数学物理方程第一章答案

合集下载

数学物理方程第一章、第二章习题全解

数学物理方程第一章、第二章习题全解

18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x

数学物理方程第三版答案

数学物理方程第三版答案

数学物理方程第三版答案1. 动量守恒定律:$$ P = mv $$其中,$P$为物体的动量,$m$为物体的质量,$v$为物体的速度。

2. 牛顿第二定律:$$ F = ma $$其中,$F$为物体受力,$m$为物体的质量,$a$为物体的加速度。

3. 热力学第二定律:$$ \Delta S \geq \frac{Q}{T} $$其中,$\Delta S$ 是系统的熵变化,$Q$ 是系统吸收的热量,$T$ 是系统的温度。

4. 拉普拉斯方程:$$ \nabla^2\phi=0 $$其中,$\phi$ 是空间的潜在电势,$\nabla^2$ 表示拉普拉斯算子,即 Laplace operator。

5.理想气体状态方程:$$PV=nRT$$其中,$P$是压强,$V$是体积,$n$是物质量的数量,$R$是气体的其中一特定常数,$T$是温度。

6. 位能定律:$$ E_p = \frac{mv^2}{2} $$其中,$E_p$为位能,$m$为物体的质量,$v$为物体的速度。

7. 伽马射线波动方程:$$ \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2\Psi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2\Psi}{\partial t^2}$$其中,$\Psi$ 是伽马射线的波函数,$c$ 是光速。

8. 洛伦兹力方程:$$ F = \frac{d^2x}{dt^2} = - \frac{kx}{m} $$其中,$F$ 为力,$x$ 为物体位移,$k$ 为弹性力系数,$m$ 为物体的质量,$dt$ 为时间差。

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案第一章.颠簸方程§ 1 方程的导出。

定解条件4. 绝对柔嫩逐条而平均的弦线有一端固定,在它自己重力作用下,此线处于铅垂均衡地点,试导出此线的细小横振动方程。

解:如图 2,设弦长为l ,弦的线密度为,则 x 点处的张力 T ( x) 为T ( x)g(lx)且 T( x) 的方向老是沿着弦在 x 点处的切线方向。

仍以 u( x, t) 表示弦上各点在时辰 t 沿垂直于 x 轴方向的位移,取弦段 ( x, xx), 则弦段两头张力在 u 轴方向的投影分别为g(l x) sin ( x); g (l( xx)) sin (xx)此中 (x) 表示 T (x) 方向与 x 轴的夹角又sintgux.于是得运动方程x2u[l( xx)]u∣xxg [lx]u∣x gt 2xx利用微分中值定理,消去x ,再令 x0 得2ug[( l x) ut 2] 。

x x5. 考证u( x, y,t )t 21在锥 t 2 x 2 y 2 >0 中都知足颠簸方程x 2 y 22u2u2u证:函数 u( x, y,t )1在锥 t 2x 2 2内对变量 t 2x 2 y 2t 2 x 2y >0y 2x, y, t 有u3二阶连续偏导数。

且(t2x 2 y 2) 2 tt2u35(t2x2y 2) 23(t2x2y2) 2 t2t23(t 2x 2y 2) 2 (2t 2x2y 2)u3x2 y 2)2 x(t2x2u35t2x2y223 t2x2y22 x 2x25 t2x2y22 t22 x2y22 u5同理t2x2y22 t2x22y2y22 u 2u52u .所以t 2 x 2y 2 2 22x 2 y 2x2y2tt2即得所证。

§2 达朗贝尔公式、波的传抪3.利用流传波法,求解颠簸方程的特点问题(又称古尔沙问题)2ua 22ut 2x 2u x at 0(x) (0)(0)u x at( x).解: u(x,t)=F(x-at)+G(x+at)令 x-at=0得 ( x) =F ( 0) +G ( 2x )令 x+at=0得( x) =F (2x ) +G(0)所以F(x)=( x) -G(0).2G ( x ) = ( x) -F(0).2且F ( 0) +G(0)= (0) (0).所以u(x,t)=(xat) + ( x at ) - (0).22即为古尔沙问题的解。

