工程质量,降低了工程成本。 关键词:砂卵石地层;钻孔灌注桩;成孔;施工工艺; 一、工程概况及地层特征 北拒马河暗渠防护加固工程北支防冲护砌透水防冲墙(地下连续钻孔灌注桩)总长276m,单桩设计直径1.5m,桩中心间距为2.0m,桩边净距为0.5m,桩顶标高54.0m,桩底标高31.0m,设计桩长为23m,混凝土强度等级为C30W6F150,数量138根;钢筋笼主筋采用HRB400EФ36,钢筋笼总重10.975t。 北支防冲护砌处于有丰富的松散砂卵石的北拒马河北支河道干枯河床上,原地面高程约为64~65m,覆盖层表层为第四系全新统上部冲积卵石层,厚3.0~5.0m,向下为第四系全新统下部冲洪积层卵石层,岩性为厚层卵石,阶地上地表为薄层壤土、砂壤土,上部壤土厚0.5~2.0m,下部卵石厚度较大,约至标高33.0处,具明显的双层结构。另下游不足100m处盗采砂石坑长约400m,宽300m,因北京房山“7.21”特大暴雨及洪涝灾害,施工时坑内水面高程为47.6m,水深约33m,地下水源丰富。 图2:松散的表层土体 图3:下部出现孤石后导致孔口坍塌 2.2 施工措施 针对以上施工困难,结合现场实际情况研究决定,经成功试桩后,主要采用以下施工措施: 1、采用顶部换填红粘土固化土体和加长钢护筒的方法防止护筒周边的坍塌、钻机偏移和缩孔情况; 2、加大泥浆比重并在内加入纯碱等(玻璃胶和普通硅酸盐水泥)改良泥浆的方法在孔内形成不透水混合泥皮薄膜,阻止泥浆大批量

怎样对机制砂MB值进行测试

怎样对机制砂MB值进行测试? 更新日期:2011-3-9 14:31:43 冲击式制砂机鹅卵石制砂机 在机制砂含量中,往往不能确定是石粉还是泥粉,适量的石粉对混凝土时有益的,所以新标准特别规定了测机制砂石料石粉含量必须先进行亚甲蓝MB值和检验。 亚甲蓝MB值和检验是专门用于检测小于75μm的物质主要是石粉还是泥土的试验。在新国标实施以前,不少机制砂石料生产企业常用水洗的办法控制机制砂石料中石粉的含量,结果既浪费了资源,又形成了新的污染。新国标实施后,对机制砂石料中的石粉有了明确的要求和试验方法。 机制砂中石粉含量试验(MB值) 1、仪器设备及试剂: (1)、烘箱——温度控制范围为(105±5)℃; (2)、天平——称量1000g,感量1g;称量100g,感量0.01g; (3)、试验筛——筛孔公称直径为0.08mm及1.25mm的方孔筛各一只; (4)、容器——深度大于250mm的容器; (5)、移液管——2mL、5mL移液管各一只; (6)、亚甲蓝试验搅拌器——转速可调、可定时; (7)、玻璃容量瓶——1L; (8)、温度计——精度1℃; (9)、玻璃棒——2支,直径8mm,长300mm; (10)、滤纸——快速; (11)、搪瓷盘、毛刷、1000mL烧杯等。 2、试验前准备: (1)、亚甲蓝溶液的配制: 将亚甲蓝粉末在(105±5)℃下烘干至恒重,称取烘干亚甲蓝粉末10g,精确至0.01g,倒入盛有约600mL蒸馏水(水温加热至35-40℃)的烧杯中,用玻璃棒持续搅拌40min,直至亚甲蓝粉末完全溶解,冷却到20℃。将溶液倒入1L容量瓶中,用蒸馏水淋洗烧杯及玻璃棒,使所有亚甲蓝溶液全部移入容量瓶,容量瓶和溶液的温度应保持在(20±1)℃,加蒸馏水至容量瓶1L刻度。震荡容量瓶以保证亚甲蓝粉末完全溶解。将容量瓶中溶液移入深色存储瓶中,标明制备日期、失效日期(亚甲蓝溶液保质期应不超过28天),并置于阴暗处保存。 (2)、将样品缩分至400g,放在烘箱中于(105±5)℃下烘干至恒重,待冷却至室温后,筛除大于公称直径5.00mm的颗粒备用。 3、试验步骤: (1)、标准法: ①②、悬浮液中加入5mL亚甲蓝溶液,以(400±40)r/min转速搅拌至少1min后,用玻璃棒蘸取1滴悬浮液(所取悬浮液滴应使沉淀物直径在8-12mm内),滴于滤纸(置于