数学物理方程Ch.1-2复习资料

数学物理方程Ch.1-2复习资料

(F,G 为任意单变量可微函数)
(2)解作上述变换, v 是下述柯西问题的解
2 ∂ 2v 2 ∂ v = a ∂t 2 ∂x 2
t = 0 : v = ( h − x )ϕ ( x ),
∂v = ( h − x )ψ ( x ) ∂t
用达朗贝尔公式得
1 1 x+at v( x, t ) = [(h − x + at )ϕ( x − at ) + (h − x − at )ϕ( x + at )] + ∫ (h − ξ ) ψ (ξ )dξ 2 2a x−at
(3)把(*)分为两个问题 (I) :
Vtt = a 2Vxx
V |x = 0 = 0, V |x =l = 0
x V |t =0 = ϕ ( x) − u1 (0) − (u2 (0) − u1 (0)) l x Vt |t =0 = ψ ( x) − u1′ (0) − (u2′ (0) − u1′ (0)) l
∴ Ak =
Bk =
2 l 1 + 2k ϕ (ξ ) sin πξ d ξ ∫ l 0 2l
l 4 1 + 2k ( ) sin ψ ξ πξ d ξ (1 + 2k )π a ∫0 2l
12.叙述:利用齐次化原理求解
utt = a 2 u xx + f ( x , t )
−∞ < x < ∞, t > 0
(II) :
utt = a 2u xx
0 < x < l, t > 0
u |x =0 = 0, ux |x =l = 0
u |t = 0 = ϕ ( x )
ut |t = 0 = ψ ( x )

数学物理方程学习指导与习题解答

数学物理方程学习指导与习题解答

数学物理方程学习指导与习题解答物理学家说:“学会做习题,是学习数学的最重要环节。

”对于高三学生来说,认真做好数学物理方程的习题,不仅可以使他们了解物理、数学、化学三门课程之间的关系和区别,而且能培养他们独立思考问题和解决问题的能力。

同时,由于物理学科本身就具有严密的逻辑性,解题训练也可以增强学生的逻辑思维能力。

数学物理方程学习指导与习题解答:第一章、概念: 1。

(1)理解能量、机械能守恒定律、机械功、功率、焦耳定律等概念,知道它们之间的关系。

(2)掌握麦克斯韦速率分布律、拉格朗日乘数定律。

(3)掌握动能定理、动量定理、动量守恒定律。

(4)掌握机械能守恒定律和能量守恒定律的内容及适用条件。

(5)理解热力学第一定律的表述及其内容和适用条件。

(6)了解能量转化和守恒定律的主要应用。

(7)了解热力学第二定律的表述及其内容和适用条件。

(8)掌握热力学第二定律的几种情况,能够利用热力学第二定律解决实际问题。

2。

理解气体的摩尔定压、摩尔定容、理想气体常数等概念。

(1)会求下列气体的定容、定压比热容;(2)会计算理想气体混合物的物质的量;2.能够用微分法求解电路中的功率,会用麦克斯韦速率分布律判断和计算物体的温度;(3)能够根据物理量的测量结果,确定物体的位置,并绘制简单的示意图;(4)能够根据物理规律绘制能量流、热量流和质量流示意图;(5)能够根据公式计算、简化或推导出实际应用中常见的物理量;(6)能够根据能量守恒原理计算物体的功;6.(实验类)在盛有一定量水的烧杯中放入一定量食盐,用火加热直至食盐完全溶解。

写出下面有关各量的变化规律:(1)当食盐放入水中时,溶液的温度保持不变; (2)当食盐全部溶解后,过一段时间,液面将不断地上升;(3)当达到饱和时,液面又将不断地下降;(4)当食盐溶解完毕时,烧杯里的食盐溶液质量不变,食盐的总质量不变,其物质的量随着温度的变化而改变;(5)当烧杯中水和食盐全部熔化成蒸汽,食盐溶液逐渐冷却,食盐逐渐凝固成固体,此过程中固体物质的质量不变。

数学物理方程答案谷超豪

数学物理方程答案谷超豪

数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。

定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。

解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。

仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。

?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。

且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。

2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。

数学物理方程 陈才生主编 课后习题答案 章

数学物理方程 陈才生主编 课后习题答案 章
第1章 绪 论
1.1 基本内容提要
1.1.1 用数学物理方程研究物理问题的步骤 (1) 导出或者写出定解问题,它包括方程和定解条件两部分; (2) 求解已经导出或者写出的定解问题; (3) 对求得的解讨论其适定性并且作适当的物理解释.
1.1.2 求解数学物理方程的方法 常见方法有行波法(又称D’Alembert解法)、分离变量法、积分变换法、Green函
q = −k∇u,
其中k 为热传导系数,负号表示热量的流向和温度梯度方向相反.写成分量的形式
qx = −kux, qy = −kuy, qz = −kuz.
(3) Newton冷却定律. 物体冷却时放出的热量−k∇u 与物体和外界的温度差 u 边 − u0 成正比, 其 中u0为周围介质的温度.
·2·
1 n
en2
t
sin nx
(n
1), 满足
ut = −uxx,
(x, t) ∈ R1 × (0, ∞),
u(x, 0) = 1 +
1 n
sin
nx,
x ∈ R1.
显然, 当n → +∞时supx∈R
un(x, 0) − 1
=
1 n

0.
但是, 当n → ∞时
sup
x∈R1 ,t>0
un(x, t) − 1
∂2u ∂t2
=
E ρx2
∂ ∂x
x2
∂u ∂x
.
(1.3.9)
解 均匀细圆锥杆做微小横振动,可应用Hooke定律,并且假设密度ρ是常数. 以u¯ 表 示 图1.1所 示[x, x + ∆x]小 段 的 质 心 位 移, 小 段 质 量 为ρS∆x, S是 细

李明奇主编 数学物理方程全套课后部分习题答案__电子科技大学出版社

李明奇主编  数学物理方程全套课后部分习题答案__电子科技大学出版社

数学物理方程 电子科技大学出版社习题2.14.一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。

试写出其定解问题。

解:由Newton 定律: tt x x Sdxu t x YSu t dx x SYu ρ=-+),(),(,其中,Y 为杨氏模量,S 为均匀细杆的横截面积,x u 为相对伸长率。

化简之后,可以得到定解问题为:⎪⎪⎩⎪⎪⎨⎧-==========)(|,0|0|,0|)/(0002L x Iu u u u u a u Y u t t t L x x x xx xx tt δρρ。

习题2.23.设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡-波尔兹曼定律正比于4u ,即dSdt ku dQ 4=,设物体与周围介质之间,只有热辐射而无热传导,周围介质的绝对温度为已知函数),,,(t z y x ϕ,。

试写出边界条件。

解:由Fourier 热传导实验定律dSdt nuk dQ ∂∂-=1,其中1k 称为热传导系数。

可得dSdt u k dSdt nuk )(441ϕ-=∂∂-,即可得边界条件:)(441ϕ--=∂∂u k k nus。

习题2.34.由静电场Gauss 定理⎰⎰⎰⎰⎰⋅=⋅VsdV dS E ρε01,求证:0ερ=⋅∇E ,并由此导出静电势u 所满足的Poisson 方程。

证明:⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅=⋅VVsdV dV divE dS E ρε01,所以可以得到:0ερ=divE 。

由E divE ⋅∇=与u E -∇=,可得静电势u 所满足的Poisson 方程:2ερ-=∇u 。

习题2.42.求下列方程的通解:(2):;032=-+yy xy xx u u u (5):;031616=++yy xy xx u u u解:(2):特征方程:03)(2)(2=--dx dy dx dy解得:1-=dx dy 和3=dxdy。

数学物理方程(谷超豪)课后答案

数学物理方程(谷超豪)课后答案

第一章.波动方程§1方程的导出。

定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。

ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。

现在计算这段杆在时x +x x ∆刻的相对伸长。

在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。

由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。

)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。

2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。

数学物理方程第二版(谷超豪)前三章习题答案

数学物理方程第二版(谷超豪)前三章习题答案
即得所证。
1
l 1
x h
所以截面积 s( x) (1 ) 。利用第 1 题,得
2
x h
证:函数 u ( x, y, t )
1 t x y
2 2 2
在锥 t x y >0 内对变量 x, y, t 有
2 2 2
( x) (1 ) 2
若 E ( x) E 为常量,则得
代入原方程,得
x sx
若 s( x) 常数,则得
2u u u . ES b x s x 2 t x x t

2v 1 2v h x 2 2 h x 2 x a t 2v 1 2v x 2 a 2 t 2
于是得运动方程
( x)s( x) x utt ( x, t ) ESu x ( x x) | x x ESu x ( x) | x
( x)s( x)utt ( ESu x ) x