山区河流砂卵石地层

第三工程有限责任公司40 山区河流砂卵石地层 钻孔灌注桩施工技术总结 铁五局三处孙永清 一、前言 随着铁路施工技术的发展,钻孔灌注桩基础已广泛应用于铁路桥梁的基础工程。我处自八十年代初以后在沿海软土地层上进行了大量的钻孔桩基础施工,但在山区河床砂卵石地层进行较大孔径钻孔灌注桩施工尚缺乏比较成熟的经验,为此,我们在西康铁路钻孔灌注桩的施工中作了比较充分的准备和比较详细的研究,取得了一些经验。 二、工程概况 我处承担西康铁路十一、十二标段火石梁等四座大桥及鹰嘴岩、赵湾旬河两座特大桥的施工。以上桥梁均跨越旬河,除个别墩台采用挖井基础外,其余全部采用钻孔灌注桩基础,钻孔直径为1.25m和1.50 m两种,钻孔深为20~30m,其中Φ1.25m孔桩共172根计3900延长米,Φ1.50m孔桩共185根计4500延长米。 三、地质状况及钻孔设备的选择 旬河北起秦岭,流经陕南重山峻岭之中,属季节性河流,有常年流水,流量随季节不同有较大变化。在这种季节性较强的河流中沉积下来的地层具有以下一些基本特征:①沉积物以卵石土和园砾土为主,并伴有漂右、细砂层及淤泥层;②沉积物的分速性、磨园度及成层性较好,且具有一定的规律性。 根据钻机选择的四条原则:①设备性能应首先满足钻孔的地质条件、钻孔主要指标的要求;②优先考虑利用本单位现有钻机的可能性;③考虑外购时,设备应先进和实用,兼顾本工程要求;④选择钻机力求普通、实用、重量轻、分解性好。结合以往经验,我们选择了太原宝峰C2一28型冲击钻机进场施工。 C2一28型冲击钻机性能参数如下: 钻孔最大直径Φ1000 m m 钻孔深度500 m m 冲程50~100cm 冲击频率50、45、40次/min 钻具最大质量2500kg 电机功率45kW 为适应钻机性能,我们对原有的Φ1.0m和Φ1.2m十字型钻头进行了改型,即根据

含水圆砾地层地下连续墙施工技术研究

含水圆砾地层地下连续墙施工技术研究 摘要:介绍南宁地区明挖结构地下连续墙施工技术,合理选择设备及工法,穿越含水圆砾地层,成功解决了含水圆砾砂层连续墙槽壁易坍塌等难题,为今后南宁轨道交通工程大规模展开提供了借鉴和指导。 关键词:圆砾层连续墙施工 中图分类号:TU45 ?文献标识码:A? 1.引言 近年来,国内城市化进程逐渐加速,各主要城市的城市轨道交通也步入快速建设时期。随着南宁市轨道交通的启动,圆砾层地区基坑工程问题不断向深、大发展,而国内尚未存在专门针对圆砾地区基坑工程的规程规范和相关研究,南宁市圆砾层的分布广、厚度深,且具有独特的地域性,以往缺乏成熟的施工经验。本文以南宁市圆砾地区轨道交通车站明挖结构工程为背景,对圆砾地区基坑工程存在的关键问题进行分析总结。 2.项目概述 本项目为南宁轨道交通一号线广西大学站,车站全长465m,主体围护结构采用800mm厚钢筋混凝土连续墙,连续墙总长996.2m。连续墙接头采用工字钢接头头形式,连续墙深度进入不透水层不小于2m。

本项目原始微地貌属于河流阶地,场区土层为二元结构,上为粘性土,下为粉土、砂层和圆砾层,属于邕江Ⅱ级阶地的河流堆积物,覆盖层厚度17.50~26.20m。下伏基岩为第三系泥岩、粉砂质泥岩为主。其中圆砾土层极厚,渗水系数为73.6m/d,为强透水性,地层分布见图1地质柱状图所示。场区地下水主要为赋存于砂、砾层中的孔隙潜水,地层孔隙水与邕江水存在水力联系,场地地下水位受季节变化影响很大。 3.成槽工法比选 常用的成槽机械设备按其工作机理主要分为抓斗式、冲击式和回转式三大类,相应来说基本成槽工法也主要有三类:⑴抓斗式成槽工法;⑵冲击式钻进成槽工法;⑶回转式钻进成槽工法。各工法适应性及优缺点比较如下表1所示: 表1 地下连续墙成槽工法比选 序号成槽工法表现形式适用环境优点缺点 1 抓斗式成槽钢丝绳抓斗、液压导板抓斗、导杆式抓斗和混合式抓斗N<40的粘性土、砂性土及砾卵石土等。除大块的漂卵石、基岩外,一般的覆盖层均可。低噪音低振动;抓斗挖槽能力强,施工高效;槽精度较高。掘进深度受限,不适合硬岩地层 2 冲击式冲击钻进式(钻劈法)和冲击反循环式(钻