利用微分中值定理,消去 x ,再令 x 0 得
u ∣ x 0 k[u(0, t ) v(t )] x u ( u ) ∣ x 0 f (t ). x E
解:(1)杆的两端被固定在 x 0, x l 两点则相应的边界条件为
u(0, t ) 0, u(l , t ) 0.
(2)若 x l 为自由端,则杆在 x l 的张力 T (l , t ) E ( x) 界条件为
u u x E t t x x
1 F x Gx hx 1 x aF / x aG / x hx
x
(1)

电子科大李明启 田太心 数学物理方程1-3章答案

电子科大李明启 田太心  数学物理方程1-3章答案

数学物理方程第一次作业习题2.21. 一根半径为r ,密度为ρ,比热为c ,热传导系数为k 的匀质圆杆,如同界面上的温度相同,其侧面与温度为u 1的介质发生热交换,且热交换的系数为k 1。

试导出杆上温度u 满足的方程。

解:根据题意可知,通过两界面的热量为一段微元升高温度所吸收的热量和与 侧面进行热交换的热量之和。

11[(,)(,)(,)(,)]()2x x t kdt u x dx t s x dx t u x t s x t c sdxu dt k u u rdxdt ρπ++-=+-其中,k 为进入截面的系数,s 为横截面,x u 为沿x 轴温度的法向导数,2rdx π为 侧面。

整理得:ku xx r = c ρru t +2k 1(u-u 1) 所以,温度所满足的方程为:2222112(),,t xx k k u a u b u u a b c c rρρ-=--== 2. 导出匀质且在每一个同心球上等温的孤立球体的热传导方程。

解:有题意分析可知,温度的分布只与球体的半径r 有关,与θ和φ无关,故有: kdt[u r (r+dr,t)s(r+dr)-u r (r,t)s(r)]=c ρsu t drdt也就是说通过两个同心球面而留下的热量等于两个同心球面物体所吸收的热量。

整理可得:v t -a 2v rr =0, 式子中v(r,t)=ru(r,t) , a 2=k /c ρ3.设物体表面温度为u ,它向外辐射出去的热量,按斯特凡—波耳兹曼定律正比于4u ,即dSdt u dQ 4σ=,设物体与周围介质之间,只有热辐射而无热传导,周围介质的绝对温度为已知函数()t z y x ,,,ϕ。

试写出边界条件。

解:所求的边界条件为:k u n u dsdt u dsdt n u kS /)()(4444ϕσϕσ--=∂∂-=∂∂-即 4.设一根具有绝热的侧表面的均匀细杆,它的初始温度为ψ(x ),两边满足下列边界条件之一:(1)一端(x=0)绝热,另一端(x=L )保持常温u 0(2)两端分别有热流密度q 1和q 2进入;(3)一端(x=0)温度为u 1(t ),另一端(x=L )与温度为θ(t )的介质有热交换。

数学物理方程习题解答案

数学物理方程习题解答案

数学物理方程习题解习题一1, 验证下面两个函数:(,)(,)sin x u x y u x y e y ==都是方程0xx yy u u +=的解。

证明:(1)(,)u x y =因为32222222222222223222222222222222222222222211()22()2()()11()22()2()()0()()x xx y yy xx yy x u x x y x y x y x x x y u x y x y yu y x y x y x y y y y x u x y x y x y y x u u x y x y =-⋅⋅=-+++-⋅-=-=++=-⋅⋅=-+++-⋅-=-=++--+=+=++所以(,)lnu x y =是方程0xx yy u u +=的解。

(2)(,)sin x u x y e y = 因为sin ,sin cos ,sin x x x xx xxy yy u y e u y e u e y u e y=⋅=⋅=⋅=-⋅所以 s i ns i n 0x xxx yy u u e y e y +=-= (,)sin x u x y e y =是方程0xx yy u u +=的解。

2,证明:()()u f x g y =满足方程: 0xy x y uu u u -= ,其中f 和g 都是任意的二次可微函数。

证明:因为()()u f x g y =所以()(),()()()()()()()()()()()()0x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=⋅=⋅''=⋅''''-=⋅-⋅⋅=得证。

3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u -+= 的通解。

数学物理方程讲义课后答案一二章 姜礼尚版本

数学物理方程讲义课后答案一二章  姜礼尚版本

PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建

数学物理方程第二版谷超豪主编的课本的课后答案

数学物理方程第二版谷超豪主编的课本的课后答案

1、一个偏微分方程所含有的未知函数最高阶导数的阶数称为这个偏微分方程的阶。

2、如果方程对未知函数及其各阶导数总体来说是线性的,则称这个方程是线性方程,否则称这个方程是非线性方程。

3、几种不同原因的综合所产生的效果等于这些不同原因单独产生的效果(即假设其他原因不存在时,该原因所产生的效果)的累加。

这个原理称为叠加原理。

4、I 【22222//0u t a u x ∂∂-∂∂=0:(),/()t u x u t x ϕψ==∂∂=】初值问题I 的解为(,)[()()]/2(1/2)()x atx atu x t x at x at a d ϕϕψαα+-=-+-+⎰此公式称为达朗贝尔公式5、依赖区间(x-at,x+at ) 第一章课后题2.8求解波动方程的初边值问题222200{//sin |0,/|sin }t t u t u x t x u u t x ==∂∂-∂∂==∂∂=解:()0()11(,)sin sin sin 22x t x tt x t x t u x t d d t xττξξτξξ+-+---=+=⎰⎰⎰sin(1,2,...)k k C x k l π=为常微分方程()()0X x X x λ''+=满足边界条件(0)0,()0X X l ==的固有函数(或特征函数)而222k lπλ=称为相应的固有值。

2222200:(),()0,:0u u a t x ut u x x tx x l u ϕψ∂∂-=∂∂∂===∂===初值问题,的解是(,)cos sin sin k k k a k a k a u x t A t B t xl l l πππ⎛⎫=+ ⎪⎝⎭又可以写成(,)cos()sink k k k k u x t N t x lπωθ=+其中,cos sin K K k k K aN lπωθθ===K N 称为波的振幅,K ω称为圆频率,k θ称为波的初位相。

数理方程第一章、第二章习题全解

数理方程第一章、第二章习题全解

u( 0 , t) = u( l, t) = 0 现考虑初始条件,当冲量 k 作用于 x = c处时, 就相当于在这点 给出了一个初速度 , 我们考虑以 c点为中心 , 长为 2δ的一小段弦 ( c δ, c + δ) , 设弦是均匀的 , 其线密度为 ρ, 则这 一小段 弦的质量 为 2δρ, 受冲击时速度为 ut ( x, 0) , 由动量定理得
h c
x
l
h -
c(
l
-
x)
(0 ≤ x ≤ c) ( c < x ≤ l)
ut ( x, 0) = ψ( x ) = 0
则 u( x, t) 是下列定解问题的解 :
utt - a2 uxx = 0
( 0 < x < l, t > 0)
u( x, 0) = φ( x ) , ut ( x, 0 ) = ψ( x )
2 .4 习题全解
1. 设弦的两端固定于 x = 0 及 x = l, 弦的初始位称如图 2 2 所 示,初速度为零, 又设有外力作用, 求弦作横向振动时的位移函数 u( x, t) 。
解 如图 2 2 所示, 弦作横向振动时初始条件为
62
数学物理方程与特殊函数导教·导学·导考
图2 2
u( x, 0) = φ( x ) =
5. 若 F( z) , G( z) 是任意两个二次连续可微函数 , 验证
u = F( x + at ) + G( x - at )
满足方程
2u t2
=
a2
2x2u。
解 作自变量代换ξ= x + at,η= x - at, 由复合函数求导法则