无水砂卵石地层盾构施工技术浅析

无水砂卵石地层盾构施工技术浅析 发表时间:2019-06-05T10:12:18.570Z 来源:《防护工程》2019年第5期作者:徐宗涛 [导读] 还有利于砂卵石的顺利输送,满足了快速施工的要求。在类似无水砂卵石地层中具有很强的指导和借鉴意义。 呼和浩特市城市轨道交通建设管理有限责任公司内蒙古自治区呼和浩特市 010000 摘要:无水砂卵石地层力学性质不稳定,卵砾石含量高,颗粒之间空隙大,盾构在此条件下掘进,渣土很难被改良成“塑流性状态”,会出现盾构推力、扭矩大且变化异常,刀盘、刀具及螺旋输送机磨损严重,盾构掘进效率低等问题。结合呼和浩特市轨道交通1号线三间房出入段线盾构区间的工程实践,通过采取渣土置换、渣土改良、盾构掘进参数优化等措施,保证了盾构机在砂卵石地层中的连续高效掘进。 关键词:无水砂卵石地层;渣土置换;渣土改良;参数优化 1前言 随着全国城市轨道交通的快速发展,内蒙古自治区呼和浩特市也迎来了第一条轨道交通线,该条轨道线西起三间房出入段线区间,东至白塔站。其中三间房出入段线盾构区间穿越地层主要以砂卵石地层为主,由于埋深较浅,始发段100m范围内无地下水,盾构始发面临着全断面无水卵石层,此种地层中盾构的施工远比在粘土、砂性土等地层困难。盾构掘进过程中出现了盾构推力、扭矩大且变化异常,刀盘、刀具及螺旋输送机磨损,盾构掘进效率低等问题,施工人员通过采取渣土置换、改良、盾构掘进参数优化等措施,保证盾构机在砂卵石地层中的连续高效掘进,因此对施工过程进行总结,为今后类似地层盾构施工可以提供参考。 图1:区间平面图 2工程背景 呼和浩特市轨道交通1号线一期工程01标段,西起三间房车辆段,东至呼钢东路站,线路全长3.85km,主要施工内容包括3站3区间,其中三间房出入段线盾构区间线路长835m,最大坡度为34‰,盾构区间共设3处曲线,曲线半径由金海工业园区站至三间房车辆基地依次为450m、800m、450m,线间距约为11m。 区间穿越地层主要处在粉质粘土③2层、细砂③5层、圆砾③9层、卵石③10层。勘察期间地下水位埋深约8.9m~14.2m,盾构机在始发前,进行端头井临时加固过程中未见水。 经盾构始发井处实地勘探,区间始发段部分为全断面圆砾层(含卵石),且土体结构密实、稳定、无水,当盾构机在始发时,出现了大扭矩、低推速的问题,为了找出原因,通过取土样进行筛分试验,分析颗粒组成。通过对土样分析,土层中卵、砾石含量较高,粒径2~200mm的颗粒含量达到58.68%,小于0.075mm的颗粒含量为7.355%;细粒土含量极低,在盾构掘进中,出现了渣土的流动性差,导致土仓排土不畅,使得盾构机出现扭矩大速度缓慢等问题;另外卵石及圆砾层内摩擦角较大,对盾构机内的开挖装置和排土机械的磨损较大,在土仓内容易产生堵仓问题。由于渣土改良剂性能不适用该种地层,导致改良渣土的流动性差,粘稠度低,导致大块径卵石沉仓,堆积在土仓底部,刀盘启动时扭矩高达4500-5000KN.m。在推进过程中推进速度只有4-11mm/min的情况下,扭矩高达4500-6000KN,总推力在8000-12000KN。 由于上述问题的出现,导致盾构无法正常推进,如果冒然推进会产生因扭矩过大出现抱死,土仓压力无法建立,地面沉降无法控制。因此急需解决渣土改良的问题,从以下三步进行改进:第一步、将已经沉积在土仓底部堆积的砂砾石置换出来;第二步:对渣土改良方法进行研究,摸索最佳的改良方法,提高渣土的流动性、和易性及粘稠度,确保渣土的顺利排出;第三步、优化盾构掘进参数。 3渣土置换 为保证后续能够继续推进,首先需将土仓内沉积的卵石清理出来,在盾构机推进时向土仓里加入渣土改良剂,通过刀盘转动将沉底的卵石包裹起来,并随着刀盘的搅动,将沉积的砂卵石浮起来,经过螺旋输送机排出土仓。拟采用大比重的膨润土溶液对沉积的砂卵石进行搅拌,通过多次试验,具体处理方法如下: 置换卵石时膨润土溶液配比 根据表中的膨润土溶液配比再加入3-4L泡沫原液,混合液在土仓里发泡2小时左右开始转动刀盘,刀盘通过左右旋转将沉积的卵石搅拌,各搅拌2-5分钟,然后盾构机开始慢慢推进,螺旋输送机转速快速提高,闸门口开到最大限度。沉底的卵石经过多次置换,被最终被完全置换出土仓。 4渣土改良 每环膨润土的用量控制在2-5m3左右,根据渣土的流塑性来定。由于地层缺水,采取刀盘喷水措施。泡沫比例为3%-4%,膨胀率可在

相关文档
最新文档