所以 于是
u t

数学物理方法第一章作业答案

数学物理方法第一章作业答案

第一章 复变函数 §1.1 复数与复数运算1、下列式子在复数平面上个具有怎样的意义? (1)2≤z解:以原点为心,2为半径的圆内,包括圆周。

(2)b z a z −=−,(a 、b 为复常数)解:点z 到定点a 和b 的距离相等的各点集合,即a 和b 点连线的垂直平分线。

(3)z Re >1/2解:直线2/1=x 右半部分,不包括该直线。

(4)1Re ≤+z z解:即122≤++x y x ,则1≤x , x y 212−≤,即抛物线x y 212−=及其内部。

(5)α<z arg <β,a <z Re <b ,(α、β、a 、b 为实常数) 解: (6)4arg0π<+−<i z i z 解:2222)1(21++−−+=+−y x xi y x i z i z 因为4arg0π<+−<i z i z 所以1)1(1)1(200)1(1)1(2222222222222<++−+++−<>++−+>++−y x y x y x xy x y x y x x,即0x 21,0x 22>+−+<y x 综上所述,可知z 为左半平面x<0,但除去圆0x 2122=+−+y x 及其内部 (7),11z 1-z ≤+解:()()[]2222222221411iy 111z 1-z y x y y x y x x iy x +++⎥⎦⎤⎢⎣⎡++−+=+++−=+ 所以()()[]2222222141y x y y x ++≤+−+化简可得0≥x (8))/1Re(z =2解:2e x 1e )/1Re(2222=+=⎥⎦⎤⎢⎣⎡+−=⎟⎟⎠⎞⎜⎜⎝⎛+=y x xy x iy x R iy R z 即()16/14/122=+−y x(9)22Re a Z =解:2222Re a y x Z =−=(10)222122122122z z z z z z +=−++解:()()()()()()2222212122122122122122y x y x y y x x y y x x +++=−+−++++可见,该公式任意时刻均成立。

姜礼尚数学物理方程讲义(第三版)课后习题答案

姜礼尚数学物理方程讲义(第三版)课后习题答案

公众号:菜没油
8
uv uv fv dx + x uv g v ds u = v ds v udx uv fvdx x uv gv ds n

u u u f vdx v x u g ds 0 2 n
6.解: 设 u u x, y, z, y 为 t 时刻在 x, y, z 处的温度,k 为导热系数, 0 为热交换 系数,于是有如下定解问题:
公众号:菜没油
4
10.泛定方程:ut a2 u 0
20.初始条件:u x, y, z, 0 100 u 0 37 u n
30.边界条件:u x, y, 0, t u 0 k
公众号:菜没油
5
10.解: 取传送带所在直线为 x 轴,起点为原点,任取一段传送带 x1 , x2 ,时间段
t1 , t2 .
由质量守恒: 即 dx
x1 x2 t2 x2 x1

t2
t dx dt a
2 2 2
从而由动量守恒及胡克定律可知:
S x xutt x, t ES x u x
再令 x 0 ,即有
2 x 2 x u 1- E 1 2 x h 2 h t 2
x x
ux
x

u x
0 0 1 1 1 1
u 0 y 0 u ydx 2 ydx y 0 0
0 0
u 2 0 u 0 1 0 u 1 0 u x2 x 2

数学物理方法第四版课后习题答案

数学物理方法第四版课后习题答案

数学物理方法第四版课后习题答案数学物理方法是一门综合性的学科,它既包含了数学的抽象思维和逻辑推理,又融合了物理的实证观察和实验验证。

对于学习数学物理方法的学生来说,课后习题是非常重要的一部分,通过解答习题可以巩固所学的知识,提高问题解决能力。

本文将为读者提供《数学物理方法第四版》课后习题的答案,帮助读者更好地理解课本内容。

第一章:数学物理方法的基础1.1 习题答案:a) 由于是一元函数,所以可以将其表示为幂级数的形式:f(x) = a0 + a1x + a2x^2 + ...将f(x)代入微分方程,整理得到:a2 + (a3 - a1)x + (a4 - 2a2)x^2 + ... = 0由于等式左侧是一个幂级数,所以等式两边的每一项系数都为零,解得:a2 = 0a3 - a1 = 0a4 - 2a2 = 0...解得:an = 0 (n为偶数)an = an-2/n(n-1) (n为奇数)b) 将f(x)代入微分方程,整理得到:2a2 + (3a3 - a1)x + (4a4 - 2a2)x^2 + ... = 0a2 = 0a3 - a1 = 0a4 - 2a2 = 0...解得:an = 0 (n为偶数)an = an-2/(n+1)(n+2) (n为奇数)1.2 习题答案:a) 根据题意,设矩形的长为L,宽为W,则有:2L + 2W = 100LW = A解得:L = 50 - WW(50 - W) = AW^2 - 50W + A = 0由于W为矩形的宽度,所以W > 0,根据二次方程的性质,判别式D = 2500 - 4A > 0解得:A < 625b) 根据题意,设矩形的长为L,宽为W,则有:2L + 2W = 100解得:L = 50 - WW(50 - W) = AW^2 - 50W + A = 0由于W为矩形的宽度,所以W > 0,根据二次方程的性质,判别式D = 2500 - 4A ≥ 0解得:A ≤ 625第二章:向量分析2.1 习题答案:a) 根据题意,设向量A的分量为(A1, A2, A3),向量B的分量为(B1, B2, B3),则有:A ×B = (A2B3 - A3B2, A3B1 - A1B3, A1B2 - A2B1)A ·B = A1B1 + A2B2 + A3B3解得:A ×B = (1, -1, 2)A ·B = 3b) 根据题意,设向量A的分量为(A1, A2, A3),向量B的分量为(B1, B2, B3),则有:A ×B = (A2B3 - A3B2, A3B1 - A1B3, A1B2 - A2B1)A ·B = A1B1 + A2B2 + A3B3A ×B = (1, -1, 2)A ·B = 0以上是《数学物理方法第四版》第一章和第二章部分习题的答案,希望读者通过这些答案能够更好地理解课本内容,提高问题解决能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章§1 方程的导出。

定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。

证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。

现在计算这段杆在时刻t 的相对伸长。

在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ 令0→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。

由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。

设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程ttu x x s x ⋅∆⋅)()(ρxESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x得tt u x s x )()(ρx∂∂=x ESu () 若=)(x s 常量,则得22)(tu x ∂∂ρ=))((x u x E x ∂∂∂∂即得所证。

2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在l x x==,0两点则相应的边界条件为.0),(,0),0(==t l u t u(2)若lx =为自由端,则杆在lx =的张力xux E t l T ∂∂=)(),(|lx =等于零,因此相应的边界条件为xu∂∂|l x ==0 同理,若0=x 为自由端,则相应的边界条件为xu ∂∂∣00==x(3)若l x=端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。

由虎克定律有xu E∂∂∣)](),([t v t l u k l x --==其中k 为支承的刚度系数。

由此得边界条件)(u xuσ+∂∂∣)(t f lx == 其中Ek =σ特别地,若支承固定于一定点上,则,0)(=t v 得边界条件)(u xuσ+∂∂∣0==l x 。

同理,若0=x端固定在弹性支承上,则得边界条件x uE ∂∂∣)](),0([0t v t u k x -==即 )(u xuσ-∂∂∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为2222)1(])1[(tuh x x u h x x E ∂∂-=∂∂-∂∂ρ 其中h 为圆锥的高(如图1)证:如图,不妨设枢轴底面的半径为1,则x点处截面的半径l 为:h x l -=1所以截面积2)1()(hx x s -=π。

利用第1题,得])1([)1()(2222xuh x E x t u h x x ∂∂-∂∂=∂∂-ππρ若E x E =)(为常量,则得2222)1(])1[(t uh x x u h x x E ∂∂-=∂∂-∂∂ρ 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。

解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为)()(x l g x T -=ρ且)(x T 的方向总是沿着弦在x 点处的切线方向。

仍以),(t x u 表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段),,(x x x ∆+则弦段两端张力在u 轴方向的投影分别为)(sin ))(();(sin )(x x x x l g x x l g ∆+∆+--θρθρ其中)(x θ表示)(x T 方向与x 轴的夹角又 .sin x u tg ∂∂=≈θθ 于是得运动方程x ux x l t u x∂∂∆+-=∂∂∆)]([22ρ∣xu x l g x x ∂∂--∆+][ρ∣g x ρ利用微分中值定理,消去x ∆,再令0→∆x 得])[(22x ux l x g tu ∂∂-∂∂=∂∂。

5. 验证2221),,(yx t t y x u --=在锥222y x t -->0中都满足波动方程 222222y ux u t u∂∂+∂∂=∂∂证:函数2221),,(yx t t y x u --=在锥222y x t-->0内对变量t y x ,,有二阶连续偏导数。

且t y x t tu⋅---=∂∂-23222)(2252222322222)(3)(t y x t y x t tu⋅--+---=∂∂--)2()(22223222y x t y x t ++⋅--=-x y x t xu⋅--=∂∂-23222)(()()22223222223y x t y x t xu ----+--=∂∂()()222252222y x t y x t-+--=-同理 ()()22225222222y x t y x t yu+---=∂∂-所以()().222222252222222t uyx ty x t yu xu∂∂=++--=∂∂+∂∂-即得所证。

6. 在单性杆纵振动时,若考虑摩阻的影响,并设摩阻力密度涵数(即单位质量所受的摩阻力)与杆件在该点的速度大小成正比(比例系数设为b), 但方向相反,试导出这时位移函数所满足的微分方程.解: 利用第1题的推导,由题意知此时尚须考虑杆段()x x x ∆+,上所受的摩阻力.由题设,单位质量所受摩阻力为tu b∂∂-,故()x x x ∆+,上所受摩阻力为()()tu xx s x p b ∂∂∆⋅⋅- 运动方程为:()()()()t u xx s x b x x u ES t u ES tux x s x x x ∂∂∆⋅-∂∂-⎪⎭⎫ ⎝⎛∂∂=∂∂⋅∆∆+ρρ22利用微分中值定理,消去x ∆,再令0→∆x得()()()().22t u x s x b x u ES x t u x s x ∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂ρρ若=)(x s 常数,则得()()t ux b x u E x tu x ∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂ρρ22若()()则得方程令也是常量是常量,.,2ρρρEa E x E x ===.22222xu a t u b t u ∂∂=∂∂+∂∂§3混合问题的分离变量法 1. 用分离变量法求下列问题的解:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧==<<-=∂∂=∂∂=∂∂==0),(),0()0()1(,3sin 022222t l u t u l x x x t u l x u x u a t u o t t π解:边界条件齐次的且是第一类的,令 )()(),(t T x X t x u =得固有函数x ln x X n πsin)(=,且 t lan B t l an A t T nn n ππsin cos )(+=,)2,1( =n 于是∑∞=+=1sin )sin cos(),(n n n x ln t l an B t l an A t x u πππ 今由始值确定常数n A 及n B ,由始值得∑∞==1sin 3sin n n x l n A l x ππ∑∞==-1sin )(n n x l n B l an x l x ππ 所以,13=A ,0=n A 当3≠n⎰-=ln xdx l n x l x an B 0sin )(2ππ⎩⎨⎧ ⎝⎛+⎪⎪⎭⎫⎝⎛+-=n x l n n l x l n x n l l an πππππsin cos 2222)}4cos 2sin 24430333222lan l xl n n l x l n n x l =--πππππ因此所求解为 ∑∞=--+=1443s i n s i n )1(143s i n 3c o s ),(n n l n t l an n a l x l t l a t x u πππππ(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂==∂∂==∂∂-∂∂0)0,(,)0,(0),(0),0(022222x tux l h x u t l t ut u x u a tu 解:边界条件齐次的,令)()(),(t T x X t x u =得:⎩⎨⎧='==+''0)(,0)0(0l X X X X λ (1) 及)2(02=+''X a T λ。

求问题(1)的非平凡解,分以下三种情形讨论。

10<λ时,方程的通解为xxeC e C x X λλ---+=21)(由0)0(=X 得021=+c c 由0)(='l X 得021=------lle C eC λλλλ解以上方程组,得01=C ,02=C ,故0<λ时得不到非零解。

20=λ时,方程的通解为x c c x X 21)(+=由边值0)0(=X 得01=c ,再由0)(='l X 得02=c ,仍得不到非零解。

30>λ时,方程的通解为x c x c x X λλsin cos )(21+=由0)0(=X 得01=c ,再由0)(='l X 得0cos 2=l c λλ为了使02≠c ,必须 0cos =l λ,于是2212⎪⎭⎫⎝⎛+==πλλl n n)2,1,0( =n且相应地得到x ln x X n π212sin)(+= )2,1,0( =n将λ代入方程(2),解得ta l n B t a l n A t T n n n ππ212sin 212cos )(+++=)2,1,0( =n于是∑∞=++++=0212sin )212sin 212cos(),(n n n x ln t a l n B t a l n A t x u πππ再由始值得⎪⎪⎩⎪⎪⎨⎧++=+=∑∑∞=∞=00212sin 2120212sin n n n n xl n B a l n x l n A x l hπππ 容易验证⎭⎬⎫⎩⎨⎧+x l n π212sin )2,1,0( =n 构成区间],0[l 上的正交函数系:⎪⎩⎪⎨⎧=≠=++⎰n m l n m xdx l n x l m l当当20212sin 212sin 0ππ利用⎭⎬⎫⎩⎨⎧+x l n π212sin正交性,得 xdx ln x l h l A ln π212sin 20+=⎰nn l x l n x n l l h 2222sin )12(2212cos )12(22⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛++++-=πππnn h )1()12(822-+=π0=n B所以∑∞=+++-=022212s i n 212c o s )12()1(8),(n n x l n t a l n n ht x u πππ 2。

相关文档
最新文